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Abstract— We develop a sensor management protocol that
a vehicle may use to track other vehicles and objects in its
neighborhood using a sensor-suite, an individual element of
which gives either periodic cluttered updates or aperiodic
uncluttered updates. We outline how to combine the Joint
Probabilistic Data Association Filter with stochastic Kalman
Filters for the state estimation process. However, since such
an algorithm is sensitive to modeling errors, we discuss the
use of data-driven optimization algorithms to increase robust-
ness. Finally, we discuss extensions of previously developed
covariance control sensor management algorithms.

Index Terms— target tracking, sensor management, data-
driven controllers, covariance controller, Kalman filter, cer-
tainty equivalence principle

I. INTRODUCTION

This paper is motivated by the problem of how a vehicle
should manage a suite of diverse sensors so as to efficiently
track other vehicles and obstacles in its neighborhood. The
sensor management is exercised by controlling the sensor
parameters such as the sampling rate or the revisit rate
[1] or the emitted waveform of a radar [2]. The available
sensors that are practical for this application fall into the
following two classes — the class Φ1 giving periodic
but cluttered measurements, e.g., radar sensors, and the
class Φ2 giving aperiodic but uncluttered measurements
that are split over multiple wireless channels, e.g., GPS
receivers. We observe that the prevalent state estimation
techniques using Φ1 sensors, an example being the joint
probabilistic data association filter (JPDAF) (see [3], [4],
[5]), are incompatible with those using Φ2 sensors, an
example being the stochastic Kalman filter (see [6], [7]).
Hence, the synthesis of a tracking protocol for a sensor-suite
comprising such diverse sensors is a challenging problem.
A reason behind the failure of a straight forward inclusion
of a stochastic Kalman filter in the JPDAF technique is the
modeling uncertainty. Much progress is possible by incorpo-
rating data-driven techniques in combining the belief-driven
JPDAF and Kalman filter techniques, and we will present
an overview of our approach.

Our development is around the so-called covariance
control approach to sensor management, i.e., the assignment
of a sensor to a target. Methods to synthesize a covariance
controller to track multiple non-interacting targets using
multiple Φ1 sensors have been proposed in [8], [9] and have
been extended for the case of interacting targets by [4]; a
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Fig. 1. A block diagram of the augmented covariance controller of [4] to
track multiple targets using multiple sensors. The controller is described
in further detail in Section III.

block diagram representation is given in Fig. 1. Incorpora-
tion of a Φ2 sensor modifies the controller structure in that,
since its measurement is received over multiple wireless
channels which may not exhibit a strong correlation, a
stochastic Kalman filter (see [6], [7]) replaces the standard
Kalman filter. Recently, [6] has established upper bounds
on the wireless channel losses under which the covariance
update iteration of the stochastic Kalman filter converges
and has synthesized an optimal linear quadratic Gaussian
(LQG) controller under the assumption that the certainty
equivalence principle (see [10]) holds.

The success of these techniques clearly depends on
whether the certainty equivalence principle holds in prac-
tice, and, subsequently, on whether a Kalman filter-based
state estimation technique is a reliable basis to synthesize
the feedback controllers and to compute the allowable worst
case channel loss probabilities as well. In this paper, we
observe that the presence of modeling uncertainties can
lead to poor performance when using such techniques.
Incorporation of run-time data in the optimization process
can alleviate this problem and we propose a supervisory
controller with a data-driven outer loop encapsulating the
belief-driven multi-sensor multi-target protocol of [9]; a
conceptual block diagram is shown in Fig. 2. Further, we
observe that the greedy need-based optimization algorithm
implemented in the sensor scheduler of [9] can possibly
be improved by casting the required optimization problem
as a market clearing problem [11] so that some standard
econometric auction algorithms may now be applied to
solve the sensor management problem.

