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Abstract

This paper presents full and reduced order

observation strategies for a subclass of sys-

tems that are bilinear in the immeasurable

states. Lyapunov analysis is carried out to

derive the conditions for convergence of the

observed states for all strategies. The full or-

der observer is then utilized in the problem

of bus voltage regulation e ected by a STAT-

COM acting as a controlled reactive current

source. Simulations results are presented to

show e cacy of the observation strategy in-

tegrated with the nonlinear STATCOM con-

troller with regard to bus voltage regulation

in the presence of disturbances in load and un-

certainty in system frequency.

1 Introduction

Bilinear systems have been seen to occur frequently in

chemical reactor and fault diagnosis dynamics. Most

of the work in bilinear systems has concentrated on

bilinear systems up to output injection. In the early

1980s, [1] and [2] obtained necessary and su cient

conditions for the existence of bilinear observers for

bilinear systems. In the late 1990s, a renewed interest

was seen in bilinear systems. In [3], the design of a

residual generator for robust fault detection in bilinear

systems is considered utilizing methods based on a lin-

ear time-invariant observer up to output injection and

the so-called Kalman-like observer. Martinez-Guerra

[4] utilized Fliess’ generalized observable canonical

form and generalized controllable canonical form to

derive an observer-based controller for bilinear sys-

tems. In [5], an output-feedback stabilizing controller

for bilinear systems was proposed utilizing a periodic

switching of the controller and the use of a dead-beat

observer. In [6], a separation principle was posited for

a class of dissipative systems with bilinearities.

The class of bilinear systems that we study in this

paper are motivated by a control problem for design-

ing the current reference for a shunt-connected Static

Compensator (STATCOM) at a load bus in a power

distribution system. The solution of the control prob-

lem in a Lyapunov framework leads us into observer

design for a class of multi-output bilinear systems

that are not transformable into the so-called nonlin-

ear observable canonical form for which exponential

observers exist [7]. The bilinearity that we deal with

emanates from the multiplication of two immeasur-

able system states. However, our result does exploit

the skew-symmetric structure of the system dynamics.

It is important to note here that we do not attempt

to solve the output feedback control problem which is

common in literature; it is our belief that a modular

control and estimator structure allows for flexibility in
controller and estimator choices and is easier to tune

and implement.

In this paper, we present three di erent observation

strategies for a special class of bilinear systems that

leads up to a form that is amenable to the applica-

tion that motivated this bilinear problem definition.
Specifically, we posit bilinear full and reduced order
observers with feed-forward compensation in a Lya-

punov based framework which facilitates proof of as-

ymptotic stabilization of the observation errors. We

then show how the distribution system problem can be

rewritten into a multi-output state estimation prob-

lem (the order of which is 1 higher than the original

problem) that has structure similar to our generic sys-

tem. Next, the observation strategy for the distribu-

tion system is shown to be asymptotically stable in the

sense that all estimation errors converge to the origin

in the limit. Finally, simulation results are presented

to show the performance of the observer integrated in

the STATCOM control problem.

The rest of the paper is organized as follows. Sec-

tion 2 describes the form of bilinear system and de-

fines the estimation problem. Section 3 presents full
and reduced order observation strategies along with

detailed proofs of convergence. Section 4 presents ap-
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plication of the full order observer to the STATCOM

control problem. Simulation results are presented in

Section 5.

2 System Dynamics and Problem Statement

In this section, we motivate the design of various es-

timation strategies for a system that is motivateed by

the STATCOM control problem, defined as follows

ẋ1 = f1 + x2 (1)

ẋ2 = x3J2x2 (2)

ẋ3 = f2 (3)

y = x1 (4)

where x1 (t) , x2(t)
2and x3(t) denote system

states, while y (t) 2 denotes the measurable out-

put vector. Additionally, fi f (y (t) , t) for i = 1, 2
denote measurable vectors the dimension of which is

obvious from context, while J2 is a skew-symmetric
matrix defined as

J2 =
0 1
1 0

(5)

We assume the boundedness of the system states xi (t)
for i = 1, 2, 3 and the vectors fi (·) for i = 1, 2. Our
primary objective is to design an observation strategy

for the unmeasurable state vector x2 (t). In order to
design the estimators, the following error definitions
are set up

x̃i = xi x̂i for i = 1, 2, 3 (6)

where x̂i(t) denote the estimated values for the sys-
tem states xi (t), while x̃i(t) denote the errors in the
respective estimations. The challenge here lies in the

fact that the immeasurable states x2(t) and x3(t) have
a bilinear structure as can be seen in (2).

