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Abstract— We consider a class of spatially distributed sys-
tems with spatially periodic coefficients. Frequency domain
methods are used to convert a linear system belonging to
this class into a family of infinite-dimensional LTI ones.
The frequency and amplitude of the periodic coefficients
are then treated as parameters. A perturbation analysis is
then performed on the amplitude of the periodicity to find
a computationally efficient method of calculating the 7{>-
norm. The dependence of the 7{*>-norm on the amplitude and
frequency of the periodic coefficients is demonstrated.

I. INTRODUCTION

The H?-norm of a linear system is an indicator of the
amount of energy amplification by the system. While an
eigenvalue analysis determines whether or not a linear
system is stable, it lacks information about its transient
behavior, a phenomenon that depends on the coupling of the
states and non-normal structures. The H2-norm on the other
hand captures such behavior, which makes it a valuable tool
in the analysis and synthesis of linear systems [1].

H?2-norm analysis of spatially distributed systems has re-
cently received attention. One application of this has been in
the investigation of disturbance amplification and transition
to turbulence in channel flows [2] [3] [4] [5], a topic of great
practical and theoretical interest. It has also been proposed
that certain spatially-periodic structures, called riblets, can
lead to a reduction of disturbance amplification in such
flows. This serves as one of the main motivations of the
present work.

In this paper we study the H?2-norm of spatially-periodic
systems that are in the form of a spatially-invariant system
with spatially-periodic coefficients. We use a frequency
domain representation of periodic operators to convert the
spatially-periodic linear system to an infinie-dimensional
ODE (i.e. an infinite number of coupled scalar ODEjs).

Clearly, to calculate the H2-norm of such a system, one
has to first take a large enough truncation of the system
matrices. As a result, finding the 7?-norm can be a very
computationally-intensive task. For this reason we pursue a
perturbation approach to this problem.

We consider the frequency and amplitude of the spatially-
periodic coefficients as parameters. We then take the ampli-
tudes of the periodic coefficients to be small and perform a
perturbation analysis of the H?-norm. Finally, we compare
the results for different value of the perturbation frequency.
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We show that for certain frequencies of the perturbation,
that are related to the parameters of the unperturbed system,
the H2-norm shows significant increase. We refer to this as
“parametric resonance”. We also give examples where the
right choice of the perturbation leads to a decrease of the
H2-norm.

Our presentation is organized as follows: in Section II we
review the frequency response representation of periodic
operators. Section III introduces the perturbation analysis
employed to analyze the HZ2-norm of spatially-periodic
systems. Sections IV and V apply the methods of Section III
to various systems to increase or decrease the H2-norm. We
concluded and suggest directions for future work in Section
VI

II. FREQUENCY REPRESENTATION OF PERIODIC
SYSTEMS

A. Periodic Operators

Let i(k,) and §(k,) denote the Fourier transforms' of
two spatial functions u(x) and y(z) respectively. If « and
y are related by a linear operator, then so are their Fourier
transforms, and it is in general possible to write the relation
between them as

i) = [ Gl i) a M

were the function G (termed the kernel function of the
operator) may contain distributions in general.

It is a standard fact that if the operator G is spatially-
invariant (i.e. it commutes with all spatial shifts), then its
representation in the Fourier domain is a multiplication
operator [6], that is, there exists a function §(k,) such that

This means that in (1)

Glky, k) = G(ks) 0(ky — k).

One way to think about this is that spatially-invariant
operators have Fourier kernel functions G(k,, x) that are
“diagonal”, i.e. they are a function of only k, — k. This
can be visualized as an “impulse sheet” along the diagonal
k. = k whose strength is given by the function §(k.).

We now investigate the structure of the kernel function for
spatially-periodic operators. Consider a spatially-periodic

multiplication operator with period X = 27 of the form

Q
y(x) = &% u(z).

'We use k; € R to denote the spatial-frequency variable, also known
as the wave-number.
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From the standard shift property of the Fourier transform,
we have

I(ke) = (ks — ),

i.e. g is a shift of 4. Such shifts are represented in (1) by
kernel functions of the form

Glky, k) = 0(ky — K — Q).
This can be visualized as an impulse sheet of constant
strength along the subdiagonal k, — x = .
Now consider multiplication by a general periodic func-
tion I' of period X = %“ Let ; be the Fourier series
coefficients of I, i.e.

