
Distributed Control Design with Robustness to Small Time
Delays

R. S. Chandra
Mechanical & Aerospace Engineering

Cornell University.
rsc28@cornell.edu

C. Langbort
Center for the Mathematics of Information

California Institute of Technology
clangbort@ist.caltech.edu

R. D’Andrea
Mechanical & Aerospace Engineering

Cornell University
rd28@cornell.edu

Abstract— Recent results by the authors have shown how to construct
a class of structured controllers for large scale spatially interconnected
systems via linear matrix inequalities. These controllers guarantee
that the closed loop interconnected system is well-posed, stable and
has H∞ norm less than unity. Of paramount importance in the
control of interconnected systems is the requirement that the stability
and performance of the controlled system be robust to arbitrarily
small communication delays between subsystems; this amounts to a
continuity property. In this paper, it is shown how to realize the
structured controllers obtained from the linear matrix inequalities in
order to ensure this continuity property for the closed loop system.

I. INTRODUCTION

In recent years, considerable research attention has been focused
on the theory and practice of large scale spatially interconnected
systems. The papers [2] and [5] proposed control design techniques
for a class of interconnected systems known as spatially invariant
systems; the work [10] dealt with analysis of a class of spatially
interconnected systems called the multidimensional (MD) systems.
The main motivation for these results is the fact that it is often
not practicable to design fully centralized controllers for large scale
interconnected systems due to constraints on the computational cost
and allowable interconnection topology.

In recent papers [12], [11], based in turn on the results of [7]
and [16], the authors have extended the results of [5] and have
proposed a method to construct a class of structured controllers
for spatially interconnected systems. Briefly, these results can be
summarized as follows: Consider a linear time-invariant (LTI)
plant consisting of ‘L’ subsystems Gi, i = 1, . . . , L, which are
interconnected over an arbitrary graph. Every node of the graph
represents an LTI system and every directed edge represents the
signals flowing from one node to the other. Each edge of the graph
connecting subsystems Gi and Gj , i �= j is associated with the
pair of numbers m+

ij , m
−
ij , where m+

ij denotes the dimension of
the output of Gi flowing towards Gj and where m−

ij denotes the
dimension of the output of Gj flowing towards Gi. In addition, each
subsystem is affected by the exogenous disturbance di and outputs
the signal zi. Notice that m+

ij = m−
ji for all i, j = 1, . . . , L.

Suppose we seek a controller consisting of subsystems Ki with
the properties that:

1) Each Ki is connected to Gi.
2) Two controller subsystems Ki, Kj can communicate; that is,

Ki can output a signal of dimension m
K,+
ij to Kj , and receive

an input of dimension m
K,−
ij from Kj , so that m

K,+
ij = m

K,−
ji

for all i, j = 1, . . . , L.
3) The inequality max(mK,+

ij , m
K,−
ij ) ≤ α max(m+

ij , m
−
ij)

holds, where α is an absolute constant.
4) The closed loop system is stable and H∞ norm of the system

mapping (d1, . . . , dL) to (z1, . . . , zL) is less than unity.
Notice that the third condition above imposes a restriction on
the possible connectivity of the controller subsystems in terms of
that of the plant; in particular, no two controller subsystems can
communicate unless the corresponding plant subsystems do. It was
shown in [12], [11] that the above problem can be solved with a
bound α = 3, and a linear time-invariant control system explicitly
computed, if a certain linear matrix inequality (LMI) condition is
satisfied.

The very fact that we are trying to control a plant consisting
of spatially distributed subsystems requires that we add a fifth

condition to the four already given above, namely, that the closed
loop system be stable, and the H∞ norm of the system be less
than unity, when arbitrarily small communication delays are present
between any two closed-loop subsystems. It has been recognized
long ago (see [18]) that seemingly innocent examples of LTI
feedback systems have the property that arbitrarily small delays
in the feedback loop can destroy stability. For example, a constant
gain P̂ (s) = q > 1 (s denotes the Laplace transform variable) in
feedback with a unity gain has this property; if P̂ (s) is replaced
by qe−εs (a time delay of ε > 0 seconds), the resulting system is
no longer internally stable. In the paper [13], it is shown that for
an LTI feedback system, robustness with respect to small delays
in the feedback loop is equivalent to the stability of the nominal
system and the condition that a certain matrix structured singular
value be less than unity. Thus, it is not a priori obvious that the
closed loop system is robustly stable when small communication
delays are present. The aim of this paper is to show the following:
if a controller K (with subsystems Ki) is synthesized using the
LMI conditions of [11], there exists another controller K̄ (with
subsystems K̄i) which can be explicitly computed in terms of the
state-space matrices of Ki, has the same structure as K (this is
of course essential, since the main contribution of [11] was to
construct controllers with this structure), and guarantees robust
stability and H∞ performance of the closed loop system against
arbitrarily small communication delays. Note that if we directly
implement the controller obtained via solving the LMIs of [11], the
closed loop may not have this desirable property.

The paper is organized as follows: In Section II, some back-
ground material on spatially interconnected systems as reported in
the work [11] is given, and the problem of robustness to arbitrarily
small delays is precisely formulated. In Section III, the main results
of the paper are presented; a controller is constructed that achieves
robust stability and performance to small time communication
delays. Section IV presents the conclusions, and the proofs are
given in the Appendix.

