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Abstract

A direct adaptive control framework for linear uncertain
systems with input quantizers is developed. The proposed
framework is Lyapunov-based and guarantees partial asymp-
totic stability; that is, Lyapunov stability of the closed-loop
system states and attraction with respect to the plant states.
Specifically, the input quantizers are logarithmic and char-
acterized by sector-bound conditions with the conic sector
adjusted at each time instant by the adaptive controller in
conjunction with the system response. Finally, a numerical
example is provided to demonstrate the efficacy of the
proposed approach.

1. Introduction
To design control systems whose components are con-

nected by shared networks, it is essential to consider the lim-
itation due to the communication system and to ensure that
the systems can operate appropriately within the given band-
width [1, 2]. An important aspect there is to use quantization
schemes that have sufficient precision and, at the same time,
require low communication rate. These views have prompted
research interests on new quantization methods accounting
for characteristics particular to control systems.

One such scheme is presented in [3] for stabilization of a
linear discrete-time system where an optimal quantizer is ob-
tained with respect to a certain measure on coarseness of the
transmitted information. This quantizer has a unique feature
that the quantization levels become finer in the region closer
to the origin in a logarithmic way and is hence called the
logarithmic quantizer. Moreover, its key parameter is deter-
mined solely by the unstable poles of the system. In [4], an
alternative proof for the optimal design and more general re-
sults are given by viewing such quantizers as sector-bounded
nonlinearities. This idea is extended in [5] and applied to the
case of uncertain systems with additive bounded uncertain-
ties using H∞ techniques.

In contrast to fixed-gain robust controllers, adaptive con-
trollers are more appropriate in dealing with uncertain sys-
tems with unknown uncertainty bounds. In other words,
adaptive controllers can tolerate far greater system uncer-
tainty levels by adjusting feedback gains in response to plant
variation to improve system performance.

In this paper, we consider a stabilization problem for un-
certain plants over networks via a direct adaptive control ap-
proach. The setup is depicted in Figure 1.1. The controller
is on the sensor side, and the control input is quantized and
coded in the coder to be sent over the channel; we assume
that the channel is noiseless, and hence the quantized signal
is recovered in the decoder and is applied to the plant.

For a linear time-invariant plant whose parameters are un-
certain with unknown bounds, we propose a design method
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Figure 1.1: Adaptive control scheme with a time-varying
quantizer, where E and D represent the encoder and the de-
coder, respectively.

for an adaptive controller and an input quantizer. The quan-
tizer is time varying, and at each time instant, its parame-
ters are determined and adjusted in response to the update
in the controller gain. Following the recent quantization ap-
proaches, we aim at maintaining the quantizer as coarse as
possible at each moment. In particular, we employ logarith-
mic quantizers.

In our adaptive control scheme, it turns out that the quan-
tization levels must be fine while the gain is large, and vice
versa. In general, this implies that systems with poles that
are more unstable would require more information for stabi-
lization. This is in agreement with the implications in [3, 4]
as mentioned above. Furthermore, if the system matrices are
known, the proposed controller and quantizer reduce to static
ones and coincide with the optimal ones given in [3, 4]. Al-
though in the adaptive case, it is difficult to show optimality,
we may say that our approach is nonconservative for this rea-
son.

Finally, we emphasize that the proposed adaptive control
method is Lyapunov-based and guarantees partial asymptotic
stability; that is, Lyapunov stability of the closed-loop system
states and attraction with respect to the plant states. (As a re-
sult, the adaptive gain states are bounded). Note that most
of the adaptive control approaches for discrete-time systems
are based on recursive least squares and least mean squares
algorithms [6]; there, the primary focus is on state conver-
gence rather than stability. Several notable Lyapunov-based
approaches in discrete time are given in [7–11].

The notation used in this paper is fairly standard. Specifi-
cally, I denotes the set of integers, N0 denotes the set of non-
negative integers, and (·)† denotes the Moore-Penrose gener-
alized inverse. Furthermore, we write λmax(M) for the max-
imum eigenvalue of the symmetric matrix M and σmax(M)
for the maximum singular value of the matrix M .