[(z) = Z Al

l=—00

Using the above, the shift property of the Fourier transform
repeatedly, and the linearity of multiplication operators, we
conclude that

y(x) =T(@) u(z) <= §lk) = Y walk, —19),
l=—0c0

ie. y is the sum of weighted shifts of @ by integer

multiples of 2. Thus, the kernel function of a periodic pure

multiplication operator is of the form

Glha k) = > m 0(ke — k5 —19).

l=—00

This can be visualized as an array of diagonal impulse
sheets at k, — x = [ with relative strength given by
i, the I’th Fourier series coefficient of the function I'(z).

Let us now look at the structure of a general periodic
operator. First, the cascade of a pure multiplication by
e followed by a spatially-invariant operator with Fourier
symbol §(k,) has a kernel function given by

(k) 0(ks — k —192).

It is easy to see that sums and cascades of such basic pe-
riodic operators produce an operator with a kernel function
of the form

oo
Glhe k) = > gilks) 6(ke — £ —192).  (3)
l=—o00
Such a kernel function can be visualized as in Figure 1.
In this paper, we consider spatially-periodic operators
with kernel functions of the form (3). These operators are
completely specified by the sequence of functions {g;(k.)}-
It is interesting to observe certain special subclasses.

1) A spatially-invariant operator has a kernel function
of the form (3) in which §; = 0if [ # 0 (i.e. it is
purely “diagonal’).

2) A periodic pure multiplication operator has a kernel
function of the form (3) in which all the functions g;
are constant in their arguments (i.e. it is a “Toeplitz”
operator).

Fig. 1. The kernel function of a general spatially-periodic operator

Let us return to the kernel representation (3). Now, to find
9(k,) for a given k,, one can imagine the action of (3) on
@(k) as that depicted in Figure 2. Let us write k, € R as

n=-1 m=-1
Jl-q
n=0r —|- s " m=0
#Y. it
o=} i
n=1p v m=1
: e
. e -y -
k.\’ i
Fig. 2. The action of the kernel function of a periodic operator

nQ + 6 for some n € Z and 6 € [0,Q). From (1) and (3)

G0 +nQ) = / G0 +nQ, k) a(k) dk,
= ) a0+ nQ) ad +nQ - 19)
l=—00
= > Gn-m(0+nQ) a6+ mQ).
If we define the bi-infinite column vectors wug :=

col{---,a(0 — Q),a(0),a(0 + Q),---}, and yy :=
col{---,45(0 — 2),9(0),5(0 + Q),---}, then the above
equality can be written in matrix form

900 —92) §_1(0-9Q) g_2(0-9)

= U,
Yo a1(0) 40(0) a_1(0) 05
42004+ 9Q)  a1(0+9)  §9(0 +Q)
which we henceforth denote
Yo = Go ug.
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Fig. 3. Interpretation of Gy as “samples” of G.

As 0 varies in [0,€), Gy fully describes the kernel G.

Remark 1: Another way to interpret the bi-infinite matrix
representation introduced above is to think of Gy, for every
given 6, as a sample of the values of G atan array of equally
spaced points as shown in Figure 3. As 6 changes in [0, §2),
this “sampling grid” slides diagonally on G.

In this setting, the special operators discussed before have
particularly simple forms.

1) A spatially-invariant operator has the diagonal repre-

sentation

Go=| a0+n) |,

2) A periodic pure multiplication operator has the (6-
independent) Toeplitz representation

Y0 Y—1 Y—2
Go =

71 Y0 Y—1

Y2 Y1 Y0

Before ending this section, we should mention that uy
can be seen as a lifted (in frequency) version of 4 (k,) [7].
Hence one can define a unitary operator M such that ug =
M, yg = M7, and thus Gy = MGM*. 1tis easy to show
that if & € L?(—o0,00), then for any given 6 € [0,(),
ug € 2. Clearly M preserves norms and

/_Oou* (z)u(z) dx = % Ooft*(kgg) (ks ) dk,

Lo, IR
:§A Up Ug da:%/o trace(uau;ﬁ) de.

III. PERTURBATION ANALYSIS OF THE H2-NORM

Let us now consider a system of the form

3t¢($7t) = AI) ¢($,t) + B’U(Z‘,t)
= (Ao+Bel'(z) C)¢(x,t) + Bo(z,t),
y(tvx) = Cw(t7x)a

where x € R, and v (x, t), for any given (x, t), is a vector in
C™, w is a spatio-temporal input, and y the spatio-temporal

output. Ag, B, and C are spatially-invariant operators
and I'(z) is a spatially-periodic multiplication operator, all
defined on a dense domain D(A,) C L?*(—o0,00). I'(z)
has period X = %’r and zero mean, and € is a small real
scalar.