Notation: The set of the real numbers is denoted by R, the
complex numbers by C, the real n - vectors by R

n, the m×n
real (complex) matrices by R

m×n (Cm×n), the n×n identity by
In, and the real symmetric matrices by R

n
S. M∗ is the conjugate

transpose of M ∈ C
m×n. For M ∈ R

n
S, M � 0 means M

is positive definite; M ≺ 0 means M is negative definite. The
maximum singular value of a matrix M is denoted by σ̄(M) and the
spectral radius is denoted by ρ(M) if M is square. The Euclidean
norm of a vector is denoted | • |. L2 is the space of vector signals
z(t) such that

R∞
0

|z(t)|2dt < ∞ and L2e is the space of signals
z(t) such that

R T

0
|z(t)|2dt < ∞ for all T > 0 . The L2 norm

of a signal is denoted by ‖ • ‖ and the H∞ norm of an LTI
system G is denoted by ‖G‖∞; for more details, see [6]. Given
matrices Mk, k = 1, . . . , n, the notation diagn

k=1Mk denotes
the block-diagonal matrix with Mk along the diagonal. This is
usually denoted diagkMk for brevity. Similarly, for signals or
vectors xk, the notation catn

k=1xk denotes the signal or vector
(x1, x2, . . . , xn) formed by concatenating xk. This is also usually
denoted catkxk for brevity. The number of scalar components of
a vector or signal x is denoted by dim(x).
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II. PROBLEM FORMULATION

A. Spatially interconnected systems over an arbitrary graph
The plant to be controlled consists an assembly of L possibly

different linear time-invariant continuous time subsystems. Let
V := {1, 2, . . ., L} be the set that indexes the subsystems. To
each distinct pair of subsystems, indexed by i and j, we associate
the following four signals - in the space L2e - flowing between
them: 1) vij , the input of i coming from j, 2) wij , the output of i
flowing towards j, and similarly, 3) vji and 4) wji. As mentioned
in the introduction, dim(wij) = m+

ij = dim(vji) = m−
ji. Letting

m+
ij = m−

ij = 0 will denote the fact that the subsystems i and j are
not interconnected - neither system outputs a signal to the other.

Define the interconnection input vi to each subsystem and the
interconnection output wi from each subsystem as the partitioned
vectors vi := catj(vij) and wi := catj(wij) respectively. Each
subsystem is described by the following state-space equations:264 ẋi(t)

wi(t)
zi(t)
yi(t)

375 =

2664
ATTi ATSi Bd

Ti
Bu

Ti

ASTi ASSi Bd
Si

Bu
Si

Cz
Ti

Cz
Si

Dzd
i Dzu

i

C
y
Ti

C
y
Si

D
yd
i 0

3775
264 xi(t)

vi(t)
di(t)
ui(i)

375 . (1)

The local state is xi; each subsystem outputs the sensor mea-
surements yi and is equipped with the control signal ui. The
local exogenous disturbance is di and the signals zi represent the
performance output in the standard H∞ formulation [20] (that is,
we would like the signal z := catizi to have small L2 norm when
d := catidi satisfies ‖d‖ = 1). Once the relationships between the
inputs and outputs at each vertex have been defined, the distributed
system can be described by closing all loops by imposing the
constraints of interconnection. In other words, the condition that

vij(t) = wji(t) (2)

is imposed at all times t, for all i, j∈V . We make the following
assumptions on the plant matrices:

1) The control and measurement matrices of the closed loop
system satisfy

B
u
Si

= D
zu
i = C

y
Si

= D
yd
i = 0. (3)

These assumptions can always be satisfied by placing low-
pass filters of sufficiently high bandwidth at the local mea-
surement yi and control input ui as has been done in the
linear parameter varying (LPV) control literature [1].

2) A subsystem must not have feed-through from neighboring
subsystems:

ASSi
= 0. (4)

Thus the large-scale system must not have algebraic loops.
This condition can be relaxed somewhat; see Remark 4.

3) The identity
σ̄(Fi) < 1 (5)

is assumed to hold, where

Fi :=

»
0 Bd

Si

Cz
Si

Dzd
i

–
. (6)

Equation (5) is not required for stability robustness; see Re-
marks 2 and 3. Therefore, if this assumption is not satisfied,
we can still guarantee that the closed loop system is robustly
stable to arbitrarily small delays.

A controller for this system has subsystems Ki given by"
ẋK

i (t)
wK

i (t)
ui(t)

#
=

24 AK
TTi

AK
TSi

BK
Ti

AK
STi

AK
SSi

BK
Si

CK
Ti

CK
Si

DK
i

35" xK
i (t)

vK
i (t)

yi(t)

#
. (7)

It is important to note that no assumptions are made on the state-
space matrices of the controller subsystems since there seems
to be no way to impose sparsity of these matrices as a convex
optimization problem. Notice that controller subsystems can com-
municate via the signals vK

i and wK
i . Each interconnection edge

of the controller’s graph is associated with the signals wK
ij and

vK
ij such that vK

i = catjv
K
ij and wK

i = catjw
K
ij . As explained in

the introduction, dim(wK
ij) = m

K,+
ij and dim(vK

ij) = m
K,−
ij . The

relation vK
ij = wK

ji, and consequently, m
K,+
ij = m

K,−
ji always holds

by definition. The closed loop subsystems are given by"
ẋC

i(t)
wC

i (t)
zi(t)

