
Formal Techniques for the Modelling and Validation of a
Co-operating UAV Team that uses Dubins Set for Path Planning

Suresh Jeyaraman, Antonios Tsourdos, Rafał Żbikowski and Brian White
{S.Jeyaraman, A.Tsourdos, R.W.Zbikowski, B.A.White}@cranfield.ac.uk

Abstract— Formal methods have been deployed with great
success to validate zero-fault tolerant systems such as hard-
ware chips, real-time operating systems (RTOSs). Another
feasible application area for formal techniques is in the mod-
elling and verification of cooperative unmanned aerial vehicle
(UAV) teams. The rationale being, multi-UAV coordination
for cooperative control is a time-critical, zero-fault tolerant
activity involving dynamic planning and real-time decision
making. This provides sufficient incentive for designers to
prove that the proposed system architecture will work as
advertised. In this paper, a simulation scenario involving
multiple UAVs for co-ordinated arrival at a specified target
using Dubins’ curves, is modelled using the Kripke models
of “possible worlds”. This formal model is then subjected to
a proof verification technique known as model checking, for
verifying the safety, reachability, etc. This novel framework is
sophisticated enough to be reusable, and consequently, be able
to address scalability issues.

I. INTRODUCTION

UAV teams are a relatively recent addition to defence
missions. They have been deployed frequently during con-
flicts as well as in peacekeeping missions, and are ideal for
deployment in D3 – dull, dirty or dangerous environments.
The use of autonomous UAVs is actively being promoted,
as they offer the following incentives: (a) Increased ma-
noeuvrability with low human risk and (b) Significant
weight savings on payload with low cost. However, standard
operational behaviour for UAV teams involve the ability
to replan flight paths dynamically either for interception
of enemy or kin and decision making in the wake of
uncertainty. Several approaches for achieving decentralised,
autonomous, co-operative control among aerial robots are
proposed in Butenko et al [1], Alighanbari et al [2], and
Beard et al [3].

Systems of this nature effectively combine motion plan-
ning and decision control, and are therefore treated more
effectively using hybrid control schemes. In hybrid control
approach of modelling systems, the UAVs’ motion is mod-
elled using kinematics and the decision making that comes
along with motion within a group is discretely modelled [4],
[5]. In this paper, the formalised representation of a UAV
system is achieved using Kripke models of possible worlds.
From this representation, temporal logic statements of the
system behaviour can be derived, and model checking can
be performed on the entire system’s predicted behaviour.

The authors are affiliated with the Department of Aerospace, Power
and Sensors, RMCS, Cranfield University, Shrivenham SN6 8LA, United
Kingdom.

Fly to base
all objects tagged?

Repeat (A)
not all objects tagged?

Objects to tag
Base

* NOT TO SCALE

way−points for rendezvous
and decision making

(A) Subdivide total area
to sweepable areas

uses SWEEP Buses SWEEP A uses SWEEP C

UAV positioning so as to optimize coverage

Fig. 1. Schematic representation of the enclosure.

Model checking is an enumerative, exhaustive check pro-
cedure that verifies reactive systems against their required
specifications, giving yes/no answers to conformance [6].

In Jeyaraman et al [7], the feasibility of achieving co-
operative control (co-ordinated arrival at destination) of
multiple UAVs using Dubins’ curves was established. In
Shanmugavel et al [8], Dubins curves are used for non-
intersecting paths among co-operating vehicles. The novelty
in this paper will be the (a) co-operative area sweep by a
group of UAVs by using a set of Dubins paths, in order to
identify artefacts of interest and, (b) encapsulation of the
entire approach in a formal approach framework.

