
Output-Feedback Adaptive Stabilization for Nonlinear Systems
with Unknown Direction Control Coefficients

Yun-Gang LIU and Shuzhi Sam GE

Abstract— This paper investigates the problem of output-
feedback adaptive stabilization control design for a class of
nonlinear systems with unknown direction control coefficients.
By introducing novel input scaling transformations, the un-
known control coefficients can be lumped together such that
the original system becomes a new system and make the output
feedback control design possible. After the introduction of
an observer and estimator for state and parameter estimates,
respectively, a constructive design procedure is given for the
output-feedback adaptive stabilization control based on inte-
grator backstepping. It is shown that, under some conditions,
the controller designed ensures the state and the estimation
error of the closed-loop system asymptotically converge to
zero, while other closed-loop signals are uniformly bounded.

I. INTRODUCTION

Ever since the introduction of backstepping design, ex-
tensive research has been investigated on control design for
nonlinear systems in strict-feedback form [1], [3], [4], [5],
[6], [7], [8], [9], [10], [12].

The control design problems of nonlinear systems with
unknown control coefficients (both magnitude and sign, so-
called direction, are unknown) has received intense inves-
tigation recently [11], [13], [14], [15], [16], [17]. During
the past two decades, a general methodology has been
developed to cope with such control problems, which is
based on the Nussbaum function introduced first by R. D.
Nussbaum in his classical paper [18]. The key point of this
methodology is by using a Nussbaum function [13], [18] to
estimate the signs of the control coefficients. However, most
existing research works on this topics concentrate on the
control problems via state-feedback [11], [15], [16], [19],
the output-feedback controls are studied rarely. Recently,
output-feedback control was investigated for several special
classes of nonlinear systems [14], [17], [19]. For example,
in [14], [17], there is only one unknown sign coefficient
which appears in the equation where the control appears.
For output-feedback case, the unknown signs of control co-
efficients causes great difficulty in observer design, though
it is key for output feedback control design.

In this paper, we will consider the output-feedback stabi-
lization adaptive control problem of the more general non-
linear systems, whose state-feedback counter part has been
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considered completely in [11], [15], [16]. The objective of
this paper is to investigate the output-feedback adaptive
stabilization control of this nonlinear systems. First, we
introduce a series of novel input scaling transformations,
through which the unknown control coefficients distributing
in the each subsystem can be lumped, thus leading to a new
nonlinear system with only one unknown direction control
coefficient in the first subsystem. Then, starting with this
new nonlinear system, an observer and an estimator can
be designed for state and parameter estimates, respectively.
Thus, by using the integrator backstepping with tuning
functions approach and the observer and parameter esti-
mator designed, a constructive design procedure for output-
feedback adaptive stabilization control is given. Our main
result shows that, under some conditions, the controller
designed ensures the state and the estimation error of the
closed-loop system asymptotically converge to zero while
all other signals are uniformly bounded.

II. SYSTEM MODEL AND CONTROL PROBLEM

Throughout this paper, Ci(R1; R2) denotes the set of all
functions from R1 to R2 with ith continuous derivative,
C∞(R1; R2) denotes the set of all smooth functions from
R1 to R2; for any x ∈ R

n, xi denotes its ith element, x̄i

denotes the column vector consisting of the first i elements
of x in the original order, i.e., x̄i = [x1, . . . , xi]T .

A. System model

Consider the nonlinear system in the following form:

ẋi = g1xi+1 + θT
i φi(y), i = 1, . . . , n − 1,

ẋn = gnu + θT
n φn(y), (1)

y = x1,

where x = [x1 x2 · · · xn]T ∈ IRn, u ∈ R, y ∈ R are the
state variables, system input and output, respectively; the
control coefficients gi, i = 1, . . . , n are nonzero unknown
constants; θi ∈ R

ri , i = 1, . . . , n are unknown time-
invariant parameters and their estimations are denoted by
θ̂i; φi(·) ∈ R

ri , i = 1, . . . , n are known regressor vector-
valued functions depending on system output y only.

