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Abstract— Design of optimal distributed controllers with
a priori assigned localization constraints is, in general, a
difficult problem. Optimality of a closed-loop system is
desirable because it guarantees, among other properties,
favorable gain and phase margins. These margins provide
robustness to different types of uncertainty. Alternatively,
one can ask a following question: given a localized dis-
tributed exponentially stabilizing controller, is it inversely
optimal with respect to some physically meaningful cost
functional? We study this problem for Linear Spatially
Invariant (LSI) systems and establish a frequency domain
criterion for inverse optimality (in the LQR sense). We
utilize this criterion to separate localized distributed con-
trollers that are never optimal from localized distributed
controllers that are optimal. In the latter case, we provide
examples to demonstrate optimality with respect to phys-
ically appealing cost functionals. These cost functionals
are characterized by state penalties that are not fully
decentralized. Our results can be used to motivate design
of both optimal and inversely optimal controllers for other
classes of distributed control problems.

Index Terms— Inverse Optimality; Localized Control;
Spatially Invariant Systems.

I. INTRODUCTION

Large arrays of spatially distributed dynamical systems
are becoming prevalent in modern technological applications.
These systems can range from the macroscopic−such as
vehicular platoons [1]–[6], Unmanned Aerial Vehicle (UAV)
formations [7]–[9], and satellites constellations [10]–[12]−to
the microscopic, for example, arrays of micro-mirrors [13]
or micro-cantilevers [14]. Significant potential for research on
these systems is due to the field of Micro-Electro-Mechanical
Systems (MEMS) where the fabrication of very large arrays
of sensors and actuators is now both feasible and economical.
The key design issues in the control of these systems are
architectural such as the choice of localized versus centralized
control.

Design of optimal distributed controllers with pre-specified
localization constraints is, in general, a difficult task (we refer
the reader to [15]–[19] and references therein for recent efforts
in this area). Optimality of a closed-loop system is desirable
because it guarantees, among other properties, favorable gain
and phase margins. These margins provide robustness to dif-
ferent types of uncertainty [20]. Alternatively, one can ask a
following question:

• Given a localized distributed exponentially stabilizing
controller, is it inversely optimal with respect to some
physically meaningful performance index?

We study this problem for Linear Spatially Invariant (LSI) sys-
tems [21] and derive a frequency domain condition for inverse
optimality. This condition represents an extension of a well-
known result for Linear Time Invariant (LTI) systems [22] to a
class of systems studied in this paper. We provide examples of
localized distributed controllers that are inversely optimal with
respect to meaningful performance criteria, and examples of

localized distributed controllers that are not optimal in any
sense. Our results can be used to motivate design of both
optimal and inversely optimal distributed controllers for other
classes of spatio-temporal systems (e.g. spatially varying).

Our presentation is organized as follows: in section II, we
setup the problem, introduce necessary background material,
and provide two examples of LSI systems to illustrate that
LQR design with fully decentralized performance indices
yields centralized optimal controllers. In § III, we establish
frequency domain criterion for inverse optimality of spatially
invariant controllers. For systems with a single input field,
this criterion requires the absolute value of the corresponding
return difference to be greater than or equal to one at all
spatio-temporal frequencies. In § IV, we provide examples
of exponentially stabilizing localized distributed controllers
and utilize results of § III to characterize control laws that
are optimal (in the LQR sense). We show that optimality of
localized distributed controllers can be guaranteed by departing
from fully decentralized performance indices. We end our
presentation with some concluding remarks in § V.

II. PRELIMINARIES

We consider distributed systems of the form

∂tψ(t, ξ) = [Aψ(t)](ξ) + [Bu(t)](ξ). (1)

where operator A generates a strongly continuous (Co) semi-
group [23], [24]. We assume that spatial coordinate ξ :=
[ ξ1 · · · ξd ]∗ belongs to a commutative group G, and that
time independent operators A and B are invariant with re-
spect to translations in this coordinate. These properties imply
spatial invariance of (1). The analysis and design problems
for LSI systems are greatly simplified by the application of
the appropriate Fourier transform in the spatially invariant
directions [21]. By taking a (spatial) Fourier transform of (1)
we obtain