The paper is organized as follows. Section II presents the
system description and the problem formulation. Section
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III reviews relevant background results on the covariance
controllers and the Kalman filter modifications. Section IV
presents a counter-example to demonstrate the shortcomings
of the traditional techniques to solve the estimation/control
problems of interest and demonstrates the utility of a data-
driven supervisory controller in overcoming these shortcom-
ings. The paper is concluded in Section VI after a brief
discussion in Section V on the use of auction algorithms
to improve the performance of the sensor scheduler pro-
posed by [9]. Some control theoretic notions on data-driven
control are noted in the Appendix.

II. SYSTEM DESCRIPTION AND PROBLEM

FORMULATION

Every vehicle is equipped with Φ1 and Φ2 sensors. The
target vehicle dynamics are assumed to be

xt(k) = Ftx(k − 1) + wt(k − 1),

and the measurement process is assumed to be

zjt(k) = Hjtx(k) + vjt(k) if the sensor ∈ Φ1

zjt(k) = γj(k) (Hjtx(k) + vjt(k)) else,

where xt(k) represents the state of the target t at time k,
Ft represents the state transition matrix, zjt represents the
measurement of target t from the j-th sensor, Hjt represents
the measurement matrix that creates zjt, wt represents
unmodeled dynamics, vjt represents the measurement noise,
and γ(·) is i.i.d. Bernoulli with mean λ. It is assumed
that both wt and vjt are zero-mean white Gaussian with
covariance matrices Qt ≥ 0 and Rj > 0, respectively.
It is assumed that the measurement zjt associated with a
Φ2 sensor has a representation zjt = [zT

j1t zT
j2t]

T where
zjt = [HT

j1t HT
j2t]

T xt + [vT
j1t vT

j2t] with

R
.=

[
R11 R12

R21 R22

]
, p(vjt|γjt) =

{
N(0, Rjj), if γjt = 1
N(0, σ2

jtI), else,

where σjt → ∞ if the measurement is lost.
Given a vehicle equipped with Φ1 and Φ2 sensors, a

tracking protocol can be implemented by incorporating the
modified Kalman filter of [6] in the covariance controller of
[9]. However, [6] assumes an i.i.d. Bernoulli distribution for
the packet losses on a wireless link, and a perfect knowledge
of the process matrices. In practice, the process matrices
are liable to change in response to vehicle maneuvers and
operating conditions, and, furthermore, the packet losses
can rarely be described by a Bernoulli process and are
correlated across the wireless links. Therefore, a problem
of interest is to determine the robustness properties of a
controller synthesized on the lines of [6] based on the state
estimation using the covariance conroller of [9].

III. BACKGROUND RESULTS AND EXTENSIONS

Since measurements from a Φ1 include true target mea-
surements as well as clutter measurements, these are often
processed by a data association algorithm such as a joint
probabilistic data association filter (JPDAF) [5]. The JPDAF

Sensor Sensor

PlantController

-Cost
Minimization
Algorithm

ε

reference
( )r t ( )u t ( )y t

ˆ ( )K t

Fig. 2. The data-driven supervisory controller in the outer loop modifies
the parameters of belief-driven controllers implemented in the inner loop
of the system Σ. An example of the algorithms that may be implemented
in the supervisory controller is the ε-cost optimization algorithm, described
in this paper.

filter tries to resolves the ambiguity using weighted averages
of the presumed target-originated measurements and the
clutter measurements, the weights being a function of the
normalized distance of each measurement from the pre-
dicted target location [5, Ch. 6]. Since wt and vjt are zero
mean white Gaussian, the estimated target state at the next
time step is given by x̂t(k|k−1) = Ft x̂t(k−1|k−1) and the
estimated measurement state at the next time step is given
by ẑjt(k) = Hjt x̂t(k|k − 1). The innovation νtj� is given
by νtj�(k) .= zj�(k)− ẑjt(k) and the Mahalanobis distance
[5] of each innovation is used to gate measurements that
are likely to have originated from the target. The combined

innovation is given by νtj(k) .=
mkj∑
�=0

βtj�(k) νtj�(k) where

βtj� is the probability that measurement zj�(k) is the true
measurement of target t from sensor j, mkj is the number
of gated measurements from sensor j at time k, and � = 0
signifies the event that none of the gated measurements is
the true measurement. The state prediction covariance and
the innovation prediction covariances are