In this scenario, the UAVs are assigned to sweep a
fixed area of appropriately scaled rectangular dimensions
(refer Fig. 1). In doing so, they must allocate themselves
to specific areas on the map. This will demonstrate task
allocation and avoid duplication of effort. The UAVs must
identify the “specified” objects on their environment map
and once all the objects have been tagged, they should
fly straight back to the base. The UAVs are provided with
information regarding their environment and have a circular
sensor signature for detecting their kin and for communi-
cation. The communication between UAVs is assumed to
be lossless and continuous. The UAVs co-ordinate their
arrival at waypoints and exchange the list of tagged items in
these designated waypoints. They should plan their paths in
order to collect as much information as possible and move
towards the target at the same time.

The remainder of the paper is organised as follows: Sec-

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

FrC04.6

4690

tion II details the modelling approach. Section III provides
an overview of the formal modelling approaches. Section IV
discusss the actual formal model. Section V deals with the
the discussions of the formal model and Section VI presents
our conclusions.

II. GEOMETRICAL MODEL OF UAV TEAM

A. Introduction

Consider a group of N vehicles (N = 3 in our case),
moving in the R×R plane. The aerial vehicles are restricted
to flying at constant altitude and therefore not required
to perform pitch, roll or yaw motion. In this case, the
kinematics of the vehicle can be abstracted to the familiar
unicycle model (Fig. 1 (B)):

ẋi = vcosθi
ẏi = vsinθi
θ̇i = ω


 (1)

We fix all the UAVs to travel with the same linear velocity
v such that v = v1 = v2 = . . . = vN .

The turning radius of the UAV Rcur (where Rcur > 0), can
be chosen from a small finite set, i.e.,

Rcur ∈ {R1,R2, . . . ,Rn}, such that,

for k ∈ [1,n], Rk −Rk−1 = p ∈ N,

for all values in Rcur. From this, the turning speed of a UAV,
when executing a turn, can be given as

|ω| ≤ v
Rcur

In other words, the UAV has the freedom of choosing a
turning radius from the set of circles provided. This cho-
sen turning radius remains constant throughout the UAV’s
manoeuvre. This allows for controlling the path lengths
of UAVs accurately, while the choice in the turning radii
allows the UAVs to somewhat “wander”, in order to collect
information. For the purposes of this study, time is discrete.

B. Dubins’ Curves

Dubins result has been widely studied in path planning
[9], [10], [11]. Dubins result shows that, given any two
points, the geodesic (i.e., the shortest path) consists of
exactly three path segments and presents a sequence of
circular arcs (CCC) or circular arcs with a connecting
tangent between them (CSC). Each arc has two options
– turning left or turning right. Denote these as L and
R respectively, and the Dubins set can be written as
D = {LSL,RSR,RSL,LSR,RLR,LRL}. It has been shown
previously that initial and final configurations define a
sufficient set of 48 paths which contains the optimal path
[12]. In this paper, we have implemented a subset of Dubins
result for our scenario. The model enables one to select
the shortest path from the Dubins set directly by using
the concept of equivalency groups, based on the angle
quadrants of the corresponding pairs of the initial and final
orientation angles supplied to the UAV. Each equivalency

SWEEP A SWEEP B SWEEP C

RSL

LSRLSL RSR

LSR RSR RSR

RSL

RSRLSL RSL

Fig. 2. Possible path sweeps that UAVs can make to cover a rectangular
area.

group consists of a few classes of paths, such that any path
in a group is equivalent, up to an orthogonal transformation,
to any other path in the same group [9].

A lookup table can be constructed from the set of solu-
tions. The table is always dynamically populated and the
values in each column are obtained based on the functions
listed in Shkel and Lumelsky [9]. All the UAVs possess this
lookup table at their disposal. The optimal path type for a
given distance can be easily deduced from this table. The
table relies solely on the initial and final orientation UAV at
the waypoints. Readers are referred to Shkel and Lumelsky
[9] for the equations regarding the constituent segments.