˙̂
ψκ(t) = Âκψ̂κ(t) + B̂κûκ(t), (2)

where κ := [ κ1 · · · κd ]∗ denotes the vector of frequencies
corresponding to the spatial coordinates ξ = [ ξ1 · · · ξd ]∗,
ψ̂κ(t) := ψ̂(t, κ), ûκ(t) := û(t, κ), whereas Âκ := Â(κ)
and B̂κ := B̂(κ) denote multiplication operators (i.e. Fourier
symbols of operators A and B, respectively). We note that (2)
represents a finite dimensional family of systems parameterized
by κ ∈ Ĝ: if ψ(t, ξ) and u(t, ξ) respectively denote fields with
n and m components then, for any given κ ∈ Ĝ, ψ̂κ ∈ C

n,
ûκ ∈ C

m, which implies that Âκ and B̂κ respectively denote
matrices that belong to C

n×n and C
n×m. We refer to the

systems with m = 1 as single input systems. It was established
in [21] that the dynamical properties of (1) can be inferred by
checking the same properties of (2) for all κ ∈ Ĝ. Similar
holds for design problems: for example, the solution to the
optimal control problems for system (1) can be obtained by
solving the analogous problems for a κ-parameterized family
of finite dimensional systems (2).
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A. Distributed LQR

We associate a quadratic performance index

J =
1

2

∫ ∞

0

(〈ψ,Qψ〉 + 〈u,Ru〉) dt, (3)

with (1). If Q ≥ 0 and R > 0 are translation invariant oper-
ators, the application of spatial Fourier transform renders (3)
into

J =
1

2

∫ ∞

0

∫
Ĝ

(
ψ̂∗

κ(t)Q̂κψ̂κ(t) + û∗
κ(t)R̂κûκ(t)

)
dκ dt

(4)
where dκ denotes the Haar measure. Thus, distributed LQR
problem (1,3) amounts to solving the κ-parameterized fam-
ily of finite dimensional LQR problems (2,4). If pairs
(A,B) and (A∗,Q1/2) are exponentially stabilizable, then the
κ-parameterized family of Algebraic Riccati Equations (AREs)

Â∗
κP̂κ + P̂κÂκ + Q̂κ − P̂κB̂κR̂−1

κ B̂∗
κP̂κ = 0, (5)

has a unique positive definite uniformly bounded solution for
every κ ∈ Ĝ [21]. This positive definite matrix determines the
optimal stabilizing feedback for system (2) for every κ ∈ Ĝ

ûκ := K̂κψ̂κ = −R̂−1
κ B̂∗

κP̂κψ̂κ, κ ∈ Ĝ. (6)

In this case, there exist an exponentially stabilizing translation
invariant feedback for system (1) that minimizes (3) [21]. This
optimal stabilizing feedback for (1) is readily obtained by
taking an inverse Fourier transform of (6).

B. Return difference equality

System (2) with a state-feedback control law ûκ = K̂κψ̂κ

can be equivalently represented by a feedback arrangement
shown in Fig. 1. The so-called return difference of system

� (sI − Âκ)−1B̂κ
�

ψ̂κ

K̂κ
�

ûκ
�

Fig. 1. Block diagram of system (2) with ûκ = K̂κψ̂κ.

whose block diagram is shown in Fig. 1 is defined by [20],
[22]

Ĥκ(s) := I − K̂κ(sI − Âκ)−1B̂κ =: I − K̂κĜκ(s)B̂κ.

This quantity is important because its inverse determines the
sensitivity function Ŝκ(s) := Ĥ−1

κ (s). It is readily established
that Ĥκ(jω) for every ω ∈ R and κ ∈ Ĝ satisfies [20], [22]

R̂κ + B̂∗
κĜ∗

κ(jω)Q̂κĜκ(jω)B̂κ = Ĥ∗
κ(jω)R̂κĤκ(jω), (7)

where, for example, Ĝκ(jω) := (jωI − Âκ)−1 and
Ĝ∗

κ(jω) := − (jωI + Â∗
κ)−1. Equation (7) is usually referred

to as the return difference equality and it follows directly from
the ARE. A straightforward consequence of this equality is

Ĥ∗
κ(jω)R̂κĤκ(jω) ≥ R̂κ. (8)

Relationships (7) and (8) are utilized in § III to express a fre-
quency domain condition for inverse optimality of distributed
exponentially stabilizing spatially invariant controllers.