Pt(k|k − 1) = FtPt(k − 1|k − 1)F ′
t + Qt(k − 1) (1)

Stj(k) = HjPt(k|k, j − 1)H ′
j + Rj(k) (2)

for all j = 1, . . . , Nsi , respectively, where Qt(k) is the
process noise covariance for the t-th target and Rj(k) is
the measurement noise covariance from the j-th sensor, and
Nsi

is the number of sensors in the i-th combination of
sensors available to the multi-sensor manager. A sequential
algorithm runs a separate filter for each sensor in the
combination, propagating its state estimate to the next filter:

x̂t(k|k, 1) = x̂t(k|k − 1) + Kt1(k)νt1(k) (3)

x̂t(k|k, j) = x̂t(k, j − 1) + Ktj(k)νtj(k) (4)

x̂t(k|k) = x̂t(k|k, Ns) (5)

with Ktj(k) .= Pt(k|k, j − 1)H ′
jS

−1
tj (k). (6)
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The state covariance update for each filter is given by [9]:

Pt(k|k, j) = P (k|k, j − 1) + P̃tj(k)
− (1 − βtj0(k)) Ktj(k)HjPt(k|k, j − 1) (7)

P i
t (k|k) = Pt(k|k, Nsi

) (8)

P̃tj(k) .= Ktj(k)
mkj∑
�=1

βtj�(k)νtj�(k)ν′
tj�(k)

−Ktj(k)νtj(k)ν′
tj(k)K ′

tj(k). (9)

Once the state and covariance estimates have been updated,
they are fed back into the algorithm and the entire process is
repeated for the measurement update at the next time step.
To efficiently account for clutter, the sensor management
algorithm computes the state prediction covariance and
the innovation prediction covariance as in a sequential
multisensor Kalman Filter algorithm. It then estimates the
loss of information parameter q2 by calculating the expected
number of clutter measurements as a linear function of
the gate volume and by using that information to compute
the loss of information parameters, which are then passed
on to the covariance controller. The covariance controller
then ranks each target based on the need nt, given by
nt = −ψt min {eig (Pd(t) − Pt(k|k − 1))} where Pd(t) is
the desired covariance for the target t and ψt represents
the target priority, with larger ψt indicating higher priority.
The target with the largest need is then selected and the
covariance that would result from each feasible sensor is
calculated [9]. The sensor that maximizes

min
{

eig
(
Pd(t) − E

[
Ptj(k|k)|Zk−1, P (k|k − 1)

])}
, (10)

where Zk−1 is the set of all measurements before time
k, is selected, the covariance is updated Pt(k|k, j) →
Pt(k|k − 1), and the need is updated as nt =
−ψt min {eig (Pd(t) − Pt(k|k, j))} . The remaining need-
iest target is selected and the process is repeated until
either the need of each target is non-positive or the total
tracking capacity of the sensors has been exhausted. An
inclusion of Φ2 sensors brings along random measurement
losses so that the error covariance matrix and Kalman filter
updates (1)—(9) are now stochastic. The detailed stochastic
Kalman filter equations, along with bounds on the channel
loss probabilities that ensure a bounded error for the state
estimates, are derived in [6] and [7]. These assume an i.i.d.
Bernoulli distribution for the packet losses on a wireless
link and a perfect knowledge of the process matrices. A
straight forward extension of the JPDAF algorithm (see
[5], [3], [4]) and the covariance controller (see [9], [4])
to include the sensors from the class Φ2 can be obtained
by appropriately substituting the stochastic Kalman filter
updates for the standard Kalman filter updates. The question
of interest is whether such an extension will work in prac-
tice. In practice, the process matrices have an associated
uncertainty; the factors contributing to the uncertainty in
a single-lane lead-follower collision avoidance application
(see [13]) are shown in Table I. Now, a direct extension

