
Industry Needs for Embedded Control Education

J. S. Freudenberg B. H. Krogh
Dept. of Electrical Engineering and Computer Science Dept. of Electrical and Computer Engineering

University of Michigan Carnegie Mellon University
1301 Beal Avenue 5000 Forbes Avenue

Ann Arbor, MI 48109-2122, USA Pittsburgh, PA 15213-3890, USA
jfr@umich.edu krogh@ece.cmu.edu

Abstract— The rapidly growing embedded control industry
has created a need for engineers whose training extends
across the traditional pedagogical boundaries. To address
this challenge, courses in embedded control systems have
been created at the University of Michigan and at Carnegie
Mellon University. These courses have in common a hardware
laboratory based on the MPC555 microcontroller used to
implement force feedback algorithms to enable a human to
interact with a computer through a haptic interface. In this
paper we describe the pedagogical challenges posed by the
embedded control field, the hardware laboratory used at
Michigan and Carnegie Mellon, and the individual courses
that use this laboratory.

I. INTRODUCTION

An embedded computing system, by way of contrast
to traditional desktop, laptop, and workstation computers,
is one in which the computer itself is but a component
of another technological device. Embedded systems are
faced with constraints on memory, power, cost, and the
user interface. Examples of such embedded systems in-
clude cell phones and personal digital assistants. Embedded
control systems are a special class of embedded systems
wherein the microprocessor is embedded in another piece
of technology with which it interacts by implementing a
control algorithm. Examples include airplanes, automobiles,
household appliances, copy machines, hospital beds, and
machine tools.

An embedded control system shares the same constraints
on cost, memory, and so forth as do other embedded
system applications. Many other constraints are particular
to embedded controllers, however. These include: the need
to interface with and influence the external environment
through sensors and actuators; the fact that real-time oper-
ation is critical for performance and safety; hybrid system
behavior due to the interaction of continuous dynamics and
state machines; and distributed control problems arising
from embedded controllers interact with one another over
a network.

Hence, to understand an embedded control system re-
quires a skill set that goes well beyond that usually acquired
by a computer engineering student, which would include
detailed knowledge of microprocessor hardware, but not
its interaction with the environment beyond the use of

The development of the courses described in this paper was supported
in part by NSF Grant EIA-0088064.

discrete switches and LEDs. A student with a traditional
control background, on the other hand, would know about
control algorithm design and analysis, but not understand
important issues that constrain the computer implementation
of these algorithms. These issues go well beyond the issues
of sampling and quantization taught in a typical course on
digital control systems.

Indeed, a design team for an embedded control system
application will require expertise that extends across tradi-
tional disciplinary boundaries. Skills required include

• design of control and signal processing algorithms
• computer hardware (interfacing, memory, and timing)
• computer software (multitasking, real-time computa-

tion)
• interface and power electronics
• sensors and actuators (DC motors, encoders)
• mechanical design

Cost constraints in consumer applications require design
tradeoffs to be made across disciplinary boundaries: a
change in the mechanical hardware to save money may
require changes in the computer hardware, software, or
control algorithm. This poses a challenge in industry, where
design teams must be assembled from individuals who have
expertise in the separate disciplines, but may be unaware of
the issues and problems facing members of the team from
other backgrounds.

The situation in industry described above was explained
to the first author in 1999 by Dr. Ken Butts, then working
at Ford Motor Company. With advice from Dr. Butts, a
new course in embedded control system was created at the
University of Michigan to directly address the needs for
embedded control expertise in the automotive industry. The
hardware laboratory developed for the Michigan course has
been introduced at Carnegie Mellon University, where it
is being used to provide embedded control experience for
students in a pre-existing digital control course.

The development of courses in embedded control systems
impose pedagogical challenges similar to those faced in
industry and for the same reason: the highly multidisci-
plinary nature of the field. The purpose of the present paper
is to share with a general audience the ways in which
these challenges have been addressed by the authors at their
respective universities.

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

FrB18.1

4543

The courses in embedded control systems described
below are not merely a response to a short term trend.
On the contrary, the availability of low cost embedded
microprocessors is enabling the introduction of embedded
control systems into almost every conceivable technology.
Moreover, courses in embedded control systems introduce
students to issues at the forefront of control research,
because such topics as hybrid dynamical systems and dis-
tributed control over a network arise very naturally.