III. FORMAL MODELLING: INTRODUCTION

Formal modelling techniques originally evolved around
the study of reactive systems. A reactive system/program
is one that constantly maintains an interaction with its
environment and is influenced by it. Therefore, its specifi-
cation must be done in terms of its ongoing behaviour (that
changes with time) [6]. This definition closely tallies with
an informal description of a robot application, and many
researchers have considered applying these techniques to
studying robot applications. To date several formal mod-
elling techniques such as Message Sequence Charts, Finite
State Automata, Petri Nets, Kripke models and temporal
logic have been proposed to specify, analyse, understand
and verify the correctness of reactive systems. Some of
these formalisms are more suitable than the others for
representing multi-vehicle applications. (i) Petri nets and,
more recently, (ii) hybrid modelling approach [13] (with
hybrid automata representing both system interplay and
the constituent component control variables) have gained
immense popularity as formalisms of choice for represent-
ing reactive systems. A unique formalism in its own right,
the hybrid automata approach is analogous to the Kripke
modelling approach [14]. Kripke models are used for formal
modelling purposes in this study.

4691

W2

W1

W3

ϕ
1

ϕ2 ϕ
1

¬
(a)

ϕ
1

ϕ
1

ϕ2 ϕ
1

¬

ϕ
1

¬ ϕ
1

¬

W1

W1

W2 W3

W3W3

(b)

ϕ
1

¬

ϕ2

ϕ
1 }

Fig. (a) is a Kripke model showing "deadlock"

Interleaving, concurrent processes

Process deadlocks

computation tree
Fig. (b) is the "unwound"

Fig. 3. To understand how Kripke models work in our case, view
this figure in conjunction with Table I. Graphically, Kripke models are
represented as directed, unlabelled graphs (as in Fig (a)). Possible worlds,
capture overall system behaviour that evolves over time. Labelling func-
tions, propositional formulae about conditions that hold true in each world.
Lastly, accessibility relations, that maps the transitions (or interactions)
between the worlds. Notions such as uncertainty and decision making can
be modelling with this approach. This Kripke model can be “unwound”
(see Fig (b)) into an infinite computation tree, which captures notions such
as computation sequence and system interplay. Every Kripke model can
be represented as ω-automata.

A Kripke model can be unwound into an infinite compu-
tation tree along all the possible transition (execution) paths.
The desired properties of the system are then expressed
using temporal logic statements which must be true on the
model (model checking). Temporal logic is a formalism
for describing sequences of transitions between states in
a reactive system. In temporal logic, different choices of
operators and axioms lead to different models of time,
with each model proving to be useful in a certain area
of application. See [15] for a survey of different temporal
logics. Basic Linear Temporal Logic (LTL) uses four special
operators to represent time and infinity, without explicitly
introducing either of them. These operators are always (�),
eventually (�), next (©) and until (U). The names of
the operators are self-explanatory and allow the modelling
of processes and their occurrence in time. This “sequence
of computation” is critical for real-time systems. Model
checking is an automated procedure that exhaustively runs
through all possible state traversals of a system and gives
yes/no answers to system properties that have been extracted
in temporal logic. The four common properties verified in
model checking procedures are shown in Table I.

Kripke models are compact in their representation of a
reactive system. In Fig. 4, not only does the representation
capture the overall system behaviour, but also represents the
rules that govern the transition between the various states
(worlds). Finally, desirable system behaviour is tied into
a formal Kripke model through the use of temporal logic
formulae. This tied-in behaviour holds advantages that can
be leveraged using model checking techniques.

TABLE I
MODEL CHECKING PROPERTIES USING TEMPORAL LOGIC. RECALL

FROM FIGURE 3 THAT φ1,φ2 REPRESENT “SPECIFIC” PROPERTIES OF A

SYSTEM THAT CAN NOW BE VERIFIED BY A MODEL CHECKER

Property Definition Specification Formula: LTL
reachability property — some par-
ticular property can be reached

Not Suitable: Expresses reach-
ability negatively – nested
reachability impossible

safety property — under certain
conditions, something never occurs

�¬(φ1 ∧φ2)

liveness property — under cer-
tain conditions, something will ul-
timately occur