It is clear that the system (1) is in strict-feedback form.
This suffices to using integrator backstepping approach to
control design. When gi’s equal to one, the system (1)
will become the canonical form of strict-feedback nonlinear
control systems, which have been intensely investigated
in the past decade. However, when gi’s are unknown,
especially when their signs are unknown, the problems
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of such control systems will become much challenging
and difficult. It has been shown that the method based on
Nussbaum function is the most effective tool up to now,
and many excellent results have been obtained, but most
are in full-state feedback. Systems (1) is very general, and
includes that in [14] as a special case where the only one
unknown control coefficient appears in the last subsystem
xr.

Assumption 1: The nonlinear functions φi(y), i =

1, . . . , n, are smooth, and vanish at the origin; i.e. φi(0) = 0.
Assumption 2: Unknown parameters θi, i = 1, 2, . . . , n

are time-invariant.
Assumption 3: The signs of nonzero control coefficients

gi, i = 1, . . . , n are unknown.
Remark 1: Assumption 1 implies that the origin 0 is the

equilibrium point of the open-loop system. From Assump-
tion 2, we know that θi, i = 1, . . . , n are constant vectors
and their time-derivatives are zero. Assumption 3 means that
gi’s are either positive or negative but not zero, to satisfy
the controllability condition of the system.

B. Control objective

The objective of this paper is to search for an output-
feedback adaptive stabilization control in the following
form:

˙̂
ξ = α(y, ξ̂, ϑ̂),

˙̂
ϑ = σ(y, ξ̂, ϑ̂), u = ρ(y, ξ̂, ϑ̂), (2)

such that the state x of the resulting closed-loop system
asymptotically converge to zero while all other signals are
uniformly bounded, where α, σ, ρ ∈ C1(R × R

n × R
r1+1).

III. OUTPUT-FEEDBACK ADAPTIVE STABILIZATION
CONTROL DESIGN

In the conventional framework of dynamic output-
feedback control design, one observer is constructed to
rebuild the unknown system states first, and then based
on this observer, the desired control can be designed to
guarantee the closed-loop system satisfies certain desired
properties. If the control coefficients gi’s are known and
available for feedback design, it is much easy to design
observer and control. Due to the existence of unknown
control coefficients, the observer design becomes much
difficult and thus new method need to be developed.

In this section, we shall design the output-feedback
adaptive stabilization control law in three steps. First, we
introduce a series of input scaling transformations to lump
all unknown control coefficients together and lead to a new
system with one unknown direction control coefficient in
its first subsystem, which subsequently makes the observer
design possible as in [14]. With the observer dynamics in
the loop, we obtain the entire system with lower triangular
structure which is amenable to the application of integrator
backstepping methodology. Then, we give the control de-
sign procedure, and present the performance analysis of the
closed-loop systems.

A. Input Scaling Transformations
The first input scaling transformation is given as follows:

X1,1 =
x1

g1
X1,2 =

x2

g2
· · · , X1,n−1 =

xn

gn
, (3)

Thus, X1 � [X1,1, . . . , X1,n]T = diag[g−1
1 , g−1

2 , . . . ,
g−1

n ]x � G1x, where G1 is called as scaling matrix. Note
that, by Assumption 3, G1 is an unknown and nonsingular
matrix. For clarity, we define the unknown and nonsingular
matrices Gi’s as follows:

Gi = diag[g−1
i , . . . , g−1

n , 1, . . . , 1], i = 1, . . . , n,

Under the input scaling transformation (3), the system (1)
becomes

Ẋ1,i = gi+1X1,i+1 + ΘT
1,iφi(y), i = 1, . . . , n − 1,

Ẋ1,n = u + ΘT
1,nφn(y), (4)

where Θ1,i � θi/gi, i = 1, . . . , n.
From (4), we can see that no unknown control coefficient

in the last subequation. If g2, . . . , gn are known, then we
can begin the control design procedure with (4), otherwise,
we have to take again input scaling transformation for
system (4) until no more unknown control coefficient in
the transformed system.

Generally, for i = 2, . . . , n, the ith input scaling trans-
formation is defined as follows:

Xi,1 =
Xi−1,1

gi
, · · · , Xi,n−i =

Xi−1,n−i

gn
,

Xi,n−i+1 = Xi−1,n−i+1, · · · , Xi,n = Xi−1,n,
(5)

which can be written into

Xi = diag[g−1
i , . . . , g−1

n , 1, . . . , 1]Xi−1 � GiXi−1.

Clearly, Gi ∈ R
n×n is an unknown and nonsingular matrix.