#
=

24 AC
TTi

AC
TSi

BC
Ti

AC
STi

AC
SSi

BC
Si

CC
Ti

CC
Si

DC
i

35" xC
i(t)

vC
i (t)

di(t)

#
, (8)

where
x

C
i := (xi , x

K
i ), v

C
i := (vi , v

K
i ), wC

i := (wi , w
K
i ) (9)

The description of the closed loop system is completed by the
equations

v
C
ij(t) = w

C
ji(t) (10)

for each i, j ∈ V , where of course,

v
C
ij := (vij , v

K
ij), w

C
ij := (wij , w

K
ij) (11)

and

A
C
TTi

:=

»
ATTi + Bu

Ti
DK

i C
y
Ti

Bu
Ti

CK
Ti

BK
Ti

C
y
Ti

AK
TTi

–
, (12)

A
C
TSi

:=

»
ATSi

Bu
Ti

CK
Si

0 AK
TSi

–
, A

C
STi

:=

»
ASTi 0

BK
Si

C
y
Ti

AK
STi

–
, (13)

A
C
SSi

:=

»
0 0
0 AK

SSi

–
, B

C
Ti

:=

»
Bd

Ti

0

–
, B

C
Si

:=

»
Bd

Si

0

–
, (14)

C
C
Ti

:= [ Cz
Ti

0 ] , CC
Si

:= [ Cz
Si

0 ] , DC
i := D

zd
i . (15)

Notice that in the above equations for the closed loop state
space matrices, we have made the assumptions 1) and 2). Let the
dimensions of xC

i(t), wC
ij(t) and vC

ij(t) be denoted respectively by

nC
i , m

C,+
ij and m

C,−
ij . Define the matrices XTi ∈ R

nC
i

S
, Xij ∈ R

m
C,+
ij

S
,

Zij ∈ R
m

C,−
ij

S
and Yij ∈ R

m
C,+
ij

×m
C,−
ij satisfying the conditions

XTi � 0, Xij = −Zji, Y
∗

ij = −Yji. (16)

(The identity m
C,+
ij = m

C,−
ji ensures that the latter two conditions

in (16) can hold).
The following simple analysis result for spatially interconnected

systems is essentially from [11].
Theorem 1: [11] With the matrices XTi

, Xij , Yij and Zij as
above, the closed loop system (8), (10) is well-posed [8], stable
and satisfies the H∞ performance bound

sup
‖d‖=1

‖z‖2 ≤ (1 − κ) (17)

for some κ > 0 if the quadratic form

x
C
i(t)

∗
XTi ẋ

C
i(t) + ẋ

C
i(t)

∗
XTix

C
i(t) +

LX
j=1

»
wC

ij(t)
vC

ij(t)

–∗ »
Xij Yij

Y ∗
ij Zij

–
×
»

wC
ij(t)

vC
ij(t)

–
+ z

∗
i (t)zi(t) − (1 − κ)d∗

i (t)di(t) (18)

is negative definite for each i ∈ V . Here xC
i(t), vC

ij(t) and di(t)
are free to take values in their respective linear spaces while ẋC

i (t),
wC

ij(t) and zi(t) are computed from the subsystem equations (8).
Remark 1: A special case of the results in this paper appeared

in [4]. The results of [4] assumed that Yij = 0 (which can be
restrictive), and also only addressed the problem of stabilization
(as opposed to the H∞ control problem addressed herein).

Theorem 2: [11] Given a plant (1), (2), a controller which
renders the quadratic form (18) negative definite (for each i ∈ V )
for some choice of suitable matrices XTi

, Xij , Yij and Zij can
be computed as the solution of an LMI. Moreover, the dimen-
sions of the controller interconnection signals can be bounded by
max(mK,+

ij , m
K,−
ij ) ≤ 3max(m+

ij , m
−
ij).

B. Feedback loops with small delays: an abstract analysis problem
The interconnections described by equation (10) may be termed

ideal, that is, they allow an instantaneous flow of information
between any two subsystems. Since this assumption is rarely
justified in practice, we would like to guarantee the stability and
performance robustness of the closed loop system in the face of
arbitrarily small delays between subsystems.
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P̂ (s) �

d̂(s)
�

ẑ(s)

� ��

�

�

�

ê2(s)

d̂1(s)

d̂2(s)
�∆̂(s)�

ê1(s)

Fig. 1. Feedback loop with output

Definition 1: Consider a closed loop system with subsystems
given by (8) and with the interconnections between subsystems
described by

v̂
C
ij(s) = ∆̂ij(s)ŵ

C
ji(s) (19)

instead of (10), where

∆̂ij(s) := diag
m

C,+
ji

k=1 e
−εijks

. (20)

( ˆ denotes taking the Laplace transform). The system is said to
exhibit robust stability and performance to small communication
delays if there exists an ε > 0 such that the system is internally
stable [8] and satisfies (17) for some κ > 0 and for all εijk ≤ ε.

In this subsection, we describe the analysis results which will
enable us to tackle the problem of synthesizing controllers that
guarantee stability and performance of an interconnected system in
the face of small communication delays between any two subsys-
tems. The idea is to consider a linear fractional representation [15]
consisting of an LTI system P̂ (s) in feedback with a diagonal delay
∆̂(s) := diagN

k=1e
−εks (see Figure 1), and to develop analysis

conditions which will guarantee robust stability and performance of
this feedback system in the presence of any delay satisfying εk ≤ ε
(for some ε > 0). Since one can readily express an interconnected
system with delays between subsystems as a linear fractional
representation (by “pulling out the delays” as is done in robust
control theory), such a result would be useful for synthesizing a
controller which ensures this robustness property for the closed
loop interconnected system given by (8), (19).