�(φ1 → �φ2)

fairness property — under certain
conditions, something will (or will
not) occur infinitely often

possible using ω-automata

TABLE II
COMPANION TABLE FOR THE KRIPKE MODEL PROPOSED IN FIG. 4

Possible
Worlds

Accessibility
Relations

Possible
Worlds

Accessibility
Relations

W1 −W2 r1,r2 W5 −W4 r11,r12
W1 −W3 r3,r4 W5 −W7 r13,r14
W1 −W4 r5,r6 W5 −W8 r15,r16
W2 −W5 r7,r8 W4 −W6 r17,r18
W3 −W5 r9,r10 W5 −W6 r19,r20

IV. FORMAL MODEL: EXPLANATION

A. Remarks on Kripke modelling of UAV group

A group of UAVs can exhibit different levels of dynamics
according to its organisation.

At the lowest level, each UAV can be treated as a single
entity and therefore the group is a set of N distinguishable
objects. If each of these objects has k individual states, there
are kN possible states for the group. The number of possible
directed graphs for kN nodes is very large even for small
values of k and N.

From the point of view of the whole group, it may
not be necessary to track the state of each individual
UAV. The collective state need not be a concatenation of
all individual states, so that the combinatorial explosion
of possible models can be avoided. Such an approach is
adopted in Section IV-B and is just an example of several
such parsimonious possibilities.

Also, in following such an approach, Kripke models are
that are derived for a certain scenario are independent of
the number of UAVs participating in it. This feature and
the abilitiy to formally verify a Kripke model can be used
effectively in coping with scalability issues of cooperative
control. We can easily and iteratively check our model by
increasing the number of robots; if the model fails, one
possibility could be the environment’s inability to cater to
any more UAVs, thereby leading to a deadlock. This can
be determined by means of the error trace produced by
the model checker. By using this approach, one can define

4692

7W
6W

8WW7

6W

4W

2W

7W

8W

1W

4W

2W 5W

3W

6W

W

5W
4W
3W
2W
1W

1W

3W

5W

8

move

communication

separation violation

path planner

start
a family of curves

Set of Dubins paths for

straight line only
sweep

straight line−arc motion−

denoteWorlds

Labelling Function

Communication, as an inter−

section operation on robots

arc only

reads asTerm

Worlds

N∧
i=1

[
N⋂

i=1

Xi

]

N∧
i=1

[{
Xi
Dub

} −
[

k,k<N∧
j=1

{
Xj
Dub

}]]
= min

N∨
i=1

[
Xi
a
∨ Xi

l

]

N∑
i=1

[{
Xi

} k,k<N⋂
j

{
Xj

}]

N∧
i=1

[
Xi
Dub

]

N∨
i=1

[{
Xi
Dub

}]

Xi
a

Xi
l

{
Xi
Dub

}
N⋂

i=1

Xi

Xi
a

Xi
l

Fig. 4. Kripke Model for scenario.

an upper bound on the number of participants for a pre-
determined scenario.

B. Kripke model for the system

• {W1,W2,W4} are the set of worlds where all the robots
perform their path plans and broadcast their respective
path plans. In the path plan world, all the robots
determine and agree upon paths that produce (as close
to) identical path lengths as possible, before setting off
towards goal.

• {W3} is the world, which models UAV behaviour, if
any UAV violates the minimum separation that needs to
be maintained in order to produce collision-free flight.