We assume that A, defines an exponentially stable Cp-
semigroup on L2(—o0, o) [8]. Finally, for simplicity, we
assume that B and C are constant matrices, and that I'(x) =
2L cos(Qzx) for some constant matrix L € C"*™.

Then, as shown in the previous section, the representation
of the system in Fourier domain would be the infinite-

dimensional system?
dpe(t) = (A + eBTC)wy(1)
= (AP + eAdD)yp(t),

where
AP =1 A0 +n0) |,
AD —gre=| - 0 A :
A, 0 K
and A, := BLC.
Define
Ap(e) = AP +eAD,
Pole) = PO +ePV PP 4

with Pj (¢) = Pg(€). Notice that this implies Pg(m)* = ém)
for all m = 0,1,2,---. We want to find Pg(m) by solving
the Lyapunov equation

Ag(€)Po(€) + Pole)Aj(e) = —BB", 4)
(2
(AL 4 e AP + P + EPP + ) + 5)

(P + Py + EPPD 4 ) (A + eAD) = -BB".

Our aim is to find Py(e) from the above identity and
compute the H2-norm of the system using [9]

1618 = o [ tace(CPutere” s
It is easy to see from (5) that
ADPO 4 PO A" — BB, ©
AéO)Pg“ +P§”A§°)* _ —(A(”Péo) +P§°)A<”*), 7
AE)O)Pf) +P§2)A§°)* _ —(A(l)ﬂﬁ” +P§”A<1)*), @)

2To avoid clutter, we henceforth drop the “"” on the Fourier symbol
of spatially-invariant operators, and omit the 6 subscript for operators that
are independent of 6.
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Now since A( ) and BB* are block-diagonal in (6), so is
’PQ In (7), the right hand side operator has the structure
of being nonzero only on the first upper and lower block-
subdiagonals, and hence 779 Y inherits the same structure
(since A( )i 1s block diagonal). In the same manner, one can
show that 739 is only nonzero on the main block-diagonal
and the second upper and lower block-subdiagonals, and so
on for other P‘gm We have

PO =| R+ |,
7;9(1) _ g 0 Py (6 + nQ) ’
P1(0 4 nQ) 0 '
0 Py (6 + nQ)
(2)
PO 0 Py (6 + nQ) 0 ’
Py (0 + nQ) 0

It is important to realize that, not only is Pém) not a “full”
operator, it has at most m nonzero block-subdiagonals.
Also, all Pém) for odd m are trace-free operators.

Now returning to (6)-(8), P}”), P{") and P{* are found
by equating, element by element, the bi-infinite matrices on
both sides of these equations. For example, (6) leads to

Ao(0 +nQ)Po(0 +nQ) + Po(0 + nQ)Aj(0 + nQ) = —BB*

for every n € Z, and 6 € [0,€2). But notice that as n runs
over all integers and 6 changes in [0, ), k; = 6 4+ nf2 runs
over all reals, and one can rewrite the above equation as

Ao(kz) Po(ka) + Po(ka) Ag(ks) = —BB”™.
Applying the same procedure to (6)-(8), one arrives at
Ao (k) Po(kz) + Po (k) Ag (ke )=
Ao(kz) Pr(ke) + Pi(ke) Ag (ke + ) =
—(ArPoks +9) + Po(ka) A7),
Ao(ky) Pa(ky) + Po(ky) Ag (k) =
—(A1Pi (ke = Q) + ik, — )47 +
APy (ky) + Pi(k
Ao(ks) Pa(ke) + Pa(ke) A5 (ks +262) =
~(APi(k, +9) + Pi(ko) A1),

— BB,

A7),

and so on for all nonzero diagonals of P(gm), m=3,4,---.
Notice that from the above equations, one first finds Py( - )

from the first equation, then P;(-) from the second equa-
tion, and so on. This “decoupling” of the subdiagonals
would not have been possible had we not employed a per-
turbation approach and had attempted to solve (4) directly.

