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Abstract— Given a set of H∞ design specifications, the issue
is to check whether there exists a controller, whose order is
free, which satisfies these specifications. The classical solution,
which is based on Youla parametrisation and convex closed
loop design, is not really satisfactory since it should use an
infinite dimensional basis of filters, which cannot be done in
practice. Let J

∗ the minimal value of the design objective over
such an infinite dimensional basis of filters. A Nevanlinna Pick
interpolation method is proposed here to compute lower and
upper bounds of J

∗, by solving the design problem on a finite
set of frequencies. Finite-time convergence of the algorithm is
proved.

Index Terms— convex closed loop design, Youla parametri-
sation, H∞ control, feasibility of design specifications, Nevan-
linna Pick, interpolation.

I. INTRODUCTION

Checking the feasibility of a set of design specifications
is a major issue in an industrial context, since performance
is often to be maximised. But what are the limits of
performance ? In the same spirit, given a set of (ambitious)
design specifications, does there exist a controller which
satisfies this set ? A solution was proposed at the beginning
of the 90’s in the pionneering work of [3]. Using Youla
parametrisation [14], [1] and an initial controller, the closed
loop transfer matrix, which is a highly non-linear function
of the feedback controller K(s), is first put under the
affine form T1(s) + T2(s)Q(s)T3(s), where the Ti(s) are
fixed while the Youla parameter Q(s) is free. Let then
Q(s) =

∑
i θiQi(s), where the basis of filters Qi(s) is

fixed while the θi are the design parameters. Most nominal
performance specifications and unstructured robustness ones
can then be translated as convex constraints or minimisation
objectives w.r.t. the θi.

The convexity of the optimisation problem is crucial
since it enables to claim that if no solution is found,
the constraints are not feasible: it cannot be argued that
these constraints are just locally infeasible, but possibly
globally feasible. Moreover, if the infinite dimensional
basis of filters Qi(s) is chosen to cover the whole set of
asymptotically stable transfer matrices, the parametrisation
T1(s)+T2(s)Q(s)T3(s) covers the whole set of achievable
closed loops [9]: given any stabilizing feedback controller
K(s), there exists a corresponding value of the Youla
parameter which gives the same closed loop, and conversely.
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As a consequence it becomes possible to check whether
there exists a controller, whose order is free, which satisfies
a set of design specifications.

However a finite dimensional basis is always used in
practice. If J∗ denotes the minimal value of the design
objective over a suitable infinite dimensional basis, the use
of a finite dimensional basis just provides an upper bound of
J∗. In the context of H∞ design specifications we propose
a first solution which is to compute a lower bound by
solving the design problem on a finite set of frequencies:
a finite-dimensional convex optimisation problem is to be
solved with an LMI solver [10]. A frequency response
(Q(jωi))i∈[1, N ] is obtained on a finite frequency gridding,
which satisfies the design specifications at these points.
An interpolation Nevanlinna-Pick constraint [8], [7] can
be added so that the Q(jωi) necessarily correspond to a
stable transfer matrix. This improves the quality of the lower
bound.

If the gap between the lower and upper bounds is small
enough, the result provided by the finite dimensional basis
of filters is validated. Nevertheless the choice of the basis
is not so easy in practice, it is usually necessary to guess
the poles of the basis, so that we propose an alternative
method to compute an upper bound: an interpolation al-
gorithm computes a stable transfer matrix Q(s), whose
frequency response is (Q(jωi))i∈[1, N ]. Noting that the
design specifications are not necessarily met between the
points of the frequency gridding, an upper bound of J∗ is
deduced. A way to reduce the gap between the bounds is
to refine the frequency gridding. Finite-time convergence of
the algorithm is proved.

The Nevanlinna-Pick condition, as well as other interpo-
lation conditions have been widely used in identification
[5], [6] and H∞ control [4], [12], [2] theories: it was
especially used to develop analytic solutions to the H∞

control problem. Nevertheless, the issue was to minimize
the H∞ norm of a single MIMO transfer matrix, or more
generally to shape a single MIMO transfer matrix. In the
more general context of convex closed loop design our aim
is to independently shape different MIMO transfer matrices,
i.e. to miminize the H∞ norm of one or several MIMO
transfer matrices under H∞ constraints on other MIMO
transfer matrices. No analytic solution is now available, and
this design problem is much more complex than the H∞

one.
The paper is organised as follows. Section 2.1 briefly

describes Youla parametrisation. The problem is then stated
in section 2.2. Lower bounds of J∗ are proposed in section
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3, while the upper bound is described in section 4. Section
5 summarizes the results in an algorithm, whose finite-time
convergence is proved. Section 6 describes the application
to a realistic large transport aircraft. Concluding remarks
end the paper.