The remainder of this paper is outlined as follows. In
Section II we provide additional discussion of industry
trends in embedded control systems, motivated largely by
the automotive industry. The class at the University of
Michigan is described in Section III, including a discussion
of the laboratory setup, which includes the MPC555 micro-
controller developed for automotive powertrain control ap-
plications, and a haptic interface, or force feedback system,
designed by Professor Brent Gillespie at the University of
Michigan. The course at Carnegie Mellon University, which
also uses the MPC555 and the haptic interfaces developed
by Professor Gillespie, is described in Section IV.

II. INDUSTRY TRENDS IN EMBEDDED CONTROL

SYSTEMS

Industry is being forced to change the way in which
it develops embedded control software. Consider current
developments in the automotive industry, which is faced
with the problem of managing the rapidly increasing com-
plexity of the embedded software used in powertrain and
vehicle control. This growing complexity is caused to a
large extent by the demands to meet environmental, fuel
economy, and safety regulations under the cost constraints
of the consumer market. In order to meet these regulations,
many new developments in the technology for engine and
vehicle control are being introduced. Novel actuators and
sensors are being added to the powertrain, and many tra-
ditional mechanical control devices are being replaced by
electronics. For example, an electronic throttle is replacing
the mechanical throttle linkage between the driver and the
engine. As another example, in the future the crankshaft
and camshaft will no longer be directly linked, and the input
and exhaust valves will be controlled individually. All these
innovations require embedded microprocessor control.

Despite the potential improvements afforded by the use
of embedded microprocessors, their successful integration
into production vehicles presents a challenging software
development problem. Current industry practice requires
that too much software testing be done at a late stage in
the design cycle, when the production code is tested on
the vehicle. As a consequence, a heavy burden is placed
on the engineers responsible for final software calibration.
Significant software changes made late in the development
process increase time-to-market, thus reducing profitability
and rendering problematic the introduction of otherwise
promising new technology.

As in many other areas of engineering, it is advantageous
to conduct as much testing as possible in software, through
simulation and verification, before hardware implementa-
tion. The model-based embedded control software design
paradigm requires that the control system be modelled
and simulated using tools such as MATLAB, Simulink,
and Stateflow, before code is written. The latter tool is
necessary because embedded control software contains a
large amount of mode switching, diagnostics, and logic, in
addition to more familiar control and estimation algorithms.
There is great interest in using rapid prototyping tools,
such as Real Time Workshop, to automatically generate
executable code directly from a Simulink/Stateflow dia-
gram. Rapid prototyping has proven invaluable in testing
embedded control algorithms on hardware before they are
coded into production software. Doing so enables several
design iterations of the algorithms, even before production
hardware is available. Discussion with industry contacts in-
dicates that rapid prototyping has not been used extensively
for producing actual production code, although there is
considerable interest in moving in this direction, and many
companies are actively engaged in doing so.

One implication of the preceding comments is that C
remains the standard language for writing production em-
bedded control software, and this will continue to be true
even while the use of autocode generation tools increases.
An instructor developing a course in embedded control
systems must thus decide how much code students should
write in C, reflecting current industry practice for writing
production software, and how much is code should be auto-
generated with rapid prototyping tools, reflecting the model-
based control design paradigm toward which industry is
moving. Indeed, there are many jobs available for students
who want to work at making the code generation tools work
better.

III. THE COURSE AT THE UNIVERSITY OF MICHIGAN

The course EECS 461, Embedded Control Systems, is
now in its third year as a regularly offered class in the
Department of Electrical Engineering and Computer Sci-
ence (EECS) at the University of Michigan. Currently it
is offered twice a year, with an enrollment of 48 students
each semester, for a total of 96 students/year. The class is
taught in Fall semester by Professor J. S. Freudenberg, and
in Winter semester by Adjunct Professor J. A. Cook, also
of Ford Motor Company.

The student body consists of seniors in both electrical
engineering (EE) and computer engineering (CE), some
graduate students in these disciplines, and an occasional
graduate student in mechanical engineering (ME), by per-
mission of the instructor. Due to the heavy demand for the
class, enrollment is normally restricted to students in the
EECS Department. The undergraduate students in EE and
CE have in common a low-level discrete signals and systems
course, an introductory course in circuits, and background in
C++ programming. Many EE students and all CE students

4544

take a course in digital logic. In addition, students must
have taken at least one of the following courses: EECS
306, a traditional course in signals and systems that covers
Laplace and Fourier transforms, and makes significant use
of MATLAB, or EECS 373, a laboratory based course in
microprocessor systems taught in assembly language. The
latter prerequisite is normally taken by the CE students,
and the former by EE students, although EECS 306 is
increasingly popular with CE students as well.