2. Adaptive Control for Linear Uncertain Systems with
Input Quantizers

In this section we introduce an adaptive feedback con-
trol problem for linear uncertain dynamical systems with in-
put quantizers. Specifically, consider the linear uncertain
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discrete-time system G given by

x(k + 1) = Ax(k) + Bv(k), x(0) = x0, k ∈ N0, (1)

where x(k) ∈ R
n is the state vector, v(k) ∈ R

m is the con-
trol input, A ∈ R

n×n, and B ∈ R
n×m. Here we assume that

the input vector v(t) takes quantized values that are recon-
structed at the decoder. In particular, we assume that v(k) is
given by

v(k) = q(k, u(k)), (2)

where q(·, ·) represents the time-varying logarithmic quanti-
zation function of the form

qi(k, ui) =⎧⎨
⎩

ai(k)ρj
i (k), if ui ∈ (ai(k)ρj+1

i (k), ai(k)ρj
i (k)],

−ai(k)ρj
i (k), if ui ∈ [−ai(k)ρj

i (k),−ai(k)ρj+1
i (k)),

0, if ui = 0,

i = 1, · · · ,m, (3)

and u(k) is the control input signal to be quantized at the
encoder and is given in the form

u(k) = H(k)x(k), (4)

where ai(k) > 0, i = 1, · · · ,m, 0 < ρi(k) < 1, i =
1, · · · ,m, and qi(·, ·) and ui denote the ith component of
q(·, ·) and u, respectively. Note that ρi(·) determines coarse-
ness of the quantizer qi(·, ·) for each ui(·), i = 1, · · · ,m.

It is important to note that the logarithmic quantizer (3) can
be characterized as a class of time-varying sector-bounded
memoryless input nonlinearities Q which is given by

Q � {q : N0 × R
m → R

m : q(·, 0) = 0,

[q(k, u) − M1(k)u]T[q(k, u) − M2(k)u] ≤ 0,

u ∈ R
m, k ∈ N0}, (5)

where M1 � diag[M11
, · · · ,M1m

] > 0 and M2 �

diag[M21
, · · · ,M2m

] > 0 are such that ρi = M1i
/M2i

, i =
1, · · · ,m, and M2 − M1 is positive definite (Figure 2.2(a)).
Note that the sector condition characterizing Q is implied by
the scalar sector conditions

M1i
(k)u2

i ≤ qi(k, ui)ui ≤ M2i
(k)u2

i , ui ∈ R,

k ∈ N0, i = 1, · · · ,m. (6)

Since ρi(·) = M1i
(·)/M2i

(·), i = 1, · · · ,m, the coarseness
of the quantizer qi(·, ·) is determined by M2i

(·)−M1i
(·) for

each i = 1, · · · ,m. Even though the time variation of q(k, ·)
is due solely to the variation of M1(k) and M2(k), we write
q(k, u(k)) instead of q(M1(k),M2(k), u(k)) for simplicity
of exposition.

To design adaptive feedback controllers for (1) we decom-
pose the quantization function q(·, ·) into a linear part and a
nonlinear part so that

q(k, u) = M(k)u + qs(k, u), (7)

where M(k) � 1
2 (M1(k)+M2(k)) (see Figure 2.2(b)). Note

that the transformed nonlinearities qs(·, ·) belong to the set
Qs given by

Qs � {qs : N0 × R
m → R

m : qs(·, 0) = 0,

qT
s (k, u)qs(k, u) − 1

4uT(M2(k) − M1(k))2u ≤ 0,

u ∈ R
m, k ∈ N0}. (8)

u

q(k, u)

slope = M1(k)

slope = M2(k)

slope = 1

2
(M1(k) + M2(k))

a(k)

−a(k)

(a) Logarithmic quantizer q(·, ·)

u

qs(k, u)

slope = 1

2
(M1(k) − M2(k))

slope = −

1

2
(M1(k) − M2(k))

(b) Transformed nonlinearity qs(·, ·)

Figure 2.2: Decomposition of a quantization function for
m = 1

As discussed in the Introduction, we assume that M1(·) and
M2(·) also take quantized (discrete) values with the aim
of using network channels. For the guideline of choosing
M1(k) and M2(k) at each k ∈ N0, see Remark 2.2 below.