The analysis result presented in this subsection for feedback
systems with small delays in the loop is essentially from [13].

Consider the feedback loop shown in Figure 1. Suppose the
nominal feedback loop (i.e., with ∆̂(s) = I) is stable and
satisfies (17) for some κ > 0. We would like to guarantee the
existence of ε > 0 such that the system shown in Figure 1 is
internally stable (i.e., has uniformly bounded gain as an operator
from (d1 , d2) to (e1 , e2)) and, with (d1 , d2) set to zero, continues
to satisfy (17) for all time delays ∆̂(s) =: diagN

k=1e
−εks such

that εk ≤ ε. The solution to this problem involves the computation
of a structured singular value. Assume that A ∈ C

(N+n)×(N+m).
Define, for γ > 0, the set

Dγ:=

j»
diagkδk 0

0 Θ

–
:δk ∈ C, Θ ∈ C

m×n
, max(|δk|, σ̄(Θ))≤γ

ff
(21)

and the structured singular value

µ(A) :=
1

sup {γ > 0 : det(I + AA′) �= 0, ∀A′ ∈ Dγ} . (22)

The following theorem will suffice for our purposes.
Theorem 3: Assume that the feedback loop of Figure 1 is

internally stable in the nominal case (∆̂(s) = I) and satisfies (17).
Then there exists an ε > 0 such that

1) the induced norm from (d1 , d2) to the internal signal
(e1 , e2) is uniformly bounded for all εk ≤ ε

2) upon setting (d1 , d2) is to zero, equation (17) continues to
be satisfied by the feedback loop

if µ(P̂ (∞)) < 1.

Proof: The proof is a simple modification of the “if” part of
Theorem 2.2 in the paper [13]; one uses the main loop theorem [15]
to cast the robustness problem as a structured singular value test.
The details are omitted for brevity.

Note that the condition that the induced norm from (d1 , d2) to
(e1 , e2) is uniformly bounded amounts to internal stability of the
delay system [8].

C. Linear fractional representation for interconnected systems

As mentioned in the previous subsection, we need to express the
interconnected system as a feedback loop (Figure 1) by “pulling out
the delays”. For each i ∈ V , let GC

i : L2e → L2e be the subsystem
represented by the state-space equations (8). Thus,»

wC
i

zi

–
= G

C
i

»
vC

i

di

–
(23)

(recall that vC
i and wC

i are interconnection signals concatenated as
in (9)). We need the following Lemma, the proof of which is simple
and is omitted.

Lemma 4: Suppose the interconnected system containing susb-
systems GC

i , coupled as in Equations (19), (20), is represented as
the feedback loop in Figure 1, where

∆̂ := diag
L
i=1diag

L
j=1∆̂ij(s). (24)

Then
P̂ (s) = Q1(diagiG

C
i (s))Q2, (25)

where Q1 and Q2 are permutation matrices.

D. The control problem

It is now possible to precisely formulate our control problem as
follows: Given a plant whose subsystems are represented in state
space by (1), find a controller represented by the equations (7)
such that the closed loop is stable and satisfies (17) when the ideal
(nominal) interconnection relation (11) is satisfied. In addition,
ensure that the structured singular value condition µ(P̂ (∞)) < 1
is satisfied. The following lemma allows us to reduce the problem
to one involving the maximum singular value of the matrix ĜC

i(∞)
rather than µ(P̂ (∞)) (this is convenient since the structured
singular value is hard to compute [17]).

Lemma 5: The condition µ(P̂ (∞)) < 1 is satisfied provided
σ̄(ĜC

i (∞)) < 1 for each i ∈ V .
Proof: Merely observe that permutation matrices are orthogo-

nal, so that σ̄(diagiĜ
C
i (∞)) = σ̄(P̂ (∞)). Since µ(A) ≤ σ̄(A) for

any matrix A [15], and since σ̄(diagiĜ
C
i (∞)) = maxi σ̄(ĜC

i (∞)),
the lemma follows immediately.
The observations of this section yield

Theorem 6: Suppose we can find a distributed controller that
renders the closed loop system (8), (10) stable, with H∞ norm less
than unity. Suppose also that the closed loop subsystems GC

i satisfy
σ̄(ĜC

i (∞)) < 1. From equations (14), (15), this last condition is
equivalent to

σ̄(Ξi) < 1, (26)

where

Ξi := Ĝ
C
i (∞) =

24 0 0 Bd
Si

0 AK
SSi

0
Cz

Si
0 Dzd

i

35 , (27)

for each i ∈ V . Then the closed loop exhibits robust stability and
performance to small delays.

The following corollary for robust stability follows as a special
case of the above result, noting that the closed loop feed-through
matrix is diagiA

C
SSi

, modulo some permutation matrices, when the
exogenous inputs and outputs (di and zi respectively) are absent.

Corollary 7: Given that the closed loop system exhibits nominal
stability and performance, a sufficient condition for robust stability
to small delays is the requirement σ̄(AC

SSi
) < 1.