It is important to tailor the lectures and laboratory exer-
cises to the background of the students. For example, the
laboratory uses DC motors, a topic is not covered anywhere
in the EECS curriculum. On the other hand, students can be
expected to be familiar with C. Were the class taught in the
Mechanical Engineering department, students would have
studied DC motors, but might not have seen C programming
or know that data is stored in registers.

A. Laboratory Hardware and Software

The laboratory consists of four major components: an
embedded microprocessor,a software development environ-
ment, mechanical hardware, and the MATLAB based envi-
ronment for autocode generation.

The microprocessor used in the EECS 461 laboratory
is the MPC555, originally manufactured by Motorola, and
now by Freescale, a division of Motorola that was re-
cently launched as a separate company [1]. The MPC555
is specially designed for use in automotive applications.
The many novel sensors and actuators used in advanced
technology powertrains to control such things as ignition,
fuel injection, and valve timing, imply that a microprocessor
must be capable of processing a large number of inputs
and outputs. Real-time performance is critical to safe and
reliable engine operation. The microprocessor must operate
in a harsh environment, over a wide range of temperatures
and is subject to significant electromagnetic interference.
The MPC555 microcontroller was developed to meet these
constraints: it has a 32 bit PowerPC core with a floating
point coprocessor, runs at 40MHz, and can function over
a temperature range of −40◦ to +125◦ C. The MPC555
has programmable time processing units (TPUs) that are
actually separate processors used to handle I/O duties that
would otherwise require either a separate chip or CPU
interrupt service. They are used, for example, to perform
quadrature decoding. The MPC555 also has modules to
interface with a Control Area Network (CAN), a networking
protocol popular in automotive applications.

The EECS 461 laboratory uses the CME-0555 develop-
ment board for the MPC555, available from Axiom Manu-
facturing [2]. The CME-0555 board is pictured in Figure 1,
together with an additional interface board designed at the
University of Michigan. The purpose of the latter board is
to provide additional buffering, and some dipswitches and
LEDs for simple I/O to the MPC555.

The software development environment currently used
in EECS 461 consists of the Diab C-compiler and the

Fig. 1. MPC555 development and interfacing boards.

SingleStep on-chip debugger available from WindRiver [3].
The latter tool allows students to step through the code one
line at a time, view the contents of individual registers on
the MPC555 as they change in response to external inputs,
and study the assembly code produced by the compiler.
These professional development tools greatly speed the
process of writing and debugging embedded C code.

Although the MPC555 was developed for use in the
automotive industry, it is not feasible to use it for engine
control in the EECS 461 laboratory. Instead, we use another
interesting and challenging application of embedded con-
trol, a haptic interface, or force feedback system, developed
by Professor Brent Gillespie of the Mechanical Engineering
Department at the University of Michigan. The specific
haptic interface we use is the wheel depicted in Figure 2,
and described in [4]. This wheel is equipped with an optical
shaft encoder to measure angular position, and a DC motor
driven by a PWM amplifier in current control mode.

Fig. 2. Haptic wheel.

Haptic interfaces are intended to enable humans to inter-
act with a computer through the sense of touch. Perhaps the

4545

most familiar example is a force feedback joystick. Haptics
are used in virtual reality flight and driving simulators, in
teleoperation for manufacturing operations, surgery training,
and will be required in future generations of X-by-wire
cars, where mechanical linkages between the driver and the
automobile are replaced by electronics. Haptics represent
a challenging embedded control task, in part because the
human haptic sensor, i.e., the sense of touch, has a band-
width in the range 500-1000 Hz, as opposed to the human
visual sensor, which has a bandwidth of 30 Hz. This implies
that the embedded software used to update the virtual
reality simulation with which the human interacts must
satisfy rather fast timing constraints. A description of the
specific force feedback algorithms implemented in EECS
461 will be described in the discussion of the individual
lab exercises.