Under the i-th input scaling transformation (5), system
(4) can be transformed into the following system:

Ẋi,j = gi+jXi,j+1 + ΘT
i,jφj(y), j = 1, . . . , n − i,

Ẋi,k = Xi,k+1 + ΘT
i,kφk(y), k = n − i + 1, . . . , n − 1,

Ẋi,n = u + ΘT
i,nφn(y), (6)

where Θi,j � Θi−1,j/gi+j−1, j = 1, . . . , n − i, Θi,j �
Θi−1,j , j = n − i + 1, . . . , n.

Therefore, taking i = n in (6) and ξ � [ξ1, ξ2, . . . , ξn]T =
Xn, we obtain

ξ̇i = ξi+1 + ΘT
n,iφi(y), i = 1, · · · , n − 1

ξ̇n = u + ΘT
n,nφn(y).

(7)

The system (7), whose all control coefficients equal to 1, is
in strict-feedback form and with uncertainties ΘT

n,iφi(y), i =

1, . . . , n depending only on system output y. Starting with
this system, we can design the output-feedback adaptive
stabilization control. However, it should be pointed out that
all of states ξi, i = 1, . . . , n of system (7) are unmeasurable
and hence a full-order observer is needed to rebuild them
for control design.

Remark 2: The inherent connection existing between
the system (7) and the original system (1) can be exactly
described by the following equation:

ξ = Gx, (8)
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where G � n
i=1 Gi. By the expressions of Gi’s, and

Assumption 3, we know that G is an unknown, nonsingular
and diagonal matrix. The equation (8) defines a linear dif-
feomorphism, and if the state ξ of the system (7) converges
to zero, so does the state x of the system (1). Thus, we
need only to consider the stabilization control problem of
the system (7).

The equation (8) can be rewritten into the following scalar
form:

xi =
ξi

n
j=i gi

, i = 1, . . . , n, (9)

For the convenience of control design and performance
analysis, by replacing subsystem ξ1 in (7) by subsystem x1
and noting that y = x1, we have

ẏ = gξ2 + θT
1 φ1(y),

ξ̇i = ξi+1 + ΘT
n,iφi(y), i = 2, . . . , n − 1, (10)

ξ̇n = u + ΘT
n,nφn(y),

where g � g1
n
i=2 gi

is some nonzero unknown constant,
whose value and sign are unknown.

Remark 3: Through the input scaling transformations,
the unknown control coefficients distributed in each sub-
system has been lumped together and then the original
system becomes a new system (10) with only one unknown
direction control coefficient.

The directions and values of constants g1, . . . , gn are
unknown, and so are the direction and value of g. In
addition, from Assumption 3, we have

gmin � min{|l−1 |, |l+1 |}
n
i=2 max{|l−i |, |l+i |} ≤ |g| ≤

gmax � max{|l−1 |, |l+1 |}
n
i=2 min{|l−i |, |l+i |} .

Note that gmin and gmax are unknown and thus cannot be
used in control design.

B. Observer Design

For system (10), only output y = x1 is measurable
and the rest of the states are not available for feedback
design, we need to design observer to estimate ξ1, . . . , ξn

to construct feedback control.
We design the following observer associated with the

system (7) as in [14]:

˙̂
ξi = ξ̂i+1 − kiξ̂i, i = 1, . . . , n − 1,
˙̂
ξn = u − knξ̂1,

(11)

where k1, . . . , kn are constants to be determined by the
designer.

Let ξ̂ = [ξ̂1, . . . , ξ̂n]T . The estimation error ξ̃ = ξ − ξ̂
satisfies the following dynamical equations:

˙̃
ξi = ξ̃i+1 − kiξ̃1 + ΘT

n,iφi(y) + kiξ1,
˙̃
ξn = −knξ̃1 + ΘT

n,nφn(y) + knξ1.
(12)

where i = 1, · · · , n−1. In order to obtain this equation, we
have added and subtracted −kiξ1’s on the right-hand side
of the subequations, respectively.