Remark 2: The matrix Ξi is similar, via a permutation matrix,
to eΞi :=

»
AK

SSi
0

0 Fi

–
(28)
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(see equation (6)). Equation (26) can therefore be satisfied only if
the assumption of equation (5) is satisfied. The precise condition
on the matrix Fi which is necessary for robust performance in the
presence of small delays involves the computation of a structured
singular value; this point is not pursued further. However, Corol-
lary 7 shows that robust stability to small delays can be obtained
even if (5) is not satisfied.

We already know that a controller that stabilizes the nominal
system can be found using the LMI analysis conditions of [11]; in
addition, (26) must be satisfied. In the next section, we shall show
how to obtain such a controller from the controller synthesized
using the LMIs of [11].

III. STABILITY AND PERFORMANCE ROBUSTNESS AGAINST
SMALL COMMUNICATION DELAYS

The main results of this paper are presented in this section. The
proofs are collected in the Appendix.

A. Rewriting a controller for robustness against small delays

Theorem 3 provides the insight that if algebraic loops of gain
≥ 1 (in the sense of the structured singular value) are absent in the
closed loop system, then it is robust to arbitrarily small time delays.
This confirms and generalizes the intuition based on the simple
example (a unity feedback around a gain of q > 1) described in
the Introduction.

Now, we have assumed that the feed-through matrices ASSi

between the plant subsystems are zero; see (4). This is justified
in practice as a well-posedness assumption on the plant model
and can sometimes be relaxed; see Remark 4. Algebraic loops in
the closed loop are therefore caused by the controller feed-through
matrices AK

SSi
. However, one cannot simply assume that AK

SSi
are

zero, since the controller matrices are obtained from the LMI
conditions of [11], and imposing sparsity on controller matrices
seems to be an intractable problem in general (the failure to cast
decentralized control problems as convex optimization problems in
general cases [3] seems to confirm this intuition). With the insight
that algebraic loops of gain ≥ 1 destroy stability or performance in
the presence of small delays however, one could try to rewrite the
controller obtained from the convex synthesis conditions of [11] so
that the hypothesis of Theorem 6 are satisfied by the new controller
feed-through matrices. This is the procedure adopted in the sequel.
Needless to say, the plant should not be modified in any way and
the rewritten controller must also be distributed.

B. Controller construction

Suppose, therefore, that the controller (7) has been computed
such that the quadratic form (18) is negative definite for each i ∈ V .
Partition Xij and Zij as

Xij =:

»
XG

ij XGK
ij

(XGK
ij )∗ XK

ij

–
, Zij =:

»
ZG

ij ZGK
ij

(ZGK
ij )∗ ZK

ij

–
(29)

so that the blocks conform to wC
ij = (wij , wK

ij) and vC
ij =

(vij , vK
ij) respectively. Correspondingly, partition Yij as

Yij =:

»
Y G

ij Y GK
ij

Y KG
ij Y K

ij

–
(30)

(note that Yij is not necessarily symmetric or even square).
The first step in the construction is to compute certain trans-

formation matrices. Assume without loss of generality that the
symmetric matrices

U
K
ij :=

»
XK

ij Y K
ij

(Y K
ij)

∗ ZK
ij

–
(31)

are invertible and still result in (18) being negative definite (by
a small perturbation if necessary). Compute matrices Tij via a
factorization

U
K
ij =: T

∗
ijRijTij , (32)

where
Rij = diag(I,−I). (33)

Note that if Rij has np positive entries and nn negative entries,
the inertia (the ordered triple consisting of the number of positive,

zero and negative eigenvalues respectively) of U K
ij is (np, 0, nn).

Make the co-ordinate transformation»
wK

ij

vK
ij

–
=: T

−1
ij

»
w̌K

ij

v̌K
ij

–
, (34)

where the partition (w̌K
ij , v̌K

ij) is conformable with the principal
submatrices (I and −I respectively) of Rij . From the closed loop
equations (8) and matrices (13), (14), we have

w
K
i = B

K
Si

C
y
Ti

xi + A
K
STi

x
K
i + A

K
SSi

v
K
i (35)

=⇒ˆ I −AK
SSi

˜PK
i diagjT

−1
ij

„
catj

»
w̌K

ij

v̌K
ij

–«
= B

K
Si

C
y
Ti

xi+A
K
STi

x
K
i ,

(36)
where PK

i is a permutation matrix. Define P̃K
i by

P̃K
i :

»
catjw̌

K
ij

catj v̌
K
ij

–
�→ catj

»
w̌K

ij

v̌K
ij

–
, (37)

and define the matrix Ai and the vector ζi by

Ai :=
ˆ

I −AK
SSi

˜PK
i diagjT

−1
ij P̃K

i (38)

ζi := B
K
Si

C
y
Ti

xi + A
K
STi

x
K
i (39)

to get

Ai

»
catjw̌

K
ij

catj v̌
K
ij

–
= ζi (40)

=⇒ Aw
i catjw̌

K
ij = Av

i catj v̌
K
ij + ζi, (41)

where Ai =: [ Aw
i −Av

i ] has been partitioned conformably with
the vector (catjw̌

K
ij , catj v̌

K
ij).

Thus if the matrix Aw
i has a left inverse (it is in general

rectangular), we can solve uniquely for catiw̌
K
ij . The following

theorem shows that this is indeed the case. For convenience, define
w̌K

i := catiw̌
K
ij , v̌K

i := cativ̌
K
ij .