• {W4} is the world in the “possible worlds” uni-
verse that governs communication. Communication is
modelled as a lossless transfer of state information
between UAVs, which are subsequently compared to
produce matching path lengths. Not all transfer of state
information results in path length calculation. If, the
UAVs enter W4 during rendezvous, only the position
information is utilised to maintain minimum separation
(W3 is traversed by a UAV, if minimum separation is

violated).
• {W5,W6} Kripke models can capture different facets of

a multi-robot system. In, Jeyaraman et al [21], a case
where Kripke models representing robotic behaviour
can be folded into one another, in other words, sub-
sumed Kripke worlds was discussed. Refer to [21] for
more details. In this case, another important notion,
i.e., worlds that are related to, but are unique enough to
resist subsumption. In this case, W6, the sweep world
is a combination of Dubins paths. However, a move
occurs, only when an area is unsweepable. Therefore,
each behaviour has its own initiation mechanism. In
such cases, the worlds are not subsumed but kept as
unique worlds.

• {W7,W8} are worlds in which the UAVs motion (arc
and straight line) is mapped as a “possible” world.
Transition is governed based on factors such as min-
imum distance violation, proximity to goal, keeping
formation and so on.

Table II tabulates the transition functions as pairs, cor-
responding to the worlds that they “link”. The functions
themselves are defined presently.

4693

� The labelling formula for W2 can be explained as
follows:

N∧

i=1

[{
Xi

Dub

}−
[k,k<N∧

j=1

{
Xj
Dub

}]]
= min

Every UAV i shares its state information with a set of
immediate neighbours k, such that the most minimal of
the path lengths from a set of path lengths generated for
manoeuvre by UAVi, is earmarked for implementation.

� Similarily, in the case of W4,

N

∑
i=1

[{
Xi

} k,k<N⋂

j

{
Xj

}]

Every UAV i shares its state information with a set
of immediate neighbours k, with the requirement that,
if there is “common” information between the group,
each robot must utilise it in some form to its advantage.
The other formulae provided in Fig. 4 can be parsed
likewise, with help from the legend table provided.

� (W1 −W2): Similarily, one can also fix the transition
functions that govern transitions between the different
worlds. For instance, transition between W1 and W2,
governed by r1 and r2 are represented as follows:

r1 =




true if
N∧

i=1

[
N⋂

i=1
Xi

]
or

goal/target specified
f alse otherwise

(2)

r2 =




true if
{

Xi
Dub

} ≈ min Xi
Dub

f alse otherwise
(3)

� (W5−W6): When a UAV is making a sweep search of
an area it uses a combination of Dubins paths in order
to smooth its paths (Refer to Fig. 2). Even though a
“sweep” is a series of “moves”, a move is initiated
only when there it is unnecessary or, even impossible
to perform a sweep. Therefore the transition functions
that initiate a move are very different to the ones that
will govern a sweep world.

r19 =

{
true iff {feasible Dubin paths}
f alse otherwise

(4)

r20 =

{
true area swept ‖ no feasible sweeps
f alse otherwise

(5)

(6)

V. MODEL CHECKING

In Holzmann [16], [17] and in Holzmann and Smith [18],
[19], a test harness model that can bind the implementation
ANSI-C code for model checking is proposed. The idea
behind model checking per se is that, by capturing the
essence of the design in a mathematical model (Kripke

%F mainmod2.c
%X -L mainmod.lut -n main
%%
%L
headChan... skip
polarChan... skip
commonPad... skip
/*more data here*/
%%
%P
#define ROBOTS 3
#define STEPS_TO_RUN 50
/*remapping C datatypes to PROMELA datatypes*/
mtype {R_STOP, R_BROADCAST, R_PATHPLAN, R_MOVE};
mtype {L_SEG, R_SEG, S_SEG};
/*more entries..*/

Fig. 5. Manually generated FeaVer harness file. Used by model extractor
to create an equivalent PROMELA file that serves as input for SPIN.

model), we can often demonstrate conclusively that the
design has certain inevitable properties. The purpose of a
verification model, then, is to enable proof . If it fails to do
so, within the resource limits that are available to the verifi-
cation system, the model should be considered inadequate.
A similar approach was undertaken in Havelund et al [20],
and was successful in verifying the software’s correctness
as well as uncovering subtle bugs. The mechanised harness
method is described briefly below:

• A test harness file is created, which contains the name
of the C file(s) to be tested along with test drivers and
the like.