The differential equations (12) can be rewritten into the
following compact form:

˙̃
ξ =

−k1

· · · In−1

−kn 0 · · · 0
ξ̃ +

ΘT
n,1φ1

· · ·
ΘT

n,nφn

+
k1

· · ·
kn

ξ1

� Aξ̃ + ΘΦ(y) + Kξ1. (13)

where Φ = φT
1 , φT

2 , . . . , φT
n

T
, K = [k1, k2, . . . , kn]T , and

Θ = diag[Θij ], Θij = ΘT
n,j .

Remark 4: The matrix A is in the controllable canonical
form and hence there exists an appropriate selection of
design parameters k1, . . . , kn such that all the eigenvalues
of A has any pre-given negative real parts, say A being
Hurwitz and then there exists a positive definite matrix P
satisfying:

AT P + PA = −I.

Remark 5: Due to the unavailability of ξ1, we cannot
design an asymptotical observer for the reconstruction of
ξ driven by ξ1 − ξ̂1 and independent of control in the
conventional framework od observer design. However, if
a suitable control can be designed such that “ΘΦ(y) +
Kξ1” asymptotically converges to zero, then, in view of
connection (8) between ξ and x, the estimation error ξ̃
satisfying (13) will asymptotically converges to zero and
hence an asymptotical observer is obtained.

Remark 6: Clearly, Θ ∈ R
n×r, r = n

i=1 ri, and for
some constant rΘn

, it follows that ‖Θ‖ ≤ rΘn
, say that Θ

belongs to a compact set ΩΘ with center 0 and radius rΘ;
from Assumption 1, it follows that Φ(y) is known, smooth
and vanishes at the origin 0. We have the following lemma
for estimation error equation (13).

Lemma 1: There always exists a Lyapunov function
V0(ξ̃), a positive smooth known function Ω0(y), a positive
design parameter c0 < 1 and a positive unknown constant
ν, such that

V̇0 ≤ −c0‖ξ̃‖2 + νΩ0(y)y2. (14)

Proof: Choose V0(ξ̃, ϑ̃) = ξ̃T P ξ̃ where P is the solution
of the Lyapunov equation: AT P + PA = −In. Then, taking
time-derivative of V0 along the solution of (13), we have

V̇0 = −‖ξ̃‖2 + 2ξ̃T P (ΘΦ(y) + Kξ1) . (15)

By Assumption 1, it is easy to see that there exists a
smooth vector-valued function Φ(y) � 1

0

∂Φ(s)

∂s s=ay

da such

that Φ(y) = yΦ(y). Therefore, Noting Remark 6, we have

2ξ̃T PΘΦ(y) = 2ξ̃T PΘΦ(y)y ≤ 2rΘn‖P‖‖ξ̃‖ Φ(y)y

≤ ε0

2
‖ξ̃‖2 +

2‖P‖2r2
Θn

ε0
y2 Φ(y)

2
,

where and whereafter ε0 and ε1 are positive design
parameters less than 1 and to be determined shortly.

In addition, from (9) and Assumption 3, it follows that

2ξ̃T PKξ1 ≤ ε0

2
‖ξ̃‖2 +

2‖PK‖2 n
i=1 max{|l−i |, |l+i |}

ε01
y2.

Let c0 � 1 − ε0, Ω0 � 1 + Φ(y)
2

and

ν � 2max
‖P‖2r2

Θn
ε0

,
g2
max
4ε1

,
‖PK‖2 n

i=1 max{|l−i |, |l+i |}
ε0

.

Clearly, c0 > 0, Ω0(·) is smooth and ν is unknown.
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Thus, it follows from (15) that this lemma is true. �
C. Output-feedback adaptive stabilization control design

In this subsection, we will begin the design procedure of
the output-feedback adaptive stabilization control with the
following entire system:

˙̃
ξ = Aξ̃ + ΘΦ(y),

ẏ = g(ξ̂2 + ξ̃2) + θT
1 φ1(y),

˙̂
ξi = ξ̂i+1 − kiξ̂1, i = 2, . . . , n − 1,
˙̂
ξn = u − knξ̂1,

(16)

which is called as the entire system is because that only
from it, the system state reconstruction and the control
objective of this paper stated previously can be completely
realized: If one has designed a control such that all signals
in the system (16) are asymptotically stable or bounded, so
are all signals in the system (6), then with the help of the
scaling transformations presented in subsection III-A, we
can easily see that all signals of the original system (1) are
asymptotically stable or bounded as well.

The design procedure will be carried out step-by-step
using integrator backstepping.