C. Distributed controller architectures
Fig. 2 illustrates different control strategies that can be

used for control of spatially distributed systems: centralized,
localized, and fully decentralized. Centralized controllers re-
quire information from all plant units for achieving the desired
control objective. On the other hand, in fully decentralized
strategies control unit Kn uses only information from the
n-th plant unit Gn on which it acts. An example of a
localized distributed control architecture with nearest neighbor
interactions is shown in Fig. 2.

D. Examples of optimal distributed design
We next provide two examples of spatially invariant systems

with fully distributed measurements and controls:
• diffusion equation over an infinite domain (G := R),
• mass-spring system on an infinite line (G := Z).

We demonstrate that the LQR design with fully decentralized
performance indices yields centralized optimal controllers for
these systems.

1) Diffusion equation: We consider a one-dimensional
diffusion equation

ψt(t, ξ) = ψξξ(t, ξ) + cψ(t, ξ) + u(t, ξ), ξ ∈ R. (9)

The application of the standard spatial Fourier transform yields

˙̂
ψκ(t) = (c − κ2)ψ̂κ(t) + ûκ(t),

=: Âκψ̂κ(t) + B̂κûκ(t), κ ∈ R,

which implies that (9) is not (open-loop) exponentially stable
if c ≥ 0. Choosing, for example, Q := qI and R := rI in (3),
with (q = const. > 0, r = const. > 0), yields the following
positive definite solution to the κ-parameterized ARE (5):

P̂κ = r(c − κ2) +
√

r2(c − κ2)2 + rq,

which gives the optimal control of the form (6) with

K̂κ = −
(
(c − κ2) +

√
(c − κ2)2 + q/r

)
.

Since K̂κ is irrational function of κ, it cannot be implemented
by a PDE (in t and ξ). Rather, the optimal control in the
physical space assumes the form

u(t, ξ) =

∫
R

K(ξ − ζ)ψ(t, ζ) dζ. (10)

In [21], it was established that K decays exponentially fast
as a function of its argument which is a desirable property
for implementation. Despite this nice feature, (10) represents
a centralized controller.

2) Mass-spring system: A system consisting of an infi-
nite number of identical masses and springs on a line is shown
in Fig. 3. If restoring forces are considered as linear functions
of displacements, the dynamics of the mass indexed by ξ ∈ Z

are given by

ẍ(t, ξ) = x(t, ξ − 1) − 2x(t, ξ) + x(t, ξ + 1) + u(t, ξ),

where x(t, ξ) represents the displacement from a reference
position of the mass ξ, and u(t, ξ) is the control applied on
the mass ξ. A state-space representation of this system is given
by

ψ̇(t, ξ) =

[
0 1

T−1 − 2 + T1 0

]
ψ(t, ξ) +

[
0
1

]
u(t, ξ),

ψ(t, ξ) :=
[

x(t, ξ) ẋ(t, ξ)
]∗

, ξ ∈ Z,
(11)
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Fig. 2. Distributed architectures for centralized, localized (with nearest neighbor interactions), and fully decentralized control strategies.

where T−1 and T1 respectively denote the operators of trans-
lation by −1 and 1 (in the mass’ index). We utilize the fact
that system (11) has spatially invariant dynamics over discrete
spatial lattice Z and apply the appropriate Fourier transform
(spatial Z transform evaluated on a unit circle) to obtain

˙̂
ψκ(t) =

[
0 1
aκ 0

]
ψ̂κ(t) +

[
0
1

]
ûκ(t),

=: Âκψ̂κ(t) + B̂κûκ(t),

aκ := 2(cos κ − 1), κ ∈ [0, 2π),

(12)

where, for example,

û(t, κ) :=
∑
ξ ∈ Z

u(t, ξ)e−jκξ.