The final component of the laboratory is the software
used to support model-based control software development.
The each workstation is equipped with MATLAB, Simulink,
Stateflow, and Real Time Workshop, all products of the
MathWorks [5]. We also use the MotoHawk rapid proto-
typing tool available from Mototron [6]. The latter requires
the use of a real-time operating system (RTOS) which, in
our case OSEKWorks, an OSEK compliant RTOS from
WindRiver (OSEK is a European software standard).

B. Lectures

The embedded controls course is a bit unlike other 400-
level courses at the University of Michigan, which tend to
delve deeply into a single technical area. Instead, EECS
461 covers a number of topics from different disciplines, so
that students see how they must fit together to enable the
development of an embedded control system, and to begin
to appreciate design tradeoffs that must be made across
disciplinary boundaries.

Initial lecture topics include sampling and quantization,
use of quadrature decoding to obtain position and velocity
measurements, frequency response, pulse width modulation
(PWM), DC motors and motor control. These topics are
generally found in a mechatronics course, and are necessary
to enable students to interface with the haptic wheel.
The special features of the MPC555, including the Time
Processing Units, are discussed, since these are used in
interfacing.

Haptic interfaces are discussed, together with some sim-
ple virtual reality environments that students implement in
the lab. These include the virtual wall, in which the idea
is to implement a virtual mechanical stop to prevent the
wheel from rotating past a certain point, and the virtual
spring mass system, in which the wheel is made to behave
as though it were attached to a virtual wheel through a
torsional spring. It is necessary to discuss artifacts of the
digital implementation that students will experience. One of
these is “wall chatter”, a limit cycle that arises due to quanti-
zation and sampling, that can make the virtual wall vibrate
noticeably. Another is stability of the algorithms used to

numerically integrate the differential equations describing
the virtual spring-mass systems. Ease of implementation
suggests using forward Euler integration, which is known
to be numerically unstable. By adding a virtual damper
to the system it is possible to precisely compensate for
this instability. Students are required to construct Simulink
models of the virtual worlds they create, and to make sure
that their algorithms work in simulation before they are
allowed to implement them on the processor.

A number of computing issues are described, including
interrupts, which are used in the lab exercises to provide a
time step for numerical integration. Shared data problems
and multitasking are described, as are elementary concepts
from real-time operating systems, such as task states and
priorities. Issues such as deadlock and priority inversion
are discussed, and how these are addressed (or not) by
semaphores, priority inheritance, and priority ceiling proto-
cols. The course discusses real-time computation, including
rate monotonic and earliest deadline first scheduling.

Students will implement force feedback algorithms over a
Control Area Network (CAN). This networking protocol is
used in automotive applications to transmit relatively small
message and data samples. Each message is assigned a
priority; if two nodes attempt to write to the network at
the same time, the highest priority message is transmitted.
Timing aspects of CAN networking are discussed, and
students learn how to estimate bus utilization.

Students are required to use Simulink and Stateflow to
simulate DC motors, quadrature decoding algorithms, and
the virtual reality environments they implement on the
MPC555. This provides an introduction to the model-based
control software development paradigm, in which extensive
use is made of simulation and rapid prototyping to reduce
development time and cost. A key tool in this paradigm
is the use of autocode generation to produce executable
C code directly from a Simulink model. This process and
the potential advantages it affords are explained in lecture
near the end of the semester, after students have enough
experience with writing C code and with simulation to
understand the procedure.

C. Laboratory Exercises

A semester at the University of Michigan is fourteen
weeks along, with labs starting the second week of the
semester. During the next nine weeks, students perform
eight laboratory exercises (one takes two weeks). These
exercises are all intended to be performed by teams of
students working in pairs, and completed within a three hour
time slot with extra time required for prelab preparation
and postlab analysis. After completion of these laboratory
exercises, students spend the remainder of the semester
working on a project.

Lab 1, Familiarization and Digital I/O: Students learn
to write C for embedded applications, using the ‘union”
command in C to perform low level bit manipulations
needed to access data registers. Doing so is required for

4546

sensor interfacing, and to be able to examine a header file to
determine the types of different variables. Students learn to
program the Modular Input/Output System on the MPC555
to read numbers set on the dipswitches and write the result
to LEDs.