3 Observation Strategies

In this Section, we present three di erent observation

schemes. We begin our analysis with the simplifying

assumption that x3 (t) is known and then extend our
estimation strategy to include the immeasurable state

x3 (t).

3.1 Observer 1: Measurable x3 (t)
In this section, we design a 4th order observation strat-

egy based on the Lyapunov equality AT0 P + PA0 =
Q and facilitated by the skew-symmetric nature of

J2. We posit the following observer system

.

x̂1 = f1 + x̂2 + k1x̃1 x3J2x̃1 (7)
.

x̂2 = x3J2x̂2 + k2x̃1 (8)

where k1, k2 are positive estimator gains

that are chosen to ensure that the matrix A0 =
k1I2 I2
k2I2 02

4×4 is Hurwitz1. After utilizing

the system dynamics of (1), (2), and the error defin-
itions of (6), the closed-loop error dynamics for x̃1(t)
and x̃2(t) are obtained as

.

x̃1 = k1x̃1 + x̃2 + x3J2x̃1 (9)
.

x̃2 = k2x̃1 + x3J2x̃2 (10)

The closed-loop error systems of above can be written

into the following compact matrix notation

ż = A0z +B (t) z (11)

where A0 is a Hurwitz matrix that has been pre-

viously designed, z (t) = x̃1 (t) x̃2 (t)
T
de-

notes a composite error vector, while B (t) =
x3 (t)J2 02
02 x3 (t)J2

4×4 is a skew-symmetric

matrix. Motivated by our subsequent stability analy-

sis, we define a real symmetric positive definite matrix
Q as follows

Q = kqI4 (12)

where kq is a positive scalar and I4
4×4 is the

identity matrix. Given that the matrix A0 is Hurwitz
and Q is symmetric p.d., we can find a symmetric
positive definite matrix P such that

P =
0

exp AT0 t Q exp (A0t) . (13)

From (13) as well as the particular choice for Q and

the special structure of A0, the matrix P is symmetric

p.d. in the special form P =
aI2 bI2
bI2 cI2

. This

structure of P ensures that B (t)T P+PB (t) 0.We
now define a nonnegative function V1(t) as follows

V1 = z
TPz (14)

Di erentiation of (14) along the closed-loop sys-

tem trajectories of (11) and utilizing the fact that

B (t)T P +PB (t) 0 and (13) leads to the following
expression

V̇1 = zTQz (15)

From (14) and the negative definiteness of V̇1 (t), it is
easy to verify global asymptotic (exponential) stabil-

ity for the observation error system.

1 I2 and 02 denote the 2 × 2 identity and zero matrices,
respectively.
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3.2 Observer 2: Measurable x3 (t)
In this section, we show how it is possible to reduce

the 4th order observation strategy of 3.1 to a 2nd order

system via the use of a feed-forward component. We

posit the following implementable form of the observer

x̂2 = p1 + k3y (16)

ṗ1 = k3f1 k3x̂2 + x3J2x̂2 (17)

where k3 is a constant positive estimator gain

and p1(t) is an auxiliary measurable signal. Af-

ter di erentiating (16) and utilizing (1) and (17), we

obtain the following expression

.

x̂2= k3x̃2 + x3J2x̂2 (18)

The closed loop dynamics for the observation error

x̃2(t) are obtained as follows

.

x̃2= k3x̃2 + x3J2x̃2 (19)

To prove that the observation errors converge to zero,

a positive definite Lyapunov function V2(t) x̃2
2

is di erentiated along the trajectories of (19) in order

to obtain V̇2 = 2k3 x̃2
2
< 0. Again, it is easy to

obtain global asymptotic (exponential) stability for

the observation error system.