Selecting, for example, fully decentralized weights

Q :=

[
q1I 0
0 q2I

]
, R := rI,

with (q1 = const. > 0, q2 = const. ≥ 0, r = const. > 0),
renders (3) into

J :=
1

2

∫ ∞

0

(
∑
ξ∈Z

q1x
2(t, ξ) + q2ẋ

2(t, ξ) + ru2(t, ξ)) dt,

and yields the following optimal control

ûκ(t) = K̂κψ̂κ(t) :=
[ K̂1κ K̂2κ

]
ψ̂κ(t),

K̂1κ = 2(1 − cos κ) − √
4(cos κ − 1)2 + q1/r,

K̂2κ = −
√

−2K̂1κ + q2/r.

Again, since K̂κ is irrational function of κ, it cannot be
implemented by a localized distributed controller. Rather, the
optimal control in the physical space is a centralized controller
of the form

u(t, ξ) =
∑
ζ∈Z

K(ξ − ζ)ψ(t, ζ), ξ ∈ Z. (13)

In § IV, we illustrate that both spatially localized and fully
decentralized exponentially stabilizing controllers for diffusion
equation (9) and mass-spring system (11) can be inversely
optimal with respect to physically appealing cost functionals.
In particular, for a diffusion equation, these cost functionals
incorporate penalties on spatial derivatives of ψ (in addition
to penalties on ψ), which implies that they are no longer fully
decentralized.

Fig. 3. Mass-spring system.

III. THE INVERSE PROBLEM OF OPTIMAL

DISTRIBUTED CONTROL

In this section, we consider the inverse problem of optimal
exponential stabilization of LSI system (1). This problem is
inverse because we assume that an exponentially stabilizing
state-feedback control law for (1) is available and search
for performance indices (3) for which this control law is
optimal. In other words, operators Q and R in (3) are not a
priori assigned; rather, they are determined a posteriori by the
exponentially stabilizing state-feedback. We state a frequency
domain condition that separates distributed controllers that are
never optimal (in the LQR sense) from distributed controllers
that are optimal (in the LQR sense). This condition represents
an extension of a well-known result for finite dimensional LTI
systems [22] to a class of systems considered in this paper. In
particular, for single input systems, the inverse optimality of
an exponentially stabilizing control law K is guaranteed if and
only if the absolute value of the return difference:

Ĥκ(jω) := I − K̂κ(jωI −Âκ)−1B̂κ =: I − K̂κĜκ(jω)B̂κ,

is not less than one at any spatio-temporal frequency pair (κ, ω)
(see Theorem 1 for precise formulation).

Theorem 1 and Corollary 2 are readily established by
recognizing that the application of the appropriate spatial
Fourier transform renders LSI systems into a κ-parameterized
family of finite dimensional LTI systems. We refer the reader
to [20], [22] for finite dimensional LTI results.

Theorem 1: Let a triple {A,B,K} for LSI system (1)
satisfy: (a) A is a generator of a Co semigroup; (b) (A,B)
is exponentially controllable; and (c) K is an exponentially
stabilizing translation invariant state-feedback operator. Then,
a necessary and sufficient condition for K to be an optimal
control law with respect to a performance index (3) is that
condition

σmin

{
R̂1/2

κ Ĥκ(jω)R̂−1/2
κ

}
≥ 1, (14)

holds for all ω ∈ R and κ ∈ Ĝ. For a single input LSI
system (1), condition (14) simplifies to

|Ĥκ(jω)| ≥ 1, ∀ω ∈ R, ∀κ ∈ Ĝ. (15)

Corollary 2: Let a quadruple {A,B,K,R} for LSI sys-
tem (1) satisfy: (a) A is a generator of a Co semigroup; (b)
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(A,B) is exponentially stabilizable; (c) K is an exponentially
stabilizing translation invariant state-feedback operator; (d)
R > 0; and (e) return difference inequality (14) holds for
all ω ∈ R and κ ∈ Ĝ. Then, there exist a translation invariant
operator Q = DD∗ with (A∗,D) exponentially stabilizable
such that the optimal state-feedback operator K̄ associated with
the LQR problem (1,3) satisfies K̄G(jω)B = KG(jω)B. If a
pair (A,B) is exponentially controllable, then K = K̄.