Theorem 8: The relation
w̌

K
i = (Aw

i )†Av
i v̌

K
i + (Aw

i )†ζi (42)
holds, where for a rectangular matrix Θ with full column rank, the
pseudoinverse Θ† is defined as (Θ∗Θ)−1Θ∗.

Theorem 8 is a key result in the whole theory. This theorem has
allowed us to define a new set of interconnection variables for the
controller subsystems. We can now construct a new controller with
these interconnection signals. From (42) and (39), we get

w̌
K
i = (Aw

i )†Av
i v̌

K
i + (Aw

i )†BK
Si

C
y
Ti

xi + (Aw
i )†AK

STi
x

K
i . (43)

Equation (43), together with the equation for the plant intercon-
nection output wi (obtained from (8)) now begins to resemble the
closed-loop interconnection equation (with a new controller):»

wi

w̌K
i

–
=

»
ASTi

0
B̄K

Si
C

y
Ti

ĀK
STi

– »
xi

xK
i

–
+

»
0 0
0 ĀK

SSi

– »
vi

v̌K
i

–
+

»
Bd

Si

0

–
di,

(44)
where
Ā

K
STi

:= (Aw
i )†AK

STi
, Ā

K
SSi

:= (Aw
i )†Av

i , B̄
K
Si

:= (Aw
i )†BK

Si
. (45)

(Compare with (13), (14)).
Now the state equations of the closed loop subsystems are, for

each i ∈ V ,
ẋ

C
i = A

C
TTi

x
C
i + A

C
TSi

v
C
i + B

C
Ti

di. (46)

(See (8), (12), (13) and (14)). Since vC
i = (vi , vK

i ), we must express
vK

i in terms of v̌K
i . Partition the matrices T−1

ij as

T
−1
ij =: Sij =

»
S11

ij S12
ij

S21
ij S22

ij

–
(47)

according to (34). Some algebra later, we obtain

v
K
i = (diagjS

21
ij )B̄K

Si
C

y
Ti

xi + (diagjS
21
ij )ĀK

STi
x

K
i +ˆ

(diagjS
21
ij )ĀK

SSi
+ (diagjS

22
ij )
˜
v̌

K
i . (48)

The closed loop state equation can now be written in terms of
the states and the new interconnection input:»

ẋi

ẋK
i

–
=

»
ATTi + Bu

Ti
D̄K

i C
y
Ti

Bu
Ti

C̄K
Ti

B̄K
Ti

C
y
Ti

ĀK
TTi

– »
xi

xK
i

–
+»

ATSi
Bu

Ti
C̄K

Si

0 ĀK
TSi

– »
vi

v̌K
i

–
+ B

C
Ti

di, (49)
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where the controller matrices ĀK
TSi

, C̄K
Si

, B̄K
Ti

, ĀK
TTi

, C̄K
Si

, and
ĀK

TSi
can be computed from the foregoing signal relations. Compar-

ing the closed loop matrices in (49) and (44) with (8), (12), (13)
and (14), we see that the matrices ĀK

TTi
, etc, define a valid controller.

The first theorem about this controller is that it achieves nominal
stability and performance:

Theorem 9: Assume that the plant satisfies the (3) and (4).
Suppose the controller subsystems (7) have been computed such
that the quadratic form (18) is negative definite for each i ∈ V . Let
the controller subsystems be as in Equation 7, with AK

TTi
replaced

by ĀK
TTi

, etc. Let the closed loop subsystems be interconnected
according to

vij(t) = wji(t) and v
K
ij(t) = w

K
ji(t). (50)

The resulting closed loop system is stable and satisfies (17).
The new closed loop system exhibits robust stability and perfor-

mance to small delays (see Definition 1):
Theorem 10: Assume that the plant satisfies (3), (4) and (5).

When the new controller is connected to the plant, the closed loop
matrix Ξ̄i, which is just Ξi (see (27)) with AK

SSi
replaced by ĀK

SSi
,

satisfies σ̄(Ξ̄i) < 1. Consequently, by Theorems 9 and 6, the closed
loop exhibits robust stability and performance to small delays.

Remark 3: From the proof of the above theorem (Section V-C),
it is seen that σ̄(ĀK

SSi
) < 1 whether or not (5) holds. It follows

that the closed loop system satisfies the condition σ̄(AC
SSi

) < 1,
where the closed loop feed-through matrix AC

SSi
, is now given by

equation (14) with AK
SSi

replaced by ĀK
SSi

. Thus from Corollary 7,
the closed loop is robustly stable to small delays even if (5) is not
satisfied.

Remark 4: The assumption ASSi
= 0 made in this paper can

be considerably relaxed if we are only concerned with stability
robustness; the method given in this paper goes through without
modifications if σ̄(ASSi

) < 1 for each i ∈ V . This can be seen
from the proof of Theorem 10 and the fact that, when ASSi

�= 0,
the closed loop feed-through matrix AC

SSi
(see (14)), with the new

controller in place, becomes

A
C
SSi

=

»
ASSi 0
0 ĀK

SSi

–
. (51)

From the previous remark, σ̄(ĀK
SSi

) < 1 holds; therefore, σ̄(AC
SSi

) <
1. Robust stability now follows from Corollary 7.