Step 1: Let z1 = y and z2 = ξ̂2 −α1(y, ζ, ϑ̂), where α1(·)
is a sufficiently smooth function. Let ϑ = [ν, g, θT

1 ]T . Use
ϑ̂ and ϑ̃ to denote the estimation value and estimation error
of ϑ, respectively.

Choose Lyapunov function V1 = V0 + 1
2
ϑ̃T Γ−1

ϑ ϑ̃+ 1
2
z2
1 for

this step, where Γϑ is a positive definite matrix determined
prior by the designer. Then, taking the time-derivative of V1

along the solution of the subsystem y, saying z1 of (16),
using inequality (14) and noting that ˙̃

ϑ = − ˙̂
ϑ, we have

V̇1 ≤− c0‖ξ̃‖2 + νΩ0(y)y2 − ϑ̃T Γ−1
ϑ

˙̂
ϑ

+ z1 g(α1 + z2 + ξ̃2) + θT
1 φ1(y)

≤− (c0 − ε1)‖ξ̃‖2 − ϑ̃T Γ−1
ϑ

˙̂
ϑ

+ z1 g(α1 + ϑT Ψ1(y) + gz1z2, (17)

where Ψ1(y) = [Ω0(y)y + 0.5y, 0, φT
1 (y)]T , which is suf-

ficiently smooth. In order to obtain the last inequality of
(17), we have used the following inequality:

gz1ξ̃2 ≤ ε1ξ̃
2
2 +

g2

4ε1
z2
1 ≤ ε1‖ξ̃‖2 +

g2
max

4ε1
z2
1 .

To construct virtual controller α1, we need the following
dynamical equation:

ζ̇ = z1η, (18)

where

η � β1z1 + ϑ̂T Ψ1(z1). (19)

where and hereafter, β1, β2, . . . , βn are positive design
parameters to be determined later.

Thus, we can choose the virtual controller α1 as follows:

α1 = N(ζ)η, (20)

where function N(·) is a sufficient smooth even Nussbaum
function, chosen as eζ2

cos(πζ/2) throughout this paper.

Substituting (20) and (19) into (17), and after some
simple calculations, we obtain

V̇1 ≤− c1‖ξ̃‖2 − ϑ̃T Γ−1
ϑ (

˙̂
ϑ − τ1)

− β1z
2
1 + gN(ζ)ζ̇ + ζ̇ + gz1z2, (21)

where c1 � c0 − ε1 is positive constant, τ1 � ΓϑΨ1z1 and
τi(i = 2, . . . , n−1) in the coming steps are tuning functions
[6] used to avoid overparameterization.

Since z1 = y, the virtual controller α1 can be easily re-
expressed as the function of (y, ζ, ϑ̂) and vanishes when
y = 0, ζ = 0 and ϑ̂ = 0. The last term “gz1z2” on the right-
hand-side of inequality (21) will be tackled in the next step.

Step 2: Define z3 = ξ̂3 − α2(y,
¯̂
ξ2, ζ, ϑ̂). Like the

preceding statement, α2(·) is a sufficient smooth function
called as virtual control to be determined later.

Then, by differential equations (16), z2 satisfies the
following dynamical equation:

ż2 =z3 + α2 − k2ξ̂1 − ∂α1

∂y
g(ξ̂2 + ξ̃2)

+ θT
1 φ1(y) − ∂α1

∂ζ
ζ̇ − ∂α1

∂ϑ̂

˙̂
ϑ. (22)

Choose Lyapunov functions V2 = V1 + 1
2
z2
2 for this step.

Then, taking time-derivative of V2 along the solution of (22)
and taking (21) into account, we have

V̇2 ≤− c1‖ξ̃‖2 − ϑ̃T Γ−1
ϑ (

˙̂
ϑ − τ1)

− β1z
2
1 + gN(ζ)ζ̇ + ζ̇ + gz1z2

+ z2 z3 + α2 − k2ξ̂1 − ∂α1

∂y
g(ξ̂2 + ξ̃2)

+ θT
1 φ1(y) − ∂α1

∂ζ
ζ̇ − ∂α1

∂ϑ̂

˙̂
ϑ . (23)

Note that the following inequality:

z2
∂α1

∂y
gξ̃2 ≤ ε1‖ξ̃‖2 +

g2
max

4ε1

∂α1

∂y

2

z2
2 .