If Corollary 2 is satisfied, then a translation invariant
operator D (Q = DD∗) can be determined from return differ-
ence equality (7) using polynomial matrix fraction description
of Ĥκ(jω). This operator can always be selected to guarantee
exponential stabilizability of pair (A∗,D) (we refer the reader
to [20], [22] for finite dimensional LTI version). In general,
for a given R there are many different D’s that satisfy (7) and
yield K as a solution to the corresponding LQR problem. For
single input systems, D̂κ can be determined from [20], [22]

‖D̂∗
κĜκ(jω)B̂κ‖2 = R̂κ

(
|Ĥκ(jω)|2 − 1

)
. (16)

IV. EXAMPLES OF INVERSELY OPTIMAL

DISTRIBUTED DESIGN

In this section, we investigate inverse optimality of localized
distributed exponentially stabilizing controllers for diffusion
equation (9) and mass-spring system (11). We utilize results
of § III to distinguish between controllers that are never
optimal and controllers that are optimal. In the latter case,
we show that inverse optimality is guaranteed with respect
to physically appealing performance criteria. For a diffusion
equation, we demonstrate that localized distributed and even
fully decentralized optimal controllers can be obtained by
incorporating spatial derivatives of ψ (in addition to ψ) in the
performance index. Similarly, for a mass-spring system, we
establish that spatially localized cost functionals can produce
controllers with favorable architectures. These observations
should be compared to the results of § II-D, where it was
shown that LQR design with fully decentralized performance
criteria results into centralized optimal controllers for both
these systems.

A. Diffusion equation
It is readily established that the following spatially invariant

localized distributed controller

u(t, ξ) = − (
βψξξ(t, ξ) + (c + α)ψ(t, ξ)

)
,

�
ûκ(t) = K̂κψ̂κ(t) = − (

c + α − βκ2
)
ψ̂κ(t),

(17)

provides exponential stability of (9) so long as κ-independent
real design parameters α and β respectively satisfy α > 0
and β ∈ (−∞, 1]. Based on Theorem 1, it follows that
controller (17) is inversely optimal if and only if(

α − c + (2 − β)κ2)(α + c − βκ2) ≥ 0,

holds for all κ ∈ R. This condition is satisfied for all κ ∈ R

if and only if α ≥ c and β ≤ 0. Thus, if either α < c or
β ∈ (0, 1] then controller (17) is never optimal in the LQR
sense. In other words, for this choice of design parameters α
and β it is not possible to select a pair (Q ≥ 0,R > 0) for
which (17) is obtained as a solution to the corresponding LQR
problem (1,3). This implies that this exponentially stabilizing
control law does not have any stability margins: with a slightly
perturbed feedback closed-loop system becomes unstable. On
the other hand, for α ≥ c and β ≤ 0 there always exist
(Q ≥ 0,R > 0) in (3) with respect to which (17) is inversely

optimal. Choosing, for example, R := rI in (3), with r =
const. > 0, yields the following state penalty:

Q̂κ = r
(
(α2 − c2) + 2

(
c + α(1 − β)

)
κ2 + β(β − 2)κ4

)
,

�
Q = r

(
(α2 − c2)I − 2

(
c + α(1 − β)

)
∂ξξ + β(β − 2)∂ξξξξ

)
.

Since for any κ ∈ R, κ-parameterized diffusion equation
represents a scalar system, this state penalty is obtained as
a unique solution to (16) for any r > 0.

Thus, we have established optimality of spatially invariant
localized distributed controller (17) with respect to the follow-
ing performance index

J =
r

2
(α2 − c2)

∫ ∞

0

〈ψ, ψ〉 dt +

r

2
2
(
c + α(1 − β)

)∫ ∞

0

〈ψξ, ψξ〉 dt +

r

2
β(β − 2)

∫ ∞

0

〈ψξξ, ψξξ〉 dt +

r

2

∫ ∞

0

〈u, u〉 dt, r > 0, α ≥ c, β ≤ 0.