Now we state the main theorem of this paper. Our ob-
jective is to design an adaptive controller in the form of (4)
and a quantization rule for u(k) to reduce bit rates to be
sent over the communication channel. The following re-
sult provides a control architecture that ensures stability of
the closed-loop system in the case where the system ma-
trix A is unknown but the input matrix B is known. The
case where B is also unknown is addressed in Corollary 2.1.
For the statement of Theorem 2.1 and Corollary 2.1 define
A � {Ã ∈ R

n×n : Ã = A + BKg1, Kg1 ∈ R
m×n}.

Theorem 2.1. Consider the linear uncertain system G
given by (1) where A ∈ R

n×n is an unknown matrix,
B ∈ R

n×m is such that rank B = m, and the pair (A,B) is
stabilizable. Let P ∈ R

n×n be the positive-definite solution
of the Riccati equation

P = ÃTPÃ + R − ÃTPB(BTPB)−1BTPÃ, (9)

with P ≥ In, where Ã ∈ A and R ∈ R
n×n is positive

definite. Furthermore, let As � Ã + BKg2, where Kg2 �

−(BTPB)−1BTPÃ, and let Q ∈ R
m×m and ε ∈ R be such

that Q > 0 and ε > 0 satisfy

R̃ � 1
ε (Im − Q) − BTPB ≥ 0. (10)
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Then the adaptive feedback control law

u(k) = M−1(k)K(k)x(k), (11)

where K(k) ∈ R
m×n, M1(k) and M2(k) satisfy

R− 1
4εKT(k)(M2(k)−M1(k))2M−2(k)K(k) ≥ γIn > 0,

(12)
at each time k ∈ N0, and γ ∈ R is an arbitrarily small con-
stant, with the quantizer (2) and the update law

K(k + 1) = K(k) − 1
1+xT(k)Px(k)QB†[x(k + 1)

− Asx(k)]xT(k), K(0) = K0, (13)

guarantees that the solution (x(k),K(k)) ≡ (0,Kg), where
Kg � −(BTPB)−1BTPA, of the closed-loop system given
by (1), (11), and (13) is Lyapunov stable and x(k) → 0 as
k → ∞ for all x0 ∈ R

n.

Proof. First, note that

AT
s PBBTPAs = (Ã + BKg2)

TPBBTP (Ã + BKg2)

= (Ã − B(BTPB)−1BTPÃ)TPBBTP

· (Ã − B(BTPB)−1BTPÃ)

= 0, (14)

and hence, since AT
s PBBTPAs is nonnegative definite,

AT
s PB = 0. Furthermore, note that from (9)

P = AT
s PAs + R. (15)

Next, define K̃(k) � K(k) − Kg, ũ(k) � K̃(k)x(k), and
let Kg1 be such that Ã = A + BKg1. Note that

Kg = −(BTPB)−1BTPA

= Kg1 − (BTPB)−1BTP (A + BKg1)

= Kg1 + Kg2. (16)

Furthermore, with u(k) given by (11) it follows from (7) that

x(k + 1) = Asx(k) + BK̃(k)x(k) + Bqs(k, u(k))

= Asx(k) + Bũ(k) + Bqs(k, u(k)),

x(0) = x0, k ∈ N0. (17)

In addition, note that by subtracting Kg from both sides of
(13) and using (17) it follows that

K̃(k + 1) = K̃(k) − 1
1+xT(k)Px(k)

QB†[BK̃(k)x(k)

+ Bqs(k, u(k))]xT(k)

= K̃(k) − 1
1+xT(k)Px(k)

QK̃(k)x(k)xT(k)

− 1
1+xT(k)Px(k)Qqs(k, u(k))xT(k). (18)

To show Lyapunov stability of the closed-loop system (17)
and (18), consider the Lyapunov function candidate given by

V (x,K) = ln(1 + xTPx) + 1
ε tr(K −Kg)

TQ−1(K −Kg).
(19)

Note that V (0,Kg) = 0 and, since P and Q are positive
definite and ε > 0, V (x,K) > 0 for all (x,K) �= (0,Kg).
Furthermore, V (x,K) is radially unbounded. Now, let x(k)
denote the solution of the closed-loop system (17). Then,
using (15), (18), and the fact that AT

s PB = 0, the Lyapunov
difference along the closed-loop system trajectories is given
by

∆V (x(k),K(k))

� V (x(k + 1),K(k + 1)) − V (x(k),K(k))