Returning to the calculation of the H?-norm, let us first
separate the block-diagonal part of Péz) by rewriting it as

779( PéQ) + 73(2), where

5(2)

Py = Py(0 + nQ)

and 73(52) contains the rest of P(g2). Aléo, recall that

trace (73(2"1“)) =0,

Now one can write the following

m=0,1,2---.

s 1 [®
1618 = 5 / trace (CPy(0)C” ) o
0
Lo ©) 225 (2) 4
= %/ trace(CPG C* + ECP§ C*)d9+0(e)
0

Q
_ 1 / trace(CP{C™ + ECPLCT)do + O(Y,
27 J,
where the last equation follows from the fact that
trace(CPéQ)C*) = 0. Next, using féo) = MPy(ky) M*,

where M is the unitary (lifting) operator defined earlier,
and

cPct = (MCM*)(MPy(k
= MCPy(ky)C* M,

o) M) (MCT M)

we have

/0 “irace (MCPo(kI)C*M*)dQ - / “trace (CPO(k:m)C*)dkm,

— o0

with the same procedure applied to trace (CP(§2)C *) Thus

1 oo
2 _ *
1Gllz = o [mtrace(CPo(kI)C +
620P2(kz)0*>dkw +O(Y).

IV. AN EXAMPLE OF “PARAMETRIC RESONANCE”

As an application of the preceding discussion, we inves-
tigate the occurrence of parametric resonance for a class of
spatially-periodic systems. Let us take

Ao(kz) = ao(ks) = —(k3 — k3)* — ¢,
for some 0 # kg € R, ¢ > 0, and assume that B = C =1,

L =1 (I'(x) = 2cos(2z)), and hence A; = 1.
For scalar systems, the functions Py(k,) = po(k,) and

Py (k) = pa(k,) in the previous section simplify to*
-1
Polke) = gl
1 -1 -1
P = Gt (st * ) ©

3To find p2(kz) here, one needs to first find pi(ks), but we have
omitted the details for brevity.
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and it is our aim to find the H2-norm

217r/_o:0(p0(k1) + 62p2(kx))dkm + 0(64),

IGII5 = (10)

From (9), po(ks) = %m The first plot below
shows pg(k;), while the second shows po(ks — ) and
po(k, + Q) (dashed), for a given value of Q # 0. As Q2
increases po(k, — ) slides to the right and po(k, + )
to the left. From (9) it is clear that to find po(-) for any

Q, one would sum the two functions in the second plot
and multiply the result by the square of the first plot. The
interesting question now is, for what value(s) of Q € (0, c0)
would the H2-norm in (10) be maximized.

One can easily see that as 2 — 0, the peaks of po(- — )
and po( - +) merge toward that of (po/( - ))2, namely to the
peaks at k, = +kg, thus ffooo pa(ky)dk, grows, and hence
IG|l2 grows. (Remember that pg(k,) is independent of §2,
and thus ffooo po(kz)dk, is constant.) This is intuitively
clear; as {0 — 0, the perturbation is tending toward a
constant function, I'(z) = 2 cos(Q2x) — 2, which shifts the
spectrum of Ay = ag toward the RHP and hence increases
the H2-norm.

But we are more interested in nonzero frequencies 2 that
exhibit a local increase in the 7?-norm. Now notice that a
different alignment of the peaks can also occur which leads
to another local maximum of the 72-norm as a function
of Q. More specifically, this happens when the peak of
po(- — Q) at k, = —ko + Q becomes aligned with the
peak of (po (- ))2 at k, = ko, and, simultaneously, the peak
of po(- + Q) at k, = ko —  becomes aligned with the
peak of (po(- ))2 at k, = —ko. Clearly this occurs when

_kO + Qres = kO - Qres = 2]{30.

This agrees exactly with the result obtained in [10], where
parametric resonance was shown to occur in the perturbation
of the spectrum, for periodic perturbations whose frequency
satisfies the relation €} = 2ky.

V. REDUCTION OF H2-NORM

In this section we continue with some examples that
demonstrate the affect of spatially-periodic perturbations on
the 2-norm of spatially distributed systems, and show that
by appropriately choosing the frequency of the perturbation
one can either induce parametric resonance or reduce the
H?2-norm of the system.

Example 1: Let us now perform a numerical analysis of
the scalar system of the previous section. Take Ag(k,) =

ag(ky) = —(k2 —1)2-0.1, B=C = 1. Clearly A; =
L, and we allow L to be either a purely real or a purely
imaginary scalar.*

The plots in Figure 4 show numerical calculations per-
formed in MATLAB. Notice that for A; € R the results
are in complete agreement with those shown for the system
in the previous section, namely that the 2-norm has local
increases at {2 — 0 and the resonant frequency €2,.., =
2ko = 2.