Kalman Filter State Feedback Controller

Target Dynamics

1tλ 2tλ
Markovian

DisturbanceBernoulli

Control input

(i)

Controller 1

Controller N
u Plant

Model 1

Model N

-y

1u

Nu

1e

Ne

ce

desiredy
-

-

(ii)

Fig. 3. (i) The full linear quadratic Gaussian (LQG) regulator of [6]. A
target measurement is split into components and is sent to a remote con-
troller over separate wireless channels, each of which incurs packet losses
as an i.i.d. Bernoulli process. (ii) If a more realistic Markovian structure
were imposed on the packet losses and/or if modeling uncertainties were
considered, a multi-model adaptive controller (MMAC) of [12] is one of
the standard solutions.

of the counterexample in [14] shows that, for even two
channels having no packet losses, the state feedback con-
troller in [6] has vanishingly small robustness margins. A
first-cut extension to account for packet losses that cannot
be described by a Bernoulli process is to assume that a
wireless link can be described by a Markovian process with
finitely many operating states, each described by a Bernoulli
process (see Fig. 3). Then, the traditional approach to
synthesizing the state-feedback controller is a multi-model
adaptive controller (MMAC) [12]. We next present an
example to demonstrate some practical shortcomings.

IV. ILLUSTRATIVE EXAMPLE

The following prototype counterexample demonstrates
how the standard use of multiple models fails whereas
the ε-cost minimization algorithm, given in the Appendix,
succeeds in finding a stabilizing controller. For simplicity,
let the Φ2 measurement be available on a single wireless
channel. Furthermore, suppose the wireless channel admits
no packet losses, i.e., it can be described by a Bernoulli
process with λ = 1. Let the structure of plant models
and controllers be the same as in [12] with parameters(
β0, β

T
1 , α0, α

T
1

)T
for plant models and

(
k, θT

1 , θ0, θ
T
2

)T

for controllers. Two candidate plant models and their cor-
responding controllers are designed so that their parameters
are far from those of the true plant P ∗ and its corresponding
controller C∗, with the parameter vectors as follows:

P ∗ : (1, 0, −2, 0)T ; C∗ : (1, 0, 2, 0)T ;
P1 : (2, 0, 4, 0)T ; C1 : (0.5, 0, −2, 0)T ;
P2 : (1, 0, −6, 0)T ; C2 : (1, 0, 6, 0)T .

Such representations can be justified by introducing the
uncertainties in Table I in the lead-follower models of [15],
and will be discussed in detail in our future work. The
control specification is assigned via the reference model
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Variable Distribution Mean Stdev Minimum Maximum
Reaction Time Gaussian 1.1 sec 0.305 sec 0 sec 2 sec
System Delay Impulse 0.2 sec 0 sec 0.2 sec 0.2 sec

Braking Deceleration Gaussian 0.6 g 0.1 g 0.3 g 0.8 g

TABLE I

Factors contributing to modeling uncertainty in single-lane lead-follower systems. These models were parameterized in
[13] based on the distributions used by NHTSA to test advanced collision warning systems [13].