= ln
(
1 + (Asx(k) + Bũ(k) + Bqs(k, u(k)))T

· P (Asx(k) + Bũ(k) + Bqs(k, u(k)))
)

+ 1
ε tr

(
K̃(k) − 1

1+xT(k)Px(k)QK̃(k)x(k)xT(k)

− 1
1+xT(k)Px(k)Qqs(k, u(k))xT(k)

)T

Q−1

·
(
K̃(k) − 1

1+xT(k)Px(k)
QK̃(k)x(k)xT(k)

− 1
1+xT(k)Px(k)Qqs(k, u(k))xT(k)

)

− ln(1 + xT(k)Px(k)) − 1
ε trK̃T(k)Q−1K̃(k)

= ln
(
1 + [1 + xT(k)Px(k)]−1

[
xT(t)AT

s PAsx(k)

+ ũT(k)BTPBũ(k) + 2ũT(k)BTPBqs(k, u(k))

+ qT
s (k, u(k))BTPBqs(k, u(k)) − xT(k)Px(k)

])

+ 1
ε tr K̃T(k)Q−1K̃(k) + 1

ε(1+xT(k)Px(k))2

· tr x(k)qT
s (k, u(k))Qqs(k, u(k))xT(k)

+ 1
ε(1+xT(k)Px(k))2 tr[x(k)xT(k)K̃T(k)Q

· K̃(k)x(k)xT(k)]

− 2
ε(1+xT(k)Px(k)) tr K̃T(k)K̃(k)x(k)xT(k)

− 2
ε(1+xT(k)Px(k)) tr K̃T(k)qs(k, u(k))xT(k)

+ 2
ε(1+xT(k)Px(k))2 tr[x(k)xT(k)K̃T(k)

· Qqs(k, u(k))xT(k) − 1
ε trK̃T(k)Q−1K̃(k)]

≤ [1 + xT(k)Px(k)]−1
[
−xT(k)Rx(k)

+ qT
s (k, u(k))(BTPB + 1

εQ)qs(k, u(k))

− ũT(k)[1ε (2Im − Q) − BTPB]ũ(k)

− 2qT
s (k)[1ε (Im − Q) − BTPB]ũ(k)

]
, k ∈ N0,

(20)

where in (20) we used ln a − ln b = ln a
b and ln(1 + c) ≤ c

for a, b > 0 and c ≥ −1, respectively, and xTx
1+xTPx

< 1 since
P ≥ In. Now, using (12) and the fact that qs(·, ·) belongs to
Qs given by (8), it further follows from (10) and (20) that

∆V (x(k),K(k))

≤ [1 + xT(k)Px(k)]−1
[
−xT(k)Rx(k)

+ qT
s (k, u(k))(BTPB + 1

εQ)qs(k, u(k))

− 1
ε ũT(k)ũ(k)
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Figure 2.3: An example of sector bounds for the time-
varying logarithmic quantizor (M2i

(k) ∈ {1 + âµj
i : j ∈ I},

M1i
(k) ≡ 1)

−
[
ũT(k), qT

s (k, u(k))
] [

R̃ R̃

R̃ R̃

] [
ũ(k)

qs(k, u(k))

]

+ qT
s (k, u(k))[1ε (Im − Q) − BTPB]qs(k, u(k))

]

≤ [1 + xT(k)Px(k)]−1
[
−xT(k)Rx(k)

+ 1
εqT

s (k, u(k))qs(k, u(k))
]

≤ −[1 + xT(k)Px(k)]−1xT(k)[R − 1
4εKT(k)

· (M2(k) − M1(k))2M−2(k)K(k)]x(k)

≤ −γ[1 + xT(k)Px(k)]−1xT(k)x(k)

≤ 0, k ∈ N0. (21)

This proves that the solution (x(k),K(k)) ≡ (0,Kg) to
(17) and (18) is Lyapunov stable. Furthermore, it follows
from (the discrete-time version of) Theorem 4.4 of [12] that
x(k) → 0 as k → ∞ for all x0 ∈ R

n. �

Remark 2.1. The conditions in Theorem 2.1 imply par-
tial asymptotic stability; that is, the solution (x(k),K(k)) ≡
(0,Kg) of the overall closed-loop system is Lyapunov stable
and x(k) → 0 as k → ∞. Hence, it follows from (13) that
K(k + 1) − K(k) → 0 as k → ∞. ♦