(18)

In particular, for β = 0 controller (17) is fully decentralized
and (18) simplifies to

J =
r

2
(α2 − c2)

∫ ∞

0

〈ψ, ψ〉 dt +

r

2
2(α + c)

∫ ∞

0

〈ψξ, ψξ〉 dt +

r

2

∫ ∞

0

〈u, u〉 dt, r > 0, α ≥ c.

(19)

To recap:

• fully decentralized controller

u(t, ξ) = − (c + α)ψ(t, ξ),

with α ≥ c represents exponentially stabilizing solution
to the LQR problem (9,19);

• localized distributed controller

u(t, ξ) = − (
βψξξ(t, ξ) + (c + α)ψ(t, ξ)

)
,

with α ≥ c, β < 0 represents exponentially stabilizing
solution to the LQR problem (9,18).

Remark 1: Our analysis indicates that a choice of the
state-space on which optimal control problems are formulated
can significantly influence localization properties of resulting
distributed optimal controllers. Example of § II-D.1 illustrates
that the spatially invariant LQR problem (for a diffusion
equation) formulated on the space of square integrable func-
tions L2(−∞, ∞) yields centralized controllers. On the other
hand, the LQR design performed on the Sobolev spaces
H1(−∞, ∞) or H2(−∞, ∞) can result into localized dis-
tributed and fully decentralized controllers provided that the
penalties on 〈ψ, ψ〉, 〈ψξ, ψξ〉, and 〈ψξξ, ψξξ〉 are appropriately
selected.

B. Mass-spring system

It is easily shown that the exponential stability of (11) is
guaranteed with the spatially invariant localized distributed
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controller of the form

u(t, ξ) = − [
α + β(T−1 − 2 + T1) γ

]
ψ(t, ξ)

= − (α − 2β)x(t, ξ) − γẋ(t, ξ) −
β(x(t, ξ − 1) + x(t, ξ + 1)), ξ ∈ Z,

�
ûκ(t) = K̂κψ̂κ(t)

= − [
α + βaκ γ

]
ψ̂κ(t), κ ∈ [0, 2π),

(20)
so long as κ-independent real design parameters α, β, and γ
satisfy

γ > 0 and

{
α > 0, β ∈ (−∞, 1],

α > 4(β − 1), β > 1.

Based on Theorem 1, it follows that controller (20) is inversely
optimal if and only if

(
γ2 − 2(α + βaκ)

)
ω2 +

(
α + βaκ

)(
α + (β − 2)aκ

) ≥ 0,

holds for all ω ∈ R, κ ∈ [0, 2π). This criterion for inverse
optimality is satisfied for all ω ∈ R, κ ∈ [0, 2π) if and only
if either

{α > 0, β ≤ 0, γ ≥
√

2(α − 4β)},

or

{α ≥ 4β, β > 0, γ ≥
√

2α}.

Hence, controller (20) is never optimal in the LQR sense if
parameters α, β, and γ fail to satisfy either of these two
conditions. On the other hand, if α, β, and γ satisfy either of
these two conditions than there always exist (Q ≥ 0,R > 0)
in (3) with respect to which (20) is optimal. Selecting, for
example,

R := rI

r = const. > 0

}
, Q :=

[ Q11 0
0 Q22

]
, (21)

in (3) yields the following state penalty:

Q̂11κ = r
(
α2 + 2α

(
β − 1

)
aκ + β(β − 2)a2

κ

)
,

Q̂22κ = r
(
γ2 − 2

(
α + βaκ

))
,

�
Q11 = r

(
α2 + 2α

(
β − 1

)(
T−1 − 2 + T1

)
+

β(β − 2)
(
T−2 − 4T−1 + 6 − 4T1 + T2

))
,

Q22 = r
(
γ2 − 2

(
α + β(T−1 − 2 + T1)

))
.