We can define Ψ2 � 1
2

∂α1

∂y

2
z2, z1 −

∂α1

∂y
ξ̂2, −

∂α1

∂y
φ

T
1 (y)

T

,
which is sufficiently smooth. Then, from (23), it follows
that

V̇2 ≤− (c1 − ε1)‖ξ̃‖2 − ϑ̃T Γ−1
ϑ (

˙̂
ϑ − τ1) − β1z

2
1 + gN(ζ)ζ̇

+ ζ̇ + z2 z3 + α2 − k2ξ̂1 + ϑT Ψ2 − ∂α1

∂ζ
ζ̇ − ∂α1

∂ϑ̂

˙̂
ϑ .

(24)

Thus, we can choose the second virtual controller α2 as
follows:

α2 = −β2z2 + k2ξ̂1 − ϑ̂T Ψ2 +
∂α1

∂ζ
ζ̇ − ∂α1

∂ϑ̂T
τ2, (25)

where τ2 = τ1 + ΓϑΨ2z2. Similarly, from the expression
of (25), by z1 = y and z2 = ξ̂2 − α1(y, ζ, ϑ̂) α2 can be
easily transformed into the function of y, ¯̂

ξ2, ζ and ϑ̂, and
vanishes when y = 0, ¯̂

ξ2 = 0, ζ = 0 and ϑ̂ = 0.
Substituting (25) into (24) and after some simple calcu-

lations, we have

V̇2 ≤− c2‖ξ̃‖2 − ϑ̃ + Γϑ
∂α1

∂ϑ̂T
z2

T

Γ−1
ϑ (

˙̂
ϑ − τ2)

− β1z
2
1 − β2z

2
2 + gN(ζ)ζ̇ + ζ̇ + z2z3, (26)
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where c2 � c1 − ε1.
Step i (i = 3, . . . , n− 1). Assume that Lyapunov func-

tions Vi, i = 3, . . . , n−1 correspond to Step i, respectively,
and Vi−1 satisfy the following inequalities:

V̇i−1 ≤− ci−1‖ξ̃‖2 − ϑ̃ + Γϑ

i−1

j=2

∂αj−1

∂ϑ̂T
zj

T

Γ−1
ϑ (27)

· ˙̂
ϑ − τi−1 −

i−1

j=1

βjz
2
j + gN(ζ)ζ̇ + ζ̇ + zi−1zi.

Define zi+1 = ξ̂i+1−αi(y,
¯̂
ξi, ζ, ϑ̂). Here αi is the ith virtual

controller and will be designed constructively in this step.
From equations (16), we know that zi satisfies the fol-

lowing dynamical equation:

żi = zi+1 + αi − kiξ̂1 − ∂αi−1

∂y
g (ξ̂2 + ξ̃2) − ∂αi−1

∂y
θT
1 φ1(y)

−
i−1

j=1

∂αi−1

∂ξ̂j

ξ̂j+1 − kj ξ̂1 − ∂αi−1

∂ζ
ζ̇ − ∂αi−1

∂ϑ̂

˙̂
ϑ. (28)

Choose the Lyapunov function Vi = Vi−1+
1
2
z2

i for this step.
Then, taking the time-derivative of Vi along the solution of
(28), we have

V̇i = V̇i−1 + zi zi+1 + αi − kiξ̂1 − ∂αi−1

∂y
g (ξ̂2 + ξ̃2) − ∂αi−1

∂y

· θT
1 φ1 −

i−1

j=1

∂αi−1

∂ξ̂j

ξ̂j+1 − kj ξ̂1 − ∂αi−1

∂ζ
ζ̇ − ∂αi−1

∂ϑ̂

˙̂
ϑ .