Remark 1 It is to be noted here that the gain k3 is
chosen to be a scalar for ease of exposition. One could

easily replace k3 with a Hurwitz matrix; the proof of
stability then follows along the lines of Section 3.1.

3.3 Observer 3: Immeasurable x3 (t)
The estimators of Sections 3.1 and 3.2 assume knowl-

edge of the state x3 (t). For the observer of (16) and
(17), a high gain k3 with a best guess estimate for
x3 (t) drives the observation errors x̃2 (t) into a resid-
ual set about the origin the size of which can be at-

tenuated by making k3 larger. However, a large gain
makes the observation strategy very impractical in the

presence of any measurement noise in the output y (t).
In this Section, we extend our estimation strategy to

develop a 5th order observer in order to account for

the unmeasurable state x3 (t). The following estima-
tion strategy is proposed

.

x̂1 = f1 + x̂2 + k4x̃1 (20)
.

x̂2 = x̂3J2x̂2 + x̃1 (21)

x̂3 = k5 x̃
T
1 J2x̂2 + p2 (22)

ṗ2 = k4x̃
T
1 J2x̂2 + x̂3x̃

T
1 x̂2 + k

1
5 f2 (23)

where k4, k5 are positive observer gains and

p2(t) is an auxiliary measurable signal. The

closed loop error systems for x̃1(t) and x̃2(t) are ob-
tained as

.

x̃1 = x̃2 k4x̃1 (24)
.

x̃2 = x3J2x̃2 + x̃3J2x̂2 x̃1 (25)

where we have utilized (1), (2), (20), (21), and the

error definitions of (6). To obtain the closed loop

error dynamics for x̃3(t), we take the time derivative
of (22) and then utilize (21), (23), and (24) to obtain

the following expression

.

x̂3= k5x̃
T
2 J2x̂2 + f2 (26)

where the following identities have been utilized:

JT2 J2 = I2 and J
2
2 = I2. Given the above expres-

sion, the state equation (3) and the error definition
of (6), the closed loop dynamics for x̃3(t) can be ob-
tained as

.

x̃3= k5x̃
T
2 J2x̂2 (27)

Towards proving stability, we state and prove the fol-

lowing Theorem.

Theorem 1 The closed-loop systems of (24) and

(25) are globally asymptotically stable in the sense

that lim
t

x̃1(t), x̃2(t) = 0. Additionally, under the

assumption that lim
t

x2 (t) = 0, it can be shown that

lim
t

x̃3(t) = 0.

Proof: We define a nonnegative function V3(t)
as follows

V3 =
1

2
x̃T1 x̃1 +

1

2
x̃T2 x̃2 +

1

2
k 1
5 x̃23 (28)

After di erentiating (28) along the closed-loop expres-

sions of (24), (25), and (27), we obtain

V̇3 = x̃T1 (x̃2 k4x̃1) + x̃
T
2 (x3J2x̃2 x̃3J2x̂2 x̃1)

x̃3x̃
T
2 J2x̂2

= k4x̃
T
1 x̃1 (29)

From (28) and (29), it is easy to see that x̃1(t)
L2 L while x̃2(t), x̃3(t) L . Since xi (t) L ,

we can assert that x̂i (t) L i = 1, 2, 3. From the

previous assertions as well as (24), (25), and (27), it

can be seen that
.

x̃i (t) L i = 1, 2, 3. We can now
use Barbalat’s Lemma [8] to prove that lim

t
x̃1(t) =

0. After taking the derivative of (24) and utilizing (24)
and (25), we obtain the following expression

..

x̃1= x3J2x̃2 + x̃3J2x̂2 x̃1 k4x̃2 + k
2
4x̃1 (30)

It is easy to see that all the signals on the right

hand side of (30) are bounded which implies that
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..

x̃1 (t) L ; hence,
.