• A mapping table for mapping the data within the
source into the model checker’s language is also de-
fined.

• Determine the desired selection for the test harness
from the source

• Generate model checking code
• Run it in verification mode by compiling the source

file generated by the model checker.
A sample from the test harness file derived for this

purpose, is shown in Fig. 5. By this extraction process,
we derived a complete and syntactically sound PROMELA
model of around 200 lines. The purpose of the code was
to ascertain that the execution of our program is deter-
ministic and round-robin, despite the absence of explicit
thread scheduling. By successfully conducting the safety
and reachability tests, we can effectively say that stability
analysis has been performed on the system [21]. The
PROMELA code was compiled and run under simulation
and verification mode. Program’s output listing is provided
in Fig. 6. A snippet from the PROMELA code, automatically
derived from the C code (using the harness file), is provided
in Fig. 7. Due to lack of space, other similar model checking
properties like deadlock detection are not mentioned here.

VI. CONCLUSIONS

We have proposed a novel hybrid control scheme that
brings together the formalised modelling approach, while
focussing on the implementation aspects of the model. To
this effect, we have utilised the Dubins set to implement

4694

(Spin Version 4.1.0 -- 6 December 2003)
+ Partial Order Reduction

Bit statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states - (disabled by -E flag)

State-vector 140 byte, depth reached 9, errors: 0
10 states, stored
0 states, matched

10 transitions (= stored+matched)
0 atomic steps

hash factor:1.5252e+06(expected coverage:>=99.9% on avg)
(max size 2ˆ24 states)

Stats on memory usage (in Megabytes):
0.001 equivalent memory usage for states
(stored*(State-vector + overhead))
4.194 memory used for hash array (-w24)
0.036 memory used for DFS stack (-m1000)
4.399 total actual memory usage

Fig. 6. Output listing of SPIN for full statespace checks through FeaVer.

inline runRobot(rob, mesg, paths) {
/*non-deterministic FSM*/
do
:: full(mesg) ->
if
:: (full(mesg) && rob.State == R_BROADCAST) ->
assert(full(mesg));
rob.State = R_PATHPLAN;
break
:: (len(mesg) < ROBOTS && rob.State == R_BROADCAST) ->
mesg[rob.robUID]!1;
break
:: (full(paths) && rob.State == R_PATHPLAN) ->
assert(full(mesg));
rob.State = R_MOVE;
/*paths[rob.robUID]!0;*/
break
:: (len(paths) < ROBOTS && rob.State == R_PATHPLAN) ->
paths[rob.robUID]!1;
break
fi;
/*more code here...*/
od
}

Fig. 7. PROMELA code snippet derived from the C source for this study.
Harness file syntax is provided in Fig. 5.

co-operative control among a team of UAVs while mechan-
ically proof-checking the stability of our system at the same
time. Future work will include re-implementation of the
program in GNU threads and scaling up the number of
UAVs in the scenario and observing if the Kripke model
as well as the model checker, can cope with them.

REFERENCES

[1] S. Butenko, R. Murphey, and P. M. Pardalos, Eds., Cooperative
Control: Models, Applications and Algorithms. Kluwer Academic
Publishers, 2003, vol. 1.

[2] M. Alighanbari, Y. Kuwata, and J. P. How, “Coordination and Control
of Multiple UAVs with Timing Constraints and Loitering,” in Proc. of
the American Control Conference, vol. 6, June 2003, pp. 5311–5316.

[3] R. W. Beard, T. W. McLain, and M. Goodrich, “Coordinated Target
Assignment and Intercept for Unmanned Air Vehicles,” in Proc.
of the IEEE International Conference on Robotics and Automation,
vol. 3, May 2002, pp. 2581–2586.