Wm(s) = 1/(s + 3), while the unknown plant is Wp(s) =
1/(s + 5). The input is a step signal. The simulations are
carried out with a dwell time of 0.001 sec. All initial
conditions are zero. As in [12], the cost function to be

minimized is J(t) = e2
Ij

(t) +
t∫
0

e−ν(t−τ)e2
Ij

(τ)dτ, j =

1, 2, where eI(t) is the identification error and ν = 0.05.
Fig. 4(i) shows the on-line values of the cost function for
both identifiers, when either controller C1 or C2 is initially
in the loop. C2 is switched into the loop since it has smaller
cost value than C1 from the very beginning. However, C2

is destabilizing, as can be confirmed by the analysis of
the stability margins whereas C1 is stabilizing [16]. The
adaptive control method in [12] based on minimizing J(t)
fails to pick the stabilizing controller in this case and the
cost for both controllers quickly explodes regardless of
which controller is in the loop initially. Next, we used the
ε-cost minimization algorithm with the cost function

J(t) = max
�∈(0,t)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẽ2
i (�) +

�∫
0

e−λ(�−τ) · ẽ2
i (τ)dτ

�∫
0

e−λ(�−τ) · r̃2
i (τ)dτ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , i = 1, 2,

(11)

where
�∫
0

e−λ(�−τ)r̃2
i (τ)dτ �= 0, and r̃i, ẽi are the fictitious

reference signal and the fictitious error, respectively (see
Appendix). At time t = 0, a controller is chosen arbitrarily
and is put in the loop. The stabilizing controller C2 is
quickly switched into the loop. The parameter ε is set
to 0.001. Fig. 4(ii) shows the simulation result of the
unfalsified cost for both controllers: the cost of C1 is much
smaller than that of C2, regardless of which controller is
initially in the loop, and, hence, gets switched into the loop.
The stabilizing controller C1 is successfully chosen.

Remark 1: This counter-example demonstrates the utility
of the unfalsified control methodology in using run-time
data to synthesize a stabilizing feedback controller for a
prototype system, which could not be stabilized using a
traditional MMAC controller. The counter-example rests
on the fact that the true process is not captured by any
of the candidate models so that, as a result, the certainty
equivalence principle is violated. The methodology can
be expected to provide a robust state-feedback controller,
which is an objective of [6], and to fine-tune the combined
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Fig. 4. (i) Cost of C1 and C2 under the MMAC method of [12]. (ii)
Cost of C1 and C2 under the unfalsified method [16]. (iii) Plant-controller
decomposition for the prototype system.

innovation parameter. �

V. SENSOR MANAGEMENT ALGORITHM EXTENSIONS

Auction algorithms on the lines of [11] and the Hungarian
method [17] can improve on the need-based sensor-target
assignment algorithm of [9], as follows. Consider the ve-
hicle network collection as a market with N number of
buyers, i.e., targets, and N number of goods, i.e., sensors.
Suppose a target i is initially assigned aij amount of the
sensor j with the total amount of the sensor j in the market
as aj

.=
∑

i

aij , and a
.=

∑
j

aj . Let vij be the utility of the

sensor j on the target i; an example of vij is the inverse of
the predicted covariance of the estimate of target i when the
sensor j is assigned to it. Suppose pi denotes the price of the
sensor i. Then, the scheduler would like to assign only the
sensors that maximize vij/pj . Let xij denote the amount of
sensor j available with the target i. Let P denote the price
vector and let X denote the matrix of xij assignments. The
pair (X, P) forms a market equilibrium iff (a) there is no
surplus or deficiency of any good; (b) all traders receive
the goods that maximize their utility per money spent. The
prices P are known as the market clearing prices and X is
known as the equilibrium assignment. Then, the conditions

5018



for the market equilibrium are as follows:⎧⎨
⎩

∑
i

xij = aj , ∀j;
∑

j

xijpj =
∑

j

aijpj , ∀i,

xij > 0 implies vij/pj ≥ vik/pk, ∀k; xij ≥ 0, pj ≥ 0.

Since the sensor prices pj can be presumed to be fixed for
most purposes, the market equilibrium conditions can be
written as the solution to the following linear program:

minimize
∑

i

∑
j

aijpjαi +
∑

j

αjβj

subject to αipj + βj ≥ vij , ∀i, j.