Thus we see that the assumption of equation (5) is not necessary
to guarantee stability robustness, which is encouraging, since one
cannot really impose this constraint on the plant. Now suppose (5)
does not hold, but that (3) and (4) do, and that a controller has been
synthesized (as above) such that σ̄(ĀK

SSi
) < 1. Thus, by Corollary 7,

the system is robustly stable to small delays and exhibits nominal
performance. Now the following question arises: is it possible to
estimate an upper bound for the H∞ norm of the closed loop
system from d to z in the presence of small delays? In other words,
is it possible to find numbers Γ, ε > 0 such that

sup
‖d‖=1

‖z‖ < Γ (52)

whenever the interconnections between subsystems are described
by the relations (19) and (20), with εijk < ε? Theorem 11 below
answers this question in the affirmative.

Theorem 11: Suppose Fi ∈ R
m̃i×ñi (see (6) for the definition

of Fi). Let σ̄(Fi) ≥ 1 for at least one i ∈ V , so that robust
performance to small delays is not ensured by Theorem 10. Define

Γ := max
i

{ñiσ̄
2(Fi)} + η, (53)

where η > 0 is any (small) constant. Then there exists ε > 0
such that the closed loop system obtained by interconnecting the
plant with the new controller is internally stable and satisfies (52)
whenever the interconnections between subsystems are described
by the relations (19) and (20), with εijk < ε.

Therefore, if the assumption (5) is not satisfied, it is still possible
to bound the worst-case H∞ gain of the closed loop system in the
presence of small delays, in terms of the plant matrices.

By chasing through the sizes of the signals, the following
bound can be established on the dimensions of the controller’s
interconnection signals. The proof is simple and is omitted.

Theorem 12: Suppose the original controller (7) for the plant (1)
satisfied the relation

max(dim(wK
ij), dim(vK

ij)) ≤ α max(dim(wij), dim(vij)),

for some constant α. Then the new controller satisfies the relation
max(dim(wK

ij), dim(vK
ij)) ≤ 2α max(dim(wij), dim(vij)).

Since we can guarantee a bound α = 3 by the LMIs of [11], the
new controller’s interconnection dimension does not exceed that of
the plant (in every channel) by more than a factor of 6.

IV. CONCLUSIONS

In this paper, a technique was given to construct a class of
structured controllers to stabilize a spatially interconnected system
and to render the closed loop H∞ norm less than unity in the face
of small communication delays. The importance of this problem
is self-evident given the spatially distributed nature of the problem
considered in this and related work [11], [5]. The results build
on those of [11] on distributed control synthesis for large-scale
systems and on those of [13] on the stability of feedback loops
affected by small delays. The controller construction algorithm has
been demonstrated with the help of an example.

V. APPENDIX

A. Proof of Theorem 8
In view of the discussion before Theorem 8, it is sufficient to

prove that Aw
i has a left inverse.

Proof: Define Φi := (xC
i )

∗XTi
ẋC

i + (ẋC
i)

∗XTi
xC

i . Note that
while the state xC

i is really a signal in L2e, we are treating it as
a vector (in R

nC
i ) here. We shall continue to do so for all other

signals without further comment. Also, if β(f) is a quadratic form
in a vector f , we use the notation β(f) < 0 to convey the fact
that β is negative definite (though the strict inequality holds only
if f �= 0).

Recall the meaning of the negative definiteness of the quadratic
form (18): vectors xC

i , vC
i and di are independent variables and ẋC

i ,
wC

i and zi must be computed from the closed loop equations (8)
and (12) - (15). Now, if we set xi = xK

i = vij = di = 0, we see
from (8) and (12) - (15) that wij = zi = 0; so (18) becomes

LX
j=1

»
wK

ij

vK
ij

–∗
U

K
ij

»
wK

ij

vK
ij

–
< 0, (54)

where UK
ij was defined in (31). From (34), (32) and (33), we have

LX
j=1

|w̌K
ij |2 −

LX
j=1

|v̌K
ij |2 < 0 =⇒ |w̌K

i |2 − |v̌K
i |2 < 0. (55)

From equation (41), noting that ζi = 0 (this is because we have
set xi = xK

i = 0), we have

Aw
i w̌

K
i = Av

i v̌
K
i . (56)

From (55) and (56), we have that, for all ω and ν satisfying Aw
i ω−

Av
i ν = 0, the inequality |ω|2 − |ν|2 < 0 holds provided |ω|2 +

|ν|2 �= 0. Now suppose Aw
i ω = 0 for some ω �= 0. Then by

choosing ν = 0, we can satisfy Aw
i ω−Av

i ν = 0, but on the other
hand, |ω|2 − |ν|2 = |ω|2 > 0, a contradiction. Hence Aw

i ω = 0
implies that ω = 0. Thus Aw

i has full column rank; in other words
it has a left inverse.