Remark 2.2. Note that the choice of M1(k) and M2(k)
is arbitrary so long as (12) holds for a given ε that satis-
fies (10). To construct a coarse quantizer, we obviously
need to take M1(k) and M2(k) such that M2(k) − M1(k)
is as large as possible at each time instant. Furthermore,
it follows from (10) that the smaller the maximum eigen-
value of Q is, the larger ε can be and hence, by (12),
M2(k) − M1(k) can be taken to be large. There are sev-
eral simple ways to determine M1(k) and M2(k). For exam-
ple, let M1(k) ≡ Im and M2i

(k), i = 1, · · · ,m, be given
by M2i

(k) ∈ {1 + âµj
i : j ∈ I}, where â > 0 and µi > 0,

i = 1, · · · ,m. This implies that the smaller M2i
(k)−M1i

(k)
needs to be, the closer M2i

(k) becomes to M1i
(k) in a loga-

rithmic manner for each i = 1, · · · ,m (see Figure 2.3). (Note
that it is realistic in practice to impose an upper bound for
M2(·) − M1(·) even while K(·) stays close to the zero ma-
trix.) Alternatively, another simple way to determine M1(·)

and M2(·) is to set M1i
(k) ∈ {1 − âµj

i : j ∈ I} and
M2i

(k) ∈ {1 + âµj
i : j ∈ I} so that M(k) = Im, k ∈ N0,

and M2i
(k) − M1i

(k) = 2âµj
i < 2, k ∈ N0, i = 1, · · · ,m,

since M1(k) > 0 for all k ∈ N0. In either case above, there
always exist M1(·) and M2(·) such that (12) is satisfied since
M2(·) − M1(·) can be arbitrarily small. ♦

Remark 2.3. In the case of single input systems (m = 1)
with unstable system matrices A, Theorem 2.1 has a close
connection with the results given in [3]. In fact, if we have the
perfect knowledge of the system dynamics, then the sector
condition used in Theorem 2.1 for the largest possible conic
sector reduces to the results in Theorem 2.1 of [3].

To see this, suppose we have the explicit knowledge of
the system matrices A and B so that we do not have to take
adaptive strategy. In particular, let

K(k) ≡ Kg = −(BTPB)−1BTPA, (22)

where P is the solution of the Riccati equation (9) with
Ã = A (i.e., Kg1 = 0). In this case, the update law (13)
is superfluous by letting Q = 0 and hence it follows from
(10) that the upper bound of ε is given by

ε ≤ 1/(BTPB). (23)

Furthermore, take M1 ≡ 1−δ and M2 ≡ 1+δ, where δ > 0,
so that M ≡ 1. Then it follows from (12) and (22) that

4δ2(BTPB)−2R−1/2ATPBBTPAR−1/2 < 4εIn, (24)

which, with (23), further implies that

δ2(BTPB)−1BTPAR−1ATPB < 1. (25)

Therefore, the upper bound δmax of δ is given by

δmax =

√
BTPB

BTPAR−1ATPB
. (26)

This is precisely the result given in [3] that characterizes
the coarsest possible quantizer for the given matrices A, B,
and R. In particular, Elia & Mitter showed in [3] that prop-
erly choosing R in (26) further leads to the coarsest possible
quantizer which is determined solely by the unstable poles of
A. ♦

Remark 2.4. In Theorem 2.1 we assume that P is the so-
lution to (9) which constitutes the optimal gain Kg2 for the
pair (Ã, B) with the quadratic cost function to be minimized
[13] given by

J(x0, u(·)) =

∞∑
k=0

xT(k)Rx(k). (27)

This construction yields the condition (12) that results in the
identical sector bound for the case of static (non-adaptive)
feedback control given in the literature [3] (see also Re-
mark 2.3 for details). In fact, as far as stability is con-
cerned, the matrix P can be replaced by the solution of the
Lyapunov equation (15) with As being an arbitrary Schur
(asymptotically stable) matrix that is constructed in the form
of A + BKg, where Kg ∈ R

m×n. In this case, closed-loop
stability can be shown in a similar way to the proof of Theo-
rem 2.1 with a new condition (instead of (12)) which permits
a possibly finer quantizer. ♦
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It is important to note that the adaptive control law (11) and
(13) does not require explicit knowledge of the system matrix
A nor the gain matrix Kg (= Kg1 + Kg2) even though The-
orem 2.1 requires that the pair (A,B) be stabilizable so that
there exists a stabilizing solution to the Riccati equation (9).
Furthermore, if (1) is in controllable canonical form (with
asymptotically stable zero dynamics) [14], then we can al-
ways construct matrices As and P without requiring knowl-
edge of the system dynamics.