An auction algorithm to realize the approximate market
clearing is then as follows [11]. At any stage in the auction,
each sensor j is available at two prices: pj/(1 + ε) and
pj , where ε > 0 is a small fixed quantity chosen at the
initialization stage. Let yij be the amount of sensor j
assigned to the target i at the price pj/(1+ε) and let hij be
the amount assigned to the target i at the price pj . Define
the demand set Di of the target i as Di = arg maxj vij/pj

and define the surplus ri left with the target i as:

ri =
∑

j

aijpj −
∑

j

yij
pj

1 + ε
−

∑
j

hijpj

with the total surplus r =
∑

i

ri. Let a∗ = minj aj and a =∑
j

aj . The sensor j is said to be unassigned if
∑

i

xij < aj

and assigned otherwise. It is said to be available at price p

if its current price pj = p and
∑

i

hij < aj .

To start with, pj = 1, ∀j and yij = hij = xij = 0, ∀i, j.
A target with positive surplus acquires the sensors in its
demand set. If a sensor in the demand set is still unassigned,
it is acquired at unit price. If a sensor j is available at
its current price pj , it is acquired by outbidding another
target which has been assigned the sensor at a lower price
pj/(1 + ε). If the sensor j is not available at its current
price pj , its price is increased by a factor of 1 + ε to make
it available. The process continues until either the surplus
of all targets becomes sufficiently small or all the sensors
are assigned. The algorithm has been proven to terminate
in O( 1

ε2 N2 log(p∗a
εa∗

) log p∗) rounds [11], where maxj pj ≤
p∗. The algorithm can be readily extended for collaborative
sensor-target assignments in vehicular networks.

VI. CONCLUSION

We have described a sensor management protocol which
a vehicle may use to track other vehicles and objects
in its neighborhood using a sensor-suite, an individual
element of which gives either periodic cluttered updates or
aperiodic uncluttered updates. The use of Kalman filters
has been a key component in the prevalent solutions to
this tracking problem. The reliance of such techniques
on the certainty equivalence principle was exploited to
produce a counterexample demonstrating inadequacies of

such techniques to provide the desired performance in
the face of modeling uncertainties. The use of data-driven
optimization algorithms in overcoming this difficulty was
discussed. Such algorithms may be used in fine-tuning the
augmented covariance controller of [9] and improving on
the state feedback controller of [6]. The use of auction
algorithms in the sensor-target assignments has also been
overviewed.
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APPENDIX. DATA-DRIVEN CONTROL CONCEPTS

This section reviews some relevant notions for the prob-
lem of data-driven discovery of controllers that fit control
goals, as outlined in [18], [19], [20], and [21]. A given
phenomenon (plant, process) produces elements (outcomes)
that reside in some set Z (universum). A subset B ⊆
Z (behavior of the phenomenon) contains all possible
outcomes. The mathematical model of the phenomenon
is the pair (Z,B). The set T denotes an underlying set
that describes the evolution of the outcomes in B (usually,
the time axis). We distinguish between manifest variables
zmanifest ∈ Z that completely describe the phenomenon,
and latent (auxiliary) variables zlatent ∈ Z; e.g., the plant
input and output may serve as the manifest data {(u, y) ∈
L2e × L2e ⊂ Z}. We define the linear truncation operator
Pτ : Z 
→ Zτ as:

(Pτz)(t) =
{

zmanifest(t), ∀t ≤ τ
o, else.

This definition differs slightly from the usual definition of
the truncation operator in that the truncation is performed
with respect to both time and signal vector z. The measured
data set [19] contains the observed (measured) samples
of the manifest plant data, and is defined as {zdata} =
{(ydata, udata)} ⊂ Bptrue

where Bptrue
is the behavior

of the true plant. The available plant data at time τ is
denoted Pτ (zdata) ⊂ Pτ (Bptrue

). The set K denotes a
finite set of candidate controllers. The fictitious reference
signal r̃(K, Pτzdata, τ) is the reference signal that would
have exactly reproduced the measured signals Pτ (zdata)
had the controller K been in the loop when the data was
collected. Any adaptive control algorithm can be viewed
as a mechanism that chooses a particular controller that
minimizes a cost function. In a multiple-model/multiple-
controller switching scheme, this function has a role of
ordering candidate controllers according to the chosen cri-
terion. A data-driven cost-minimization paradigm used here
implies that the ordering of the controllers is based on the
available plant data.