x̃1 (t) is uniformly continuous.
Given the fact that x̃1(t) L , it is possible to make

the following assertion

lim
t

t

0

.

x̃1 ( )d = x̃1(t) x̃1(0) <

From the integral form of Barbalat’s Lemma [8], we

can now state that lim
t

.

x̃1 (t) = 0. This implies from

(24) that lim
t

x̃2(t) = 0. By di erentiating (25) and

utilizing previous boundedness assertions for all terms

on the right hand side of the resulting expression, it

is easy to see that
..

x̃2 (t) L which implies that
.

x̃2 (t) is uniformly continuous. Again, we can assert

from the boundedness of x̃2 (t) that lim
t

t

0

.

x̃2 ( )d <

. Integral form of Barbalat’s Lemma then implies

that lim
t

.

x̃2 (t) = 0. An inspection of (25) and an

application of the error definition of (6) now reveals
that lim

t
x̃3J2x2 = 0 which implies that lim

t
x̃3 (t) =

0 if it can be shown that x2 (t) does not go to zero in
the limit. Hence, we have proved 1.

4 STATCOM Control

In this Section, we begin by describing the system

model for a shunt-connected STATCOM on a dis-

tribution system which in turn motivates the state

estimation problem. Next, we describe how we can

rewrite the system dynamics for our application into

a form that has the structure of (1)-(4). Finally, we

succinctly describe how one can modify the control

strategy presented in [9] in order to couple the esti-

mation and control strategies.

4.1 System Model and Estimation Problem

We begin by describing the system dynamics on a dis-

tribution system assuming that the shunt-connected

STATCOM acts as a controlled reactive current

source [9, 10]. Our simplified model for a load sup-
plied on a power distribution system consists of: (a)

the source modeled as an infinite bus (vs,abc), (b)
the distribution line represented by an inductive im-

pedance (Rs, Ls), (c) the load modeled by a resis-
tance2 (RL), (d) a STATCOM in parallel with the

load modeled as an ideal current source, and (e) a cou-

pling capacitor3 (Cc). It is assumed that the source,
load, and the STATCOM are balanced three-phase

systems. One phase of the model is shown in Figure

2As described in [9], the assumption of a purely resistive

load allows for simplicity of analysis and does not involve any

loss of generality.
3 See [?] for details on inclusion of Cc.

1 . Under the assumption that zero sequence com-

ponents are not present, the system dynamics in the

familiar two phase x y system are given by following
di erential equations [10]

Lsi̇s,xy = Rsis,xy vL,xy + vs,xy (31)

Ccv̇L,xy = gLvL,xy + is,xy + iSC,xy (32)

where the complex number notation xy x + j y,

and gL = 1/RL is the load conductance. After invok-
ing the global invertible rotational transform

dq = d + j q exp ( j ) xy

we can obtain the equivalent circuits corresponding to

the real (d-axis) and imaginary (q-axis) components
of this equation. Now, choosing = arctan (vLy/vLx),
the system of (31)-(32) can be represented in the fol-

lowing equivalent two phase d q system [10]

Ccv̇Ld = gLvLd + isd + iSCd (33)

Lsi̇sd = vLd Rsisd + Lsisq + Vs cos (34)

Lsi̇sq = Rsisq Lsisd Vs sin (35)

˙ = s (36)

=
isq + iSCq
CcvLd

(37)

where vLd (t) , isd (t) , isq (t) , and (t) are

the states of the distribution-side system, (t)
d (t) /dt, Vs denotes the constant magnitude of the
infinite bus voltage, while s represents the constant

frequency of the infinite bus voltage. Since vLq (t) 0
by the above choice for (t), vLd (t) represents the
instantaneous magnitude of the load phase voltages,

while iSCq (t) denotes the reactive current sup-

plied by the STATCOM and is considered to be the

control input to the system. If parasitic losses are ig-

nored, a STATCOM only supplies reactive power so

iSCd 0 is a readily justifiable simplifying assump-
tion in (33). We remark here that vLd (t) , isd (t) , and