(29)

Let Ψi � 1
2

∂αi−1

∂y

2
zi, zi−1 −

∂αi−1

∂y
ξ̂2, −

∂αi−1

∂y
φ

T
1 (y)

T

. Not-
ing the following inequality:

−zi
∂αi−1

∂y
gξ̃2 ≤ ε1‖ξ̃‖2 +

g2
max

4ε1

∂αi−1

∂y

2

z2
i ,

and substituting which and (27) into (29), and after some
simple calculations, we obtain

V̇i ≤− (ci−1 − ε1)‖ξ̃‖2 − ϑ̃ + Γϑ

i−1

j=2

∂αj−1

∂ϑ̂T
zj

T

· Γ−1
ϑ (

˙̂
ϑ − τi−1) −

i−1

j=1

βjz
2
j + gN(ζ)ζ̇ + ζ̇

+ zi αi + zi−1 − kiξ̂1 + ϑT Ψi −
i−1

j=1

∂αi−1

∂ξ̂j

· ξ̂j+1 − kj ξ̂1 − ∂αi−1

∂ζ
ζ̇ − ∂αi−1

∂ϑ̂

˙̂
ϑ + zizi+1. (30)

Then, we can choose the ith virtual controller αi as follows:

αi = − βizi − zi−1 + kiξ̂1 + ϑ̂T Ψi +

i−1

j=2

∂αi−1

∂ξ̂j

(ξ̂j+1

− kj ξ̂1) +
∂αi−1

∂ζ
ζ̇ −

i

j=2

∂αj−1

∂ϑ̂
zjΨi − ∂αi−1

∂ϑ̂T
τi, (31)

where τi � τi−1 + ΓϑΨizi. Clearly, αi can be re-expressed
as the function of y, ξ̂[i], ζ and ϑ̂, and vanishes when y =

0, ξ̂[i] = 0, ζ = 0 and ϑ̂ = 0.

Thus, substituting (31) into (30), we have

V̇i ≤− ci‖ξ̃‖2 − ϑ̃ + Γϑ

i

j=2

∂αj−1

∂ϑ̂T
zj

T

Γ−1
ϑ (

˙̂
ϑ − τi)

−
i

j=1

βjz
2
j + gN(ζ)ζ̇ + ζ̇ + zizi+1, (32)

where ci � ci−1 − ε1.
Step n. It is easy to see that the results of Step i(i ≥

3) hold true also for i = n. Thus, we choose the actual
controller u and adaptive law of ϑ as follows, respectively:

u(y, ξ̂, ζ, ϑ̂) = αn(y, ξ̂, ζ, ϑ̂),
˙̂
ϑ = τn. (33)

Note that in this case i = n, all functions Vn, τn, αn, cn

can be defined similarly and zn+1 = 0.
Thus, the time-derivative of Lyapunov function Vn satis-

fies

V̇n ≤− cn‖ξ̃‖2 −
n

i=1

βiz
2
i + gN(ζ)ζ̇ + ζ̇. (34)

D. Main Results

In the previous subsection, we have given the output-
feedback adaptive control design procedure using integrator
backstepping. We are now ready to summarized the main
results as follows.

Lemma 2: The observer described by (11), the adaptive
law and the control u determined by (33) can be rewritten
into the following more compact form:

˙̂
ξ = α(y, ξ̂[n], ζ, ϑ̂),
˙̂
ϑ = σ(y, ξ̂[n], ζ, ϑ̂),

u = ρ(y, ξ̂[n], ζ, ϑ̂),

where α, σ, ρ ∈ C1.
Proof. It is apparent from the design procedure in the

previous subsection. �
Theorem 1: Consider the system (1) under the Assump-

tions 1, 2 and 3. If the design parameters ε0, ε1 and βi, i =
1, . . . , n are chosen such that

1 − ε0 − (n − 1)ε1 > 0, β1 > 0, β2 > 0, . . . , βn > 0. (35)

Then, the adaptive stabilization output-feedback controller
given by (33) guarantees that

(i) all signals in the closed-loop system are uniformly
bounded; and

(ii) z and x asymptotically converge to zero.
Proof: In view of the selection of the design parameters,

we see that W (ξ̃, z) � −cn‖ξ̃‖2 − n
j=1 βjz

2
j is negatively

definite. Then, by using (34), Lemma A.1 and Remark A.1,
it is easy to see that ζ(t), V (t) are bounded on [0, ∞). This
implies that V (t) ≤ ∞, for all t ≥ 0. Thus,

sup
t≥0

‖ξ̃‖ < ∞, sup
t≥0

n

i=1

z2
i < ∞, sup

t≥0
‖ϑ̃‖ < ∞, (36)

and ∞

0

‖ξ̃‖2dt < ∞,

n

i=1

∞

0

z2
i dt < ∞. (37)