Thus, we have established optimality of spatially invariant lo-
calized distributed controller (20) with respect to the following
performance index

J =
1

2

∫ ∞

0

∑
n∈Z

∑
m∈Z

ψ∗(t, n)Qn−mψm(t, m) dt +

1

2

∫ ∞

0

∑
n∈Z

∑
m∈Z

u∗(t, n)Rn−mu(t, m) dt,
(22)

where

{R0 = r = const. > 0; Rn = 0, ∀n ∈ Z \ {0}} ,

{Qn = 0, ∀n ∈ Z \ {0,±1,±2}} ,

Q0 = r

[
α2 − 4α(β − 1) + 6β(β − 2) 0

0 γ2 − 2(α − 2β)

]
,

Q±1 = r

[
2α(β − 1) − 4β(β − 2) 0

0 −2β

]
,

Q±2 = r

[
β(β − 2) 0

0 0

]
.

(23)
In particular, for β = 0 controller (20) is fully decentralized
and (23) simplifies to

{R0 = r = const. > 0; Rn = 0, ∀n ∈ Z \ {0}} ,

{Qn = 0, ∀n ∈ Z \ {0,±1}} ,

Q0 = r

[
α2 + 4α 0

0 γ2 − 2α

]
,

Q±1 = r

[ −2α 0
0 0

]
.

(24)

To recap:

• fully decentralized controller

u(t, ξ) = − (αx(t, ξ) + γẋ(t, ξ)),

with {α > 0, γ >
√

2α} represents exponentially
stabilizing solution to the LQR problem (11,22,24);

• nearest neighbor interaction controller

u(t, ξ) = − (α − 2β)x(t, ξ) − γẋ(t, ξ) −
β(x(t, ξ − 1) + x(t, ξ + 1)),

with either

{α > 0, β < 0, γ ≥
√

2(α − 4β)},

or

{α ≥ 4β, β > 0, γ ≥
√

2α},

represents exponentially stabilizing solution to the LQR
problem (11,22,23).

Remark 2: The above penalties on {x(t, ξ)}ξ∈Z and
{ẋ(t, ξ)}ξ∈Z represent unique solutions to (16) provided
that (21) is satisfied (that is, Q12 ≡ 0). However, for given
R := rI > 0, there are many other operators Q = Q∗ ≥ 0
with non-zero off-diagonal elements (that is, Q12 �= 0) that
satisfy (16) and give controller (20) as a solution to the
corresponding LQR problem.

Remark 3: Example of § II-D.2 illustrates that the spatially
invariant LQR design (for a mass-spring system) with fully de-
centralized performance indices yields centralized controllers.
On the other hand, spatially localized performance indices
(with penalties on positions and velocities of several neighbor-
ing masses) can yield localized distributed and fully decentral-
ized controllers, provided that these penalties are appropriately
assigned. However, it is very difficult to choose these cost
functionals a priori. Rather, they have been determined a
posteriori by the exponentially stabilizing control law using
the return difference equality.
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V. CONCLUDING REMARKS

This paper deals with the inverse problem of optimal dis-
tributed stabilization of LSI systems. We establish a frequency
domain criterion that separates controllers that are never opti-
mal (in the LQR sense) from controllers that are optimal (in
the LQR sense). This criterion is expressed in terms of return
difference and, for systems with a single input field, the return
difference is required to be at least equal to one at all spatial
and temporal frequencies. We provide examples of localized
distributed controllers that are inversely optimal with respect to
physically appealing performance indices. A distinctive feature
of these indices is the absence of fully decentralized state
penalties that seem to yield centralized optimal controllers.

Our ongoing research effort is directed towards finding
out whether distributed backstepping controllers for nonlinear
systems on lattices [25]–[28] are inversely optimal, and if not
whether they could be appropriately modified such that inverse
optimality is guaranteed.
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[25] M. R. Jovanović and B. Bamieh, “Lyapunov-based distributed
control of systems on lattices,” IEEE Transactions on Automatic
Control, vol. 50, no. 4, April 2005.

[26] ——, “Lyapunov-based state-feedback distributed control of sys-
tems on lattices,” in Proceedings of the 2003 American Control
Conference, Denver, CO, 2003, pp. 101–106.

[27] ——, “Lyapunov-based output-feedback distributed control of
systems on lattices,” in Proceedings of the 42nd IEEE Conference
on Decision and Control, Maui, HI, 2003, pp. 1333–1338.
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