+

−

+

−

LR

abcsi ,

abcSCi ,

sR sL

cCabcsv , abcLv ,

Figure 1: One Phase of the Distribution System

isq (t) are measurable voltage and current signals at
the load bus but the state (t) (which is the angle
between the load and the source voltage vectors) is

unavailable for measurement; however, the Lyapunov
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based large signal control strategy designed in [9] re-

lies on measurements of (t). Even if (t0) is known,
it is practically impossible to reliably estimate (t)
from (36) because the system frequency s exhibits

small variations about its nominal 60 [Hz] value. An

inspection of (36) reveals that even small o sets in

the system frequency can lead to accumulative error

in (t). This motivates us to design a robust obser-
vation strategy for the unmeasurable state (t) given
measurements of vLd (t) , isd (t) , and isq (t) while ac-
counting for uncertainty in and estimating the system

frequency s.

4.2 Application of the Observation Strategy

In this section, we will demonstrate how we can mod-

ify and extend the observer design of Section 3.3 for

the distribution system dynamics of (33)-(36). To elu-

cidate further, the following definitions are set up

= Vs sin Vs cos
T

vL = vLd 0
T

(38)

is = isq isd
T
, =

0 1
0 0

where the vector dimensions are obvious from context.

Given the definitions above, the system dynamics of

(33)-(36) can be represented as

Ccv̇L = gLvL + is (39)

Lsi̇s = J2vL (RsI2 LsJ2) is + (40)

˙ = ( s)J2 (41)

˙ s = 0 (42)

The signals vL (t) , is (t)
2 are clearly measurable,

(t) 2 is an unmeasurable state, the system fre-

quency s is an unknown parameter, while (t) 1

is an auxiliary control input signal (previously defined
in (37) and clearly related to the control signal iSCq (t)
through a static transformation). Motivated by our

desire to obviate the need for a direct cancellation of

the J2vL (t) term in (40), we have pre-appended the

system of (40)-(42) with the dynamics of vL (t). Ad-
ditionally, since (t) is known and s is an unknown

constant, our generic estimation problem of Section

3.3 breaks down into a state estimation problem for

(t) and a parameter identification problem for s. In

order to motivate the design of the observer/identifier,
we set up the following error definitions

ṽL = vL v̂L ı̃s = is ı̂s
˜ = ˆ ˜s = s ˆs

(43)

where v̂L(t), ı̂s(t), ˆ(t)
2, ˆs(t)

1 denote the

yet to be designed estimates of the load voltage, dis-

tribution current, source voltage vector (t), and sys-
tem frequency, respectively, while ṽL(t), ı̃s(t), ˜(t)

2, ˜s (t)
1 denote the corresponding estimation

errors. Motivated by the structure of the systems dy-

namics of (40)-(42) and the estimation strategy of Sec-

tion 3.3, we propose the following observer/identifier
scheme

Cc
.

v̂L = gLv̂L + ı̂s + kvṽL (44)

Ls
.

ı̂s = J2v̂L (RsI2 LsJ2) ı̂s + ˆ

+kiı̃s (45)
.

ˆ = ( ˆs)J2ˆ + ı̃s (46)

ˆs = k ı̃Ts J2
ˆ + p (47)

ṗ = L 1
s (Rs + ki) ı̃

T
s J2 ˆsı̃

T
s

+L 1
s ṽ

T
L
ˆ (48)

where kv, ki, k are constant, positive observer

gains and p(t) is an auxiliary measurable signal.

Given the error definitions of (43), the system dy-

namics of (39)-(41), and the observation strategy of

(44)-(46), the closed-loop observation dynamics are

obtained as

Cc
.

ṽL = (gL + kv) ṽL + ı̃s (49)

Ls
.

ı̃s = J2ṽL ((Rs + ki) I2 LsJ2) ı̃s

+˜ (50)
.

˜ = ( s)J2˜ ˜sJ2ˆ ı̃s (51)

For obtaining the closed loop dynamics of ˜s(t), we
di erentiate (47) along (46), (48), and (50) to yield

.