From (36) and the boundedness of ϑ, we know that ϑ̂
is uniformly bounded. From (37) it follows that the first
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derivatives of ξ̃ and zi (i = 1, 2, . . . , n) are uniformly
bounded. This implies that ξ̃ and zi (i = 1, 2, . . . , n) are
uniformly continuous, and further, together with (37) and
Barbalat’s Lemma [21], leads to

lim
t→∞

ξ̃ = 0, lim
t→∞

zi = 0, ∀i = 1, 2, . . . , n. (38)

We will show that [y, ξ̂2, . . . , ξ̂n]T is asymptotically
stable, and then together (8) and (38), [ξ1 ξ2, . . . , ξn]T is
asymptotically stable as well.

From z1 = y = x1, it follows that y, and hence x1

is asymptotically stable. By the boundedness of ζ and
ϑ̂, the smoothness of α1, the expressions (20), (19) of
α1, η, respectively, and Assumption 1 on φi’s, we know
that limy→∞ α1(y, ζ, ϑ̂) = 0. This together with ξ̂2 =

z2 + α1(y, ζ, ϑ̂) and (38) implies that ξ̂2 is asymptoti-
cally stable. Suppose that [ξ̂2, . . . , ξ̂k−1]

T is asymptotically
stable for any k (k = 3, . . . , n). Then, by ξ̂k = zk +

αk−1(y, ξ̂2, . . . , ξ̂k−1, ζ, ϑ̂), the boundedness of ζ and ϑ̂,
the smoothness and expression of αk−1, Assumption 1 and
(38) we know that ξ̂k, and hence [y, ξ̂2, . . . , ξ̂k]T , is asymp-
totically stable. Therefore, by induction, [y, ξ̂2, . . . , ξ̂n]T is
asymptotically stable. �

Remark 7: From Theorem 1, we know that the design
parameters ε0 and ε1 should be positive and sufficiently
small so that inequalities (35) holds. However, the smaller
the design parameters ε0 and ε1, the more the control effort.

IV. CONCLUDING REMARKS

This paper studied the output-feedback adaptive stabi-
lization control design for nonlinear systems with unknown
control coefficients. By using integrator backstepping ap-
proach, the control law is designed constructively. The
control law designed in this paper can guarantee the bound-
edness of all signals in the closed-loop system.

APPENDIX
Lemma A.1: [15] Let V (·) and ζ(·) be smooth functions

defined on [0, tf ) with V (·) : [0, tf ) → R+, and N(·) be an
even Nussbaum- function. If the following inequality holds:

V (t) ≤ C +
t

0

(gN(ζ(υ)) + 1)dζ(υ), ∀ t ∈ [0, tf ), (A.1)

where g is a nonzero constant and C represents some
suitable constant, then ζ(t), V (t) and t

0
N(ζ(υ))dζ(υ)

are bounded on [0, tf ), and the terminal time tf can be
maximized to +∞.

Remark A.1: As a alterative form of Lemma A.1, if the
time-derivative of Lyapunov function V (t) satisfies

V̇ (t) ≤ W (t) + (gN(ζ) + 1)ζ̇ , ∀ [0, tf ], (A.2)

where W (t) is negative or integrable on [0, ∞), then
using Lemma A.1, the boundedness of ζ(t), V (t) and

t

0
N(ζ(υ))dζ(υ) can be guaranteed, and the terminal time

tf can be maximized to ∞. Actually, (A.2) can be used
more directly to control design than that by (A.1).

Lemma A.1 can be extended into the following lemma
which can be used to deal with the case where g is time-
varying, but Lemma A.1 cannot.

Lemma A.2: Let V (·) be a Lyapunov function, ζ(·)
be a smooth function defined on [0, tf ), g(·) be either a
positive or negative function and N(·) be an even Nussbaum
function. If the following inequality holds:

V (t) ≤ const +
t

0

(g(υ)N(ζ(υ)) + 1)dζ(υ), ∀t ∈ [0, tf ),

where “const” represents some suitable constant, and

lim inf
s→∞

1

s

s

0

g(υ)N(ζ(υ))dζ(υ) = −∞, (A.3)

then ζ(t), V (t) and t

0
g(υ)N(ζ(υ))dζ(υ) must be bounded

on [0, tf ).
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