Lab 2, Fast Quadrature Decoding Using the TPU:
Students learn about the fast quadrature decoding function
that is burned into ROM on the time processing units of the
MPC555, and use this function to interface to the encoder
on the haptic wheel. Given the gear ratio between the haptic
wheel and the motor drive shaft, where the encoder is
mounted, the length of the register holding the counter that
keeps track of changes in wheel position, and the rate at
which this counter is read by the CPU, they compute the
maximum rate at which the haptic wheel can turn before
the MPC555 loses track of position.

Lab 3, Queued Analog to Digital Conversion: A/D con-
verters are relatively expensive, and many microcontrollers
allow them to be multiplexed. Students learn to program
the QADC module on the MPC555 for this purpose, and
performing timing analyses to determine how long the
conversions take.

Lab 4, Pulse Width Modulation and Introduction to
Simple Virtual Worlds: The DC motors used to provide
force feedback are driven by a PWM amplifier that, in turn,
is driven by the MIOSPWM module on the MPC555. In
this lab students learn to program this module and use it to
construct their first example of a virtual reality, the virtual
wall described above. To do so, the processor implements a
force feedback law stating that if the wheel “penetrates” the
virtual wall (i.e., turns past the position of the virtual stop),
then a strong restoring force proportional to the penetration
distance is applied, effectively a virtual spring. Students
are required to work with the conversion factors between
wheel angle and encoder counts, and between duty cycle
and torque, so that 1◦ of wall penetration corresponds to
400 N-mm of torque. The simulation of changing contact
conditions may cause the chattering effect described above,
and students are able to experiment with this hybrid system
phenomenon.

Lab 5, The Periodic Interrupt Timer and Frequency
Analysis of PWM Signals: Simple virtual worlds such as
the spring used for the virtual wall can be implemented in
a software loop, and do not require a concept of time, as
would be needed for numerical differentiation or integration.
More complex worlds do require a time step, and students
learn to supply this using the periodic interrupt timer on
the MPC555. In this lab they use the timer to create an
interrupt routine that modulates the duty cycle by sampling
a sine wave. When the result signal is passed through an
appropriately designed hardware filter and displayed on an
oscilloscope, the sine wave is recovered. Students write
three different interrupt routines to obtain the sine wave
samples: by sampling the output of a signal generator, by
using the C sine function, and by using a lookup table. The
resulting interrupt routines have different execution times,

which students measure by toggling a bit after entering and
before leaving the routine.

Lab 6, Virtual Worlds with Haptic Feedback: With
a concept of time available, virtual worlds that require
numerical integration or differentiation can be implemented.
In this lab, students program the MPC555 to simulate the
effect of a virtual wheel attached to the physical wheel
with a virtual torsional spring. The virtual inertia and
spring constant must be chosen so that, in response to
a 45◦ step in the physical wheel, the virtual inertia will
oscillate at 1 Hz, with the maximum torque produced being
at most 800 N-mm. Before the students begin writing
software to implement the virtual inertia, they are required
to develop a Simulink model to verify that their force
feedback algorithm, if implemented correctly, will have the
desired behavior. Another issue that arises is the choice of
numerical integration routine. Although the forward Euler
method is numerically unstable, it is simpler to implement
than certain stable routines, such as trapezoidal, which
have direct feedthrough terms that can introduce algebraic
loops. Students are asked to compute the amount of virtual
damping needed to offset the destabilizing effect of the
Euler integration, and verify the result in simulation, before
testing their code on the haptic wheel.

Lab 7, Controller Area Networking: The six work-
stations in the EECS 461 lab are connected over a CAN
network. In this lab students learn to transmit and receive
messages over the CAN bus. They first implement a virtual
wall over the network, and experience degradation in the
quality of the wall they can implement due to networking
delay. They then implement a virtual chain of wheels –
when one is turned all the wheels in the room also turn
using a simple position tracking algorithm. If the position
of one wheel is held constant, then the person turning the
master wheel experiences an opposing force.