B. Proof of Theorem 9
From (18), (34), (32) and (47), we have

Φi +
LX

j=1

»
w̌C

ij

v̌C
ij

–∗ »
X̌ij Y̌ij

Y̌ ∗
ij Žij

– »
w̌C

ij

v̌C
ij

–
+ z

∗
i zi − (1− κ)d∗

i di < 0,

(57)
where w̌C

ij := (wij , w̌K
ij), v̌C

ij := (vij , v̌K
ij) and

X̌ij :=

»
XG

ij 


(S11
ij )∗(XGK

ij )∗ + (S21
ij )∗(Y GK

ij )∗ I

–
, (58)

Y̌ij :=

»
Y G

ij Y GK
ij S22

ij + XGK
ij S12

ij

(S11
ij )∗Y KG

ij + (S21
ij )∗(ZGK

ij )∗ 0

–
, (59)
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Žij :=

»
ZG

ij 


(S22
ij )∗(ZGK

ij )∗ + (S12
ij )∗Y KG

ij −I

–
, (60)

where 
 denotes terms induced by symmetry. Recall that
dim(wK

ij) = m
K,+
ij and dim(vK

ij) = m
K,−
ij ; let dim(w̌K

ij) := m̌
K,+
ij

and dim(v̌K
ij) := m̌

K,−
ij . From (16), we have XK

ij = −ZK
ji and

(Y K
ij)

∗ = −Y K
ji. These can be written as»

XK
ij Y K

ij

(Y K
ij)

∗ ZK
ij

–
=

"
0 I

m
K,−
ji

I
m

K,+
ji

0

#„
−
»

XK
ji Y K

ji

(Y K
ji)

∗ ZK
ji

–«

×
"

0 I
m

K,+
ji

I
m

K,−
ji

0

#
(61)

=⇒
»

XK
ij Y K

ij

(Y K
ij)

∗ ZK
ij

–−1

=

"
0 I

m
K,−
ji

I
m

K,+
ji

0

# 
−
»

XK
ji Y K

ji

(Y K
ji)

∗ ZK
ji

–−1
!

×
"

0 I
m

K,+
ji

I
m

K,−
ji

0

#
. (62)

Thus (UK
ij)

−1 and −(UK
ji)

−1 have the same inertia (see (31)).
From (32) and (47), the identity

(UK
ij)

−1 = SijRijS
∗
ij (63)

holds. Since the inertia of (UK
ij)

−1 is captured by Rij , we can in
fact compute Sij via (32), (47) for i < j and get Sij for i > j
from»

S11
ij S12

ij

S21
ij S22

ij

–
=

"
0 I

m
K,+
ji

I
m

K,−
ji

0

# »
S11

ji S12
ji

S21
ji S22

ji

– " 0 I
m̌

K,+
ji

I
m̌

K,−
ji

0

#
.

(64)
Assume that this has been done prior to controller construction.
Thus »

S11
ji S12

ji

S21
ji S22

ji

–
=

»
S22

ji S21
ji

S12
ji S11

ji

–
(65)

Substituting equations (16), (65) into (58), (59) and (60) gives
X̌ij = −Žji, Y̌

∗
ij = −Y̌ji. (66)

The theorem now follows from (57), (66) the stability criterion
given in Theorem 1.

C. Proof of Theorem 10

From (45), the controller matrix ĀK
SSi

is nothing but (Aw
i )†Av

i .
We claim that σ̄(ĀK

SSi
) < 1. We know that for all ω, ν such that

Aw
i ω = Av

i ν, the inequality |ω|2 < |ν|2 holds provided ω and ν
are not both zero (see the proof of Theorem 8). Thus for all ν �= 0,
it holds that |(Aw

i )†Av
i ν|2 < ν2, or that σ̄(ĀK

SSi
) < 1. From (5)

and the structure of the matrix Ξ̄i (see Remark 2 and (28) for
example), the theorem follows.

D. Proof of Theorem 11
Note that, since σ̄(Fi) ≥ 1 for at least one i ∈ V , the identity

Γ > 1 holds. Define a new closed loop system by scaling the
outputs zi and the inputs di in (8) as follows:

z
′
i :=

zi√
Γ

, d
′
i := di

√
Γ, (67)

where z′
i and d′

i are the new output and input respectively of
subsystem i.

In terms of the new output and input, the matrix Fi in (6) is
transformed to

F
′
i :=

24 0
Bd

Si√
Γ

Cz
Si√
Γ

Dzd
i

Γ

35 . (68)

We claim that σ̄(F ′
i ) < 1. Assume that F ′

i �= 0. Recall that the
Frobenius norm of any matrix A, denoted by ‖A‖F , is given by the
Euclidean norm of the vector of all elements of A. Since Γ > 1,

‖F ′
i ‖F ≤ ‖Fi‖F√

Γ
(69)

=⇒ ‖F ′
i ‖F <

‖Fi‖F

σ̄(Fi)
√

ñi

. (70)

Since ‖ • ‖F and σ̄(•) are equivalent norms satisfying

σ̄(A) ≤ ‖A‖F ≤ σ̄(A)
√

n (71)

for any A ∈ R
m×n(see for example [9], page 56), one obtains

‖F ′
i‖F < 1 (72)

=⇒ σ̄(F ′
i ) < 1, (73)

which proves the claim. Now the nominal system mapping d′ :=
catid

′
i to z′ := catiz

′
i (is stable and) has H∞ norm less than

unity, since
‖z′‖
‖d′‖ =

1

Γ

‖z‖
‖d‖ ≤

√
1 − κ

Γ
(74)

whenever d �= 0; the last inequality is because the nominal
system satisfies the performance equation (17) for some κ > 0.
Since σ̄(ĀK

SSi
) < 1 by hypothesis, Theorem 10 and the form of

equation (28) imply that the system mapping d′ to z′ exhibits robust
performance to small time delays; thus

sup
‖d′‖=1

‖z′‖ < 1 (75)

in the presence of small delays. From the first equality of (74), the
theorem follows.
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