Definition 1: The cost functional is a mapping V :
PτZ × K × T → R+ for the given controller K ∈ K,
measured data Pτzdata ∈ PτZ and τ ∈ T . �
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Definition 2: The true cost Vtrue : K 
→ R+ ∪ {∞} is
defined as Vtrue(K) .= sup

z∈Bptrue ,τ∈T
V (K, Pτz, τ). �

The true cost represents, for each K, the maximum cost
that would be incurred if it were possible to perform a worst
case experiment, for all possible experimental data. Let
[ydata, udata] represent the output signals of the supervisory
feedback adaptive system Σ : L2e → L2e in Fig. 2. It is
assumed that all components of the system give zero output
when subject to zero input.

Definition 3: A system with input w and output z is said
to be stable if lim sup

τ→∞
‖z‖τ/‖w‖τ < ∞ holds for all w ∈

L2e, w �= 0. If, in addition, sup
w∈L2e,w �=0

(‖z‖τ/‖w‖τ ) < ∞,

the system is said to be finite-gain stable; otherwise, it is
said to be unstable. �

Definition 4: A robustly stabilizing and performing con-
troller KRSP is a controller that stabilizes the given plant
and minimizes the true cost Vtrue. �

A data-driven adaptive control law is an algorithm
that selects at each time τ a controller K̂τ dependent
on experimental data. There are many ways to choose a
controller (see [20] and [22]), and an example is as follows.

The ε-Cost Minimization Algorithm⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1. Initialize: Let t = 0, τ = 0; choose ε > 0.

Let K̂t ∈ K be the first controller in the loop.
2. τ ← τ+1.

If V
(
K̂t, Pτz, τ

)
> min

K∈K
V (K, Pτz, τ) + ε

then
t ← τ and K̂t ← arg min

K∈K
V (K, Pτz, τ)

3. K̂τ ← K̂t; return K̂τ ;
4. go to step 2.

The time instant t is the time of the last controller switch.
The switch occurs only when the current unfalsified cost
related to the currently active controller exceeds the min-
imum of the current unfalsified cost by at least ε. Here,
ε serves to limit the number of switches to a finite num-
ber, and so prevents the possibility of limit cycle types
of instability that may occur when there is a continuous
switching between two or more stabilizing controllers. It
also ensures a non-zero dwell time between switches. We
assume that the candidate controller set K contains at
least one robustly stabilizing and performing controller and
that the performance cost functional V has a monotone
non-decreasing cost in the sense that for all τ1, τ2 such
that τ2 ≥ τ1, and ∀K ∈ K, ∀zdata with which K is
consistent, V (K, Pτ2z, τ2) ≥ V (K, Pτ1z, τ1). It may be
observed that when V is monotonically non-decreasing
in time, its optimal value min

K∈K
V (K, Pτz, τ) is mono-

tonically non-decreasing in time and uniformly bounded
from above by Vtrue(KRSP ) .= min

K∈K
V (K, Pτ1z, τ1) ≤

min
K∈K

V (K, Pτ2z, τ2), ∀τ2 > τ1 for all z ∈ Z .

Definition 5: Given K ∈ K and measured data
[ydata, udata] we say that the stability of the system given
in Fig. 2 is falsified if

∃r̃ (K, zdata) s.t. lim sup
τ

(‖[ydata, udata]‖τ

‖r̃‖τ

)
= ∞.

Otherwise, it is said to be unfalsified. �
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