Lab 8, Introduction to Rapid-prototyping: To this
point, all the embedded software has been implemented
in hand written C code, although Simulink modelling has
been used to verify that the force feedback algorithms
have the correct functionality. In this lab, students generate
embedded software directly from the Simulink diagrams. To
do so, they use Real Time Workshop from the MathWorks,
a set of device driver blocks for the MPC555 obtained from
Mototron, and an OSEK compliant RTOS used to specify
task priorities and to address shared data issues. Students
construct a Simulink model of two virtual wheels with
significantly different natural frequencies, thus motivating
an implementation in task states executed with different
periods and thus different priorities. Students see both
the advantages and disadvantages of the rapid prototyping
process. One the one hand, the generated code is more
difficult to understand and less efficient than handwritten
C code. On the other hand, it is very simple to modify
the virtual environment simply by changing or adding new
Simulink blocks.

Project At the end of the semester, students spend about

4547

three weeks on a project that uses a graphical display for
a driving simulator. For example, it can be arranged that
each of the six haptic wheels is used to steer a car around a
virtual track with force feedback used to put “feel” into
the steering wheel. All six cars appear on the monitor,
and interact through an “adaptive cruise control” algorithm
that maintains a minimum distance between the cars. Rapid
prototyping is used extensively for the project, which would
essentially be impossible without it given the time allowed.
Further discussion of the driving simulator is in [7].

IV. THE COURSE AT CARNEGIE MELLON UNIVERSITY

The Department of Electrical and Computer Engineering
(ECE) at Carnegie Mellon University has offered embedded
systems courses of various sorts for three decades. Grason
and Siewiorek describe an early embedded controls project
course [8] that included student projects on motion control,
flight simulation, train control, and ultrasonic obstacle de-
tection. Over time, various courses have evolved to cover
a variety of topics and areas of specialization, including,
mechatronics and microcontroller applications, distributed
embedded control, system on chip, networking, embedded
PCs, safety critical systems, robotics, computer peripherals,
wireless data systems, signal processing, and command
and control systems. Additional courses cover cross-cutting
skills that are important to embedded system designers
include: security, dependability, energy-aware computing,
software/systems engineering, real-time computing, and
human-computer interaction. A recent paper reviews the full
scope of the undergraduate embedded systems education at
Carnegie Mellon [9].

In addition to the rich set of courses related to all
aspects of embedded systems and embedded computing,
two features of the ECE curriculum at Carnegie Mellon
strongly influence the type of course that can be offered in
embedded control systems. First, many courses have a sig-
nificant project component, so the students are quite familiar
with computing technology and tools for software and
system development. Second, the ECE curriculum offers the
students considerable flexibility in choosing courses [10].
This makes it imperative that the prerequisite sequences for
individual courses are not extremely deep.

In this context, we have offered a course focusing on
computer control systems with an emphasis on implemen-
tation of experiments in the laboratory for several years.
This course is offered one semester each year, with en-
rollments of 12 to 24 students. Most of the students are
juniors or seniors in ECE, but graduate students in ECE,
mechanical engineering, robotics, and even architecture
(for building control systems) have taken the course. The
explicit prerequisite is a basic course in signals and systems,
but students typically have some experience programming
microprocessors. They also have a basic understanding of
embedded computing.

The computer control systems course has developed over
more than a decade to address the need for students to

understand the issues that impact the design and imple-
mentation of real control systems. We found that students
who simply take control courses along with embedded
systems courses do not make the connection between the
theory of control system design and the actual imple-
mentation of controllers. By focusing exclusively on the
mathematics of feedback control system design, traditional
control courses fail to introduce students to the realities of
embedded control system implementation. Control-oriented
models neglect important details such as sampling jitter,
finite precision arithmetic (which is typically much more
restrictive on an embedded processor than in the computers
used for design), data conversion, timing constraints, limits
imposed by the device interfaces, and physical saturation
in sensors and actuators. These issues are addressed and
understood adequately only when the feedback control
design is carried through to a full implementation. On the
other hand, an embedded systems course that does not
consider feedback control applications fails to introduce
students to the types of constraints and limitations that arise
when the ”environment” for the embedded software is a
complex physical dynamic system.

We have designed a course that introduces students to
several of these topics through lectures, homework as-
signments, and most importantly through a sequence of
laboratory exercises. The current version of this course
is 18-474 Embedded Control Systems. Because there are
other courses in our curriculum in which students can learn
the fundamentals of embedded computing systems and C
programming, the emphasis in this course is model-based
design using MATLAB Simulink/Stateflow and Real Time
Workshop (RTW). Experiments involving motor control
systems increase in complexity, culminating in experiments
using the haptic device developed at the University of
Michigan. To make sure students understand the real-
time implementation, they are required write some C code
without using autocode generation and also modify some
of the automatically generated code on selected projects.
The overall emphasis is on the practical interpretation and
implementation of many topics typically studied in a digital
control course.