˜s= k L
1

s
˜TJ2ˆ (52)

where we have utilized (42). To prove that all the

errors converge asymptotically to zero, we define the
following non-negative function

V =
1

2
Ccṽ

T
L ṽL+

1

2
Lsı̃

T
s ı̃s+

1

2Ls
˜T ˜ +

1

2
k 1˜2s (53)

Di erentiating (53) along the dynamics of (49)-(51)

and (52), we obtain the following expression

V̇ = (gL + kvCc) ṽ
T
L ṽL (Rs + kiLs) ı̃

T
s ı̃s (54)

Following arguments similar to those in the proof of

Theorem 1, it is easy to see that: (a) all signals in the

observation strategy are bounded for all time, and (b)

lim
t

ṽL (t) , ı̃s (t) , ˜ (t) = 0. By the first definition of

(38), it is easy to see that lim
t

(t) = 0. Again, an

application of Theorem 1 implies that lim
t

˜s (t) = 0.

Remark 2 Given ˆ (t), an estimate for (t) for
practical implementation in the control scheme can be

obtained readily as follows

ˆ (t) = atan2 ˆ
1 (t) ,

ˆ
2 (t) (55)
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4.3 Integrated Controller Structure

To achieve the regulation of the phase voltage vLd(t)
to a setpoint, a nonlinear control strategy based upon

a novel nonlinear coordinate transformation in con-

junction with a gradient based load conductance iden-

tifier was presented in [9]. As stated earlier this con-
trol strategy relied on an unmeasurable state (t).
Motivated by the desire to utilize the estimate of the

angle between the load and the source vectors ˆ(t)
(generated via (55)), this control input is redesigned

as

iSCq = isq + CcvLd ˆ
s +

ĝL

.

ĝL +ūa (56)

where ˆs(t) denotes a yet to be designed dy-

namic estimator for the system frequency, while the

remainder of the variables are generated as follows:

.

ĝL=
kgvLd
f

(57)

ūa =
k ˜

Lsisd
¯

f
Lsisq

¯

f

(58)

= vLd vLd ˜ = ˆ
¯ = isq˜ ¯ = + isd˜

(59)

where k , kg are constant positive

gains, isd (vLd, ĝL (t)), isq (vLd, ĝL (t)), and

(vLd, ĝL (t)) are tracking trajectories for

the signals isd (t) , isq (t) , and (t) and denote quasi-
steady solutions for the system of (33)-(37),

is a constant positive design parameter defined as
> supt Ls isd + isq , while f(t) is a positive

function defined as f = 1 + 1
2Cc

2 + 1
2Ls¯

2 + 1
2Ls¯

2.

In order for our controller to act satisfactorily in

the event of small variations in the system frequency

s(t), a dynamic estimator for the system frequency

is designed as
.

ˆ
s= k ˜ (60)

where k is a constant positive estimation gain.

To aid the stability analysis of the redesigned control,

we define g̃L = gL ĝL and ˜s = s
ˆ
s. In [9], the

stability analysis was carried out by the use of a novel

Lyapunov function; we present a slight modification of
that Lyapunov function in order to prove the stability

of the redesigned control. The new function is defined
as

Vp = ln f +
1

2
˜2 +

1

2
k 1
g g̃2L +

1

2
k 1 ˜2

s (61)

Di erentiating (61) results in the following expression

V̇p 6
2

7¯
2

8¯
2 k̄4˜

2 (62)

where 6, 7, 8 and k̄4 are positive constants

of analysis the complete definitions of which can be
found in [9]. From (61) and (62), we can utilize

the arguments presented in [9] to prove asymptotic

stability of the closed-loop system in the sense that

lim
t

(t) , ¯ (t) , ¯ (t) , ˜ (t) , g̃L (t) = 0. From asser-

tions following (54), it can be proved that lim
t

ˆ (t) =

(t) ; similarly, from assertions following (62), it can

be shown that lim
t

ˆ (t) = (t). It then immedi-

ately follows that lim
t

(t) = (t).

5 Simulation Results

Available upon request.
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