[4] R. Alur, J. Esposito, M. Kim, V. Kumar, and I. Lee, “Formal Model-
ing and Analysis of Hybrid Systems: A Case Study in Multirobot
Coordination,” in Proceedings of the World Congress on Formal
Methods, ser. Lecture Notes in Computer Science 1708. Springer –
Verlag, 1999, pp. 212–232.

[5] R. Alur, A. Das, J. Esposito, R. Fierro, et al., “A Framework and
Architecture for Multirobot Coordination,” in Seventh International
Symposium on Experimental Robotics, December 2000.

[6] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking, 2001.
[7] S. Jeyaraman, A. Tsourdos, R. Żbikowski, B. White, et al., “For-

malised Hybrid Control Scheme for a UAV Group using Dubins Set
and Model Checking,” in Proc. of the 43rd IEEE Conf. on Decision
and Control, Paradise Island, Bahamas, 14-17 December 2004.

[8] M. Shanmugavel, A. Tsourdos, R. Żbikowski, and B. White, “Path
Planning of Multiple UAVs using Dubins Sets,” in To appear in the
AIAA Guidance, Navigation, and Control Conference, San Francisco,
California, 15-18 August 2005, Paper submitted for review.

[9] A. M. Shkel and V. Lumelsky, “Classification of the Dubins Set,”
Robotics and Autonomous Systems, vol. 34, no. 4, pp. 179–274,
March 2001.

[10] A. Balluchi, P. Souères, and A. Bicchi, “Hybrid Feedback Control for
Path Tracking by a Bounded-Curvature Vehicle,” in Hybrid Systems:
Computation and Control (HSCC), ser. Lecture Notes in Computer
Science 2034, March 2001, pp. 133–146.

[11] T. Fraichard, A. Scheuer, and R. Desvigne, “From Reeds and Shepp’s
to Continuous-Curvature Paths,” in Proceedings of the International
Conference on Advanced Robotics, October 1999, pp. 585–590.

[12] J. A. Reeds and L. A. Shepp, “Optimal Paths for a Car that Goes
Both Forwards and Backwards,,” Pacific Journal of Mathematics, vol.
145, no. 2, pp. 367–393, 1990.

[13] T. A. Henzinger, “The Theory of Hybrid Automata,” in 11th Annual
IEEE Symposium on Logic in Computer Science (LICS 96), 1996,
pp. 278–292.

[14] R. Huuck, B. Lukoschus, G. Frehse, and S. Engell, Modelling,
Analysis, and Design of Hybrid Systems, ser. LNCIS 279. SV, 2002,
ch. Compositional Verification of Continuous-Discrete Systems, pp.
225–244.

[15] B. Bérard, M. Bidoit, A. Finkel, et al., Systems and Software
Verification. Springer – Verlag, 2001.

[16] G. J. Holzmann, The SPIN Model Checker. Addison-Wesley, 2003.
[17] ——, “Logic Verification of ANSI-C Code with SPIN,” in Proceed-

ings of the 7th International SPIN workshop, ser. Lecture Notes in
Computer Science 1885, Sep. 2000, pp. 131–147.

[18] G. J. Holzmann and M. H. Smith, “An Automated Verification
Method for Distributed Systems Software Based on Model Extrac-
tion,” IEEE Transactions on Software Engineering, vol. 28, no. 4,
pp. 364–377, April 2002, ISSN 0098-5589.

[19] ——, FeaVer 1.0 User Guide, 1st ed., Lucent Technologies Inc, 2002.
[20] K. Havelund, M. Lowry, and J. Penix, “Formal Analysis of a

Space-Craft Controller using SPIN,” IEEE Transactions on Software
Engineering, vol. 27, no. 8, pp. 749–765, August 2001, ISSN 0098-
5589.

[21] S. Jeyaraman, A. Tsourdos, R. Zbikowski, and B. white, “Kripke
modelling of multiple robots with decentralized cooperation speci-
fied with temporal logic,” Part I: Journal of Systems and Control
Engineering, vol. 219, 2005, DOI:10.1243/095965105X9506.

4695

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