A. Laboratory Hardware and Software

For several years, students implemented control exper-
iments using PCs equipped with boards for digital and
analog IO. Experiments included temperature control using
hairdryers and temperature sensors, water-level control, and
DC motor control using optical encoders for position and
velocity feedback. The DC motor setups included linear
amplifiers implemented with power op amps and optical
encoder counters using the HCTL 2000 quadrature de-
coder/counter interface IC [11]. For these projects, students
often used microcontrollers, such as the PIC microcontroller
[12].

For PC-based control, time-based sampled-data control
was accomplished in a number of ways over several versions

4548

of the course. Initially, a custom routine was implemented
to program the PC timer to generate interrupts at a specified
frequency and the student’s control programs were installed
as the timer interrupt service routine. The real-time operat-
ing system RT Mach [13] was used for a couple of years,
allowing the students to write real-time C programs that ran
as real-time threads in the OS. When RTW was introduced
to the course in 2001, the PC-based control experiments
were run using MathWorks Real-Time Windows Target
(RTWT) [14].

Although interesting control experiments can be imple-
mented using PCs, these experiments do not give students a
true embedded-systems experience in the laboratory. Con-
sequently, in 2003 we introduced into the Carnegie Mellon
control systems laboratory the MPC555 platform and haptic
interface device developed at University of Michigan. This
made it possible to give the students a better exposure
to state-of-the-practice embedded control systems. We use
the Metrowerks CodeWarrior C Development environment.
Students initially write C code to become familiar with
the basic functionality of the MPC555, and then use the
MPC555 blockset in Simulink and generate code using
RTW for the MPC555 embedded target [16].

B. Lectures

The emphasis of the Carnegie Mellon course is on the
tools for designing and implementing embedded controllers
for dynamic systems, particularly using DC motors to
control mechanical systems. The lectures fall into four broad
categories: control-oriented modeling, controller design,
real-time implementation, and applications.

ECE students typically do not have a strong background
in modeling mechanical systems, and although they have
studied frequency domain concepts extensively in the con-
text of circuits and signal processing, they often have not
developed an intuition for how these concepts transfer to
the understanding of mechanical dynamics. Consequently,
about 20% of the lectures focus on the development of
control-oriented models of mechanical systems, including
the concepts of linearization and system identification.
These lectures are very practical with an emphasis on
using MATLAB and Simulink to build models and develop
intuition about the dynamics of a system. One lecture is
devoted to numerical simulation so that students understand
the reasons for various tolerance parameters in Simulink and
how to be confident that simulation results indeed reflect the
real world.

Another 20% of the lectures deal with the details of im-
plementing control systems, complementing the laboratory
exercises with a more general perspective on the issues that
need to be addressed when realizing a control algorithm
using a real-time embedded processor. Since other courses
in the curriculum cover microcomputers, programming, and
real-time systems in depth, these lectures can focus on the
issues that are particularly important in embedded control
systems, such as the selection of sampling rates.

Approximately 45% of the lectures are devoted to con-
troller design, covering topics such as root locus analysis,
PID design, state feedback, linear-quadratic optimal control,
reference trajectory generation, and discrete control logic.
As with the lectures on modeling, the emphasis is on the
intuition behind the various design methods and how to use
MATLAB, Simulink and Stateflow to design and evaluate
feedback controllers. Homework assignments reinforce the
material in lectures by having students use these tools to
explore control system behaviors as parameters vary and
as various complexities are introduced, such as satura-
tion effects. Several exercises help students understand the
power and limitations of linear models. Advanced control
techniques, such as gain scheduling and adaptive control,
are surveyed briefly near the end of the course.

The remaining lectures are devoted to surveys of ap-
plications. Early lectures introduce applications directly
related to the laboratory exercises, such as motion control
systems and haptic interfaces for steer-by-wire systems.
Other applications are described throughout the semester
as they arise in the discussion of various control design
methodologies and implementation issues.