To elucidate the above discussion assume that the linear
uncertain system G is generated by the difference model

zi(k + τi) + ai,τi−1zi(k + (τi − 1)) + · · · + ai,0zi(k)

=
∑m

j=1 Bs(i,j)uj(k), k ∈ N0, i = 1, · · · ,m, (28)

where τi ∈ N0 denotes the time delay (or relative degree)
with respect to the output zi. Here, we assume that the square
matrix Bs composed of the entries Bs(i,j), i, j = 1, · · · ,m,
is such that det Bs �= 0. Furthermore, since (28) is in a
form where it does not possess internal dynamics, it follows
that τ1 + · · · + τm is the dimension of the system (28). The
case where (28) possesses asymptotically stable zero dynam-
ics can be analogously handled as shown in [11].

Next, define xi(k) � [ zi(k), · · · , zi(k + τi − 2)]T, i =

1, · · · ,m, xm+1(k) � [ z1(k + τ1 −1), · · · , zm(k + τm −

1)]T, and x(k) � [xT
1 (k), · · · , xT

m+1(k)]T so that (28) can
be described by (1) with

A =

[
A0

Θ

]
, B =

[
0(n−m)×m

Bs

]
, (29)

where A0 ∈ R
(n−m)×n is a known matrix of zeros and ones

capturing the multivariable controllable canonical form rep-
resentation [14], Θ ∈ R

m×n is a matrix of uncertain constant
parameters, and Bs ∈ R

m×m. Next, to apply Theorem 2.1 to
the uncertain system (1), let Kg1 ∈ R

m×s be given by

Kg1 = B−1
s [Θn1 − Θ], (30)

where Θn1 ∈ R
m×n is an arbitrary matrix so that Ã = A +

BKg1 is a known matrix (not necessarily stable). Now, since
stabilizability is invariant under feedback, the pair (Ã, B) is
also stabilizable and hence there exists a stabilizing solution
to the Riccati equation (10) so that As can be computed and
used in the update law (13). Specifically, if the positive-
definite matrix R is diagonal, the resulting positive-definite
solution P to (9) is also diagonal and Kg2 is calculated to be

Kg2 = B−1
s Θn. In this case, it follows that As =

[
A0

0m×n

]

and hence the update law (13) is simplified as

K(k + 1) = K(k) − 1
1+xT(k)Px(k)QB†x(k + 1)xT(k),

K(0) = K0, (31)

since B†As = 0.
Next, we consider the case where A and B are both un-

certain. Specifically, we assume that the system matrices
A and B are given in the form of (29) and B is such that
Bs, with σmax(Bs) ≤ α, α > 0, is an unknown symmet-
ric sign-definite matrix but an upper bound α of the maxi-
mum singular value of Bs and the sign definiteness of Bs are
known; that is, Bs > 0 or Bs < 0. For the statement of the

next result define B0 �
[
0m×(n−m), Im

]T
for Bs > 0, and

B0 �
[
0m×(n−m),−Im

]T
for Bs < 0.

Corollary 2.1. Consider the linear system G given by (1)
with A and B given by (29), where Bs, with σmax(Bs) < α,
α > 0, is an unknown symmetric sign-definite matrix and
the sign definiteness of Bs is known. Let P ∈ R

n×n be the
positive-definite solution of the Riccati equation

P = ÃTPÃ + R − ÃTPB0(B
T
0 PB0)

−1BT
0 PÃ, (32)

with P ≥ In, where Ã ∈ A and R ∈ R
n×n is positive

definite. Furthermore, let As � A + B0Kg2, where Kg2 �

−(BT
0 PB0)