It is also seen that for A; € jR, one can actually reduce
the H>2-norm at certain frequencies of the perturbation. In-
terestingly, this reduction becomes negligible at the resonant
frequency Q.5 = 2ko = 2.

Remark 2: Again this is in agreement with the re-
sults previously reported in [10], where it is illustrated
that purely-imaginary (in general skew-symmetric) periodic
feedback acts as a form of damping and pushes the system
modes farther into the LHP, whereas purely real (in general
self-adjoint) periodic feedback will move the closed-loop
modes toward the RHP.
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< 3
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e 2
1
0,
= 0
Spatial Frequency k
6
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o
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35 I I I I I I I
0 0.5 1 15 2 25 3 3.5 4
Frequency of Perturbation Q
100
80
x
o
< 60F
=< )
o.x s0- purely real perturbation
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20
0 I I I I T I |
0 0.5 1 15 2 25 3 35 4
Frequency of Perturbation Q
0
2
x
T
= 4
~~
e 6 purely imaginary perturbation -
[
8l
_10 I I I I I I I
[ 0.5 1 1.5 2 25 3 35 4

Frequency of Perturbation Q

Fig. 4. Graphs of Example 1

Example 2: The following system is motivated by chan-
nel flow problems. Take B = C :[}) (1’], L :[(1’ ‘Ol],

L

Aol = R(km +c¢) 0

jhe (240

4The physical interpretation of such an imaginary perturbation will be
discussed in the next section.
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The graphs in Figure 5 show simulation results for R = 6,
¢ = 1. Clearly, the H?-norm can be decreased by the the
application of periodic perturbations with frequency around
Q ~ 0.7 and also for high frequencies 2 2 3.5.

8

(P (k)

N
T

0 L L L L L
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Spatial Frequency k
19.5 T T

I I I
0.5 1 15 2 25 3 35 4
Frequency of Perturbation Q

600 T

jl tr(P,(k)) dk

I I I
0 0.5 1 1.5 2 25 3 35 4
Frequency of Perturbation Q

Fig. 5. Graphs of Example 2
A. Interpretation of Imaginary States

It was shown above that one can decrease the H2-norm
of certain systems by choosing the perturbation amplitude
Aj to be purely imaginary (or, in general, skew-symmetric).
This would yield a perturbed system that can in general have
states with nonzero imaginary parts. One could then ask the
physical interpretation of such a system.

For any operator A, and function v one can write

Ap =A, +]Az7 A,,.,Ai S Rnxn’
¢:¢r +¢7wl7 wr7wi e R™

Then the system equations can be written as

8t('(/]r + i) = (Ar +in>(1/)r + jvi)
T
('Mﬁr = Ar"/’r - Ai'(/)i
8t¢i = A’rwi + Aiw’r
T

o '(/Jr _ Ar _Ai wr

! |:'(/)i:| - [Ai A } {%] '

Clearly the state dimension is twice that of the original

system with imaginary coefficients, but now [ ] € R?".
Let us give a simple example. Assume the heat equation,

with A1 = je, e € R, ice. A, = 92 — ¢ + jecos(Qx). Then

A, =Ay=0%—c, A; = A} = jecos(Qx), and thus

o, | ¥ | = 02—c  —ecos(Qx) | [
“lapi | T | ecos(x) 22 —c i

=([%o ol reeoea B [1]

which describes two identical systems coupled through the
periodic perturbation.

VI. CONCLUSIONS AND FUTURE WORK

We use perturbation analysis to find a computationally ef-
ficient way of calculating the H2-norm of spatially-periodic
systems. We show that for certain classes of systems, the
periodicity can be chosen so as to increase the H2-norm and
induce parametric resonance. An application of this would
be in mixing problems. It is also shown that the H2-norm
can be made to decrease for an appropriate choice of the
frequency of the perturbation.

Our approach can also be used in systems with many
spatial directions. For example, consider the PDE

Y = Yy + Yoz + ctb + e cos(Qa)y

with y € [-1,1] and € R. To put this system into the
developed framework one would only have to perform a
discrete approximation of the operator 85 .

Future research in this direction would include an
exact characterization of the frequencies for which the
H2-norm is most reduced. Also, one could consider more
general periodic coefficients, namely ones with higher
order perturbation terms and multiple harmonics of the
basic frequency. The perturbation methods presented here
could also be generalized to bi-infinite Sylvester equations,
which arise in many fluids problems.
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