C. Laboratory Exercises

In the early versions of the Carnegie Mellon course,
students learned basic switching control methods, including
pulse-width modulation (PWM), using the temperature con-
trol apparatus. They also performed system identification
to determine the dynamics of the hair-dryer and sensor.
With the motor control setup, PID and state feedback
control were implemented to control the position of a weight
hanging from a pulley on the motor. Students also learned
the concept of reference-trajectory generation using this
simple setup. In the second half of the course, students
designed and implemented their own projects, with the only
criterion being that a computer must close a feedback loop
to control some physical dynamic system.

In the current version of the embedded control systems
course, students first learn about the MPC555 by writing
C code to implement basic experiments using the QADC,
digital outputs, the LCD display, keypad entry, and serial
communication with the PC. They then move to using
Simulink and RTW. The DC motor control experiments
have been retained to introduce the use of the MPC555
fast quadrature decoder and PWM functions. The final set
of experiments use the haptic device from University of
Michigan, implementing “virtual worlds” similar to the
examples in Labs 5 and 6 in the University of Michigan
course.

V. CONCLUSIONS

There is a growing demand in industry for engineers
who understand how to design and implement embedded
control systems. The skill set for developing embedded
control systems draws on domains that have traditionally
been taught in different courses. The courses described in

4549

this paper attempt to address the need for engineers that
have a unified understanding of these domains.

The biggest challenge in an embedded control systems
course is to strike a balance between teaching control
systems principles and embedded systems principles. The
structure of the curriculum influences what topics are em-
phasized in a particular course. At the University of Michi-
gan, the embedded control course includes more material
on microprocessor programming and real-time systems con-
cepts than the course a Carnegie Mellon. Since these topics
are covered thoroughly in other courses at Carnegie Mellon,
more emphasis is put on modeling and control systems
design, but the focus remains on embedded implementation
issues when introducing control material.

At both universities, we have found that there is an enor-
mous benefit gained from the model-based approach. Hav-
ing the students design a system completely in simulation
gives them an intuition about how the system behaves before
dealing with all the details of implementing the system. It
is much easier for students to understand the system from
a ”theoretical” perspective in simulation. Implementing the
same system as a working embedded control system then
creates a strong a connection between theory and prac-
tice; a connection students usually wouldn’t make if they
jumped immediately into the implementation. Of course,
implementing systems in the laboratory gives students an
appreciation of “real-world” issues that they never gain from
just running simulations. This connection between theory
and practice is an invaluable experience facilitated by the
technology of model-based autocode generation.

REFERENCES

[1] www.freescale.com
[2] www.axman.com
[3] www.windriver.com
[4] R. B. Gillespie, M. B. Hoffman, and J. S. Freudenberg. Haptic

interface for hands-on instruction in system dynamics and embedded
control. In Proc. of the 11th Symposium on Haptic Interfaces for
Virtual Environment and Teleoperator Systems, pp. 410–415. IEEE
Computer Society, March 2003.

[5] www.mathworks.com
[6] www.mototron.com
[7] P. G. Griffiths and R. B. Gillespie. A Driving Simulator forTeaching

Embedded Automotive Control Applications. In Proc. of the 2005
American Control Conference, Portland OR, June 2005.

[8] J. Grason and D. Siewiorek. .Teaching with a hierarchically structured
digital systems laboratory. IEEE Computer, Dec. 1975, pp. 73-81.

[9] P. Koopman, H. Choset, R. Gandhi, B. H. Krogh, D. Marculescu, P.
Narasimhan, J. M. Paul, R. Rajkumar, D. Siewiorek, A. Smailagic, P.
Steenkiste, D. E. Thomas, C. Wang. Undergraduate Embedded System
Education at Carnegie Mellon. ACM Transactions on Embedded
Computer Systems: Special Issue on Embedded Systems Education,
2005, to appear.

[10] S. W. Director, P. K. Khosla, R. A. Rohrer, R. A. Rutenbar. Reengi-
neering the curriculum: design and analysis of a new undergraduate
Electrical and Computer Engineering degree at Carnegie Mellon
University. Proceedings of the IEEE, Vol. 83, No. 9, Sept.1995, pp.
1246-1269.

[11] www.agilent.com
[12] www.microchip.com
[13] info.isl.ntt.co.jp/rtmach
[14] www.mathworks.com/products/rtwt/
[15] www.metrowerks.com
[16] www.mathworks.com/products/target mpc555/

4550

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ArialNarrow-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Oblique
 /Times-Roman
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