−1B0PÃ, and let ε, γ̃ ∈ R be such that ε > 0
and γ̃ > 1 satisfy

R̃ � 1
ε (1 − 1

γ̃ )Im − α2BT
0 PB0 ≥ 0. (33)

Then the adaptive feedback control law

u(k) = M−1(k)K(k)x(k), (34)

where K(k) ∈ R
m×n and M1(k) and M2(k) satisfy (12) at

each k ∈ N0, with the quantizer (3) and the update law

K(k + 1) = K(k) − α−1γ̃−1

1+xT(k)Px(k)
BT

0 [x(k + 1)

− Asx(k)]xT(k), K(0) = K0, (35)

guarantees that the solution (x(k),K(k)) ≡ (0,Kg), where
Kg ∈ R

m×n, of the closed-loop system given by (1), (34),
and (35) is Lyapunov stable and x(k) → 0 as k → ∞ for all
x0 ∈ R

n.

Proof. The result is a direct consequence of Theo-
rem 2.1. Specifically, since Q in (13) is an arbitrary positive-
definite matrix with λmax(Q) < 1, it can be replaced by
α−1γ−1|Bs| = α−1γ−1(B2

s )
1

2 ≤ γ−1, where (·)
1

2 denotes
the (unique) positive-definite square root. Now, the proof fol-
lows from the Schur decomposition. �

3. Illustrative Numerical Example
In this section we present a numerical example to demon-

strate the utility of the proposed discrete-time adaptive con-
trol framework in the face of input quantization. Specifically,
consider the linear uncertain system given by

z(k + 2) + a1z(k + 1) + a0z(k) = bv(k),

z(0) = z0, z(1) = z1, k ∈ N0, (36)

where a0, a1, b ∈ R are unknown constants, z(k) ∈ R, and
v(k) ∈ R is to be quantized. Note that with x1(k) = z(k)
and x2(k) = z(k + 1), (36) can be written in state space

form (1) with x = [x1, x2]
T, A =

[
0 1

−a0 −a1

]
, and

B = [0, b]T. Here, we further assume that sgn b is known and
|b| < α = 1. Next, let Kg1 = 1

b [θn1
+ a0, θn2

+ a1] , where

θn1
, θn2

are arbitrary scalars, so that Ã =

[
0 1

θn1
θn2

]
.

Now, it follows from Corollary 2.1 that the adaptive feedback
controller (34) along with the quantizer (2) and the update
law (35) guarantees that x(k) → 0 as k → ∞. Specifically,
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Figure 3.5: State trajectory and control signal versus time

here we choose R = I2 so that P satisfying (32) is given by
P = diag[1, 2] (> I2) (irrespective of θn1

and θn2
since R is

diagonal). With a0 = 1.06, a1 = −0.25, b = 0.4, α = 1,
γ = 5, M1(k) ≡ 1, M2(k) ∈ {1+3 ·1.3j , j ∈ I}, and initial
conditions x(0) = [−1, 3]T and K(0) = [0, 0], Figure 3.4
shows the phase portrait of the controlled and uncontrolled
system. Note that the adaptive controller is switched on at
k = 30. Figure 3.5 shows the state trajectory versus time and
the control signal versus time. Finally, Figure 3.6 shows the
adaptive gain history and the profile of M2(k). It can be seen
from Figure 3.6 that M2(k) remains the original value of 10
for several time steps after the controller is switched on. This
implies that the required communication bit rates for control
are low while the values of the adaptive gains are small.

4. Conclusion

A discrete-time direct adaptive control framework for
adaptive stabilization of multivariable linear uncertain dy-
namical systems with input logarithmic quantizers was de-
veloped. The proposed framework was shown to guarantee
partial asymptotic stability of the closed-loop system; that
is, overall closed-loop stability and attraction with respect to
the plant states. Furthermore, in the case where the system
is represented in controllable canonical form, the adaptive
controllers can be simplified without knowledge of the sys-
tem dynamics. Our control approach was not conservative
in the sense that the required quantization fineness for non-
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Figure 3.6: Adaptive gain history and profile of M2(k)

uncertain linear systems coincides with the results presented
in [3] which provides the coarsest quantizer. Future research
will involve extending the discrete-time adaptive control re-
sults to the case where the number of quantization levels is
finite in the neighborhood of the equilibrium point. Finally,
output quantization extensions will also be considered.
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