II. PRELIMINARIES

A. Youla parametrisation
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Fig. 1. The design problem (a) and Youla parametrisation (b,c).

Consider the standard design problem of figure 1.a, where

P =

[
P11 P12

P21 P22

]
is an augmented plant. The closed loop

transfer matrix Fl(P, K) = P11 + P12K(I − P22K)−1P21

is a highly nonlinear function of controller K . Suppose
an initial stabilizing controller K0, whose order is at least
equal to the order of P22, is available. Additional inputs
and outputs v and e are introduced in K0 (see figure 1.b),
with the key constraint that the transfer matrix between v

and e is zero: see figure 1.c. A solution to achieve this
property is to put K0 under the form of an observed state
feedback controller [1]. When connecting then a free stable
transfer matrix Q to these additional inputs and outputs,
Fl(P, K) can be rewritten as T1 + T2QT3, where fixed
transfer matrices Ti depend on P and K0, while Q is the
design parameter.

B. Problem statement

To simplify the exposition the following problem is
solved, with just one H∞ constraint and one H∞ minimi-
sation objective. Let J∗ the minimal value of γ under the
constraints on the frequency interval [ω, ω]:

σ(T1(jω) + T2(jω)Q(jω)T3(jω)) ≤ γ (1)

σ(T4(jω) + T5(jω)Q(jω)T6(jω)) ≤ 1 (2)

and under the α shifted H∞ constraint (α > 0):

sup
�(s)≥−α

σ(Q(s)) ≤ M (3)

J∗ is chosen as +∞ if constraints (2,3) are not feasible.
T1 + T2QT3 and T4 + T5QT6 represent parts of the large
MIMO transfer matrix Fl(P, K) = T1 + T2QT3 on figure
1. The extension of our results to several H∞ constraints
and minimisation objectives is straightforward.

Remark: constraint (3) implies that Q(s) has a minimal

degree of stability α, and the H∞ norm of Q(s) is less
than M . Note that a frequency dependent template m(s)
could be introduced instead of a constant value M [5].

III. TWO LOWER BOUNDS

A simple lower bound is proposed in the first subsection.
An interpolation constraint is then added to obtain an
improved lower bound. The use of the Nevanlinna Pick
condition requires additional constraints on the degree of
stability and shifted H∞ norm of Q(s).

A. A first simple lower bound

The issue is to obtain a frequency response
(Q(jωi))i∈[1, N ] on a finite frequency gridding, which
satisfies the design specifications at these points.

Proposition 3.1: Let (ωi)i∈[1, N ] a fixed frequency grid-
ding of [ω, ω]. let J1 the minimal value of γ under the
constraints (∀i ∈ [1, N ]):

σ(T1(jωi) + T2(jωi)Q(jωi)T3(jωi)) ≤ γ (4)

σ(T4(jωi) + T5(jωi)Q(jωi)T6(jωi)) ≤ 1 (5)

σ(Q(jωi)) ≤ M (6)

If constraints (5,6) are not feasible at a frequency ωi the
initial design problem (1,2,3) is not feasible. Otherwise J1

is a lower bound of J∗.

Remark: constraints (4,5,6) can be solved with an LMI

solver, since σ(M) ≤ α if and only if

[
αI M

M∗ αI

]
> 0 .

The computational requirement is low since the problem is
independently solved at each frequency.

B. A second lower bound

The following lemma is known as the very classical
Pick condition [8].

Lemma 3.2: Let (si)i∈[1, N ], N complex points satisfying
�(si) > 0. Let (Wi)i∈[1, N ], N matrices of Cno×ni satis-
fying σ(Wi) ≤ 1 for i ∈ [1, N ]. There exists a transfer
matrix H(s):

1) which is analytic in the Right Half Plane �(s) ≥ 0.
2) which satisfies H(si) = Wi for i ∈ [1, N ].
3) which satisfies sup

�(s)≥0

σ(H(s)) ≤ 1.

if and only if the following Pick matrix P is positive
definite:

P =

[
Ino

− WkW ∗
l

sk + s̄l

]
1≤k,l≤N

(7)

The above lemma cannot directly be applied to our
problem, since the points si should strictly belong to the
Right Half Plane, whereas si = jωi in section III-A. The
following lemma explains how to transform our problem.
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Lemma 3.3: There exists a transfer matrix Qr(s):

1) which is analytic in the Half Plane �(s) ≥ −α.
2) which satisfies Qr(jωi) = Q(jωi) for i ∈ [1, N ],

where Q(jωi) satisfy constraints (4,5,6).
3) which satisfies:

sup
�(s)≥−α

σ(Qr(s)) ≤ M (8)

if and only if there exists a transfer matrix Q̂r(s):

1) which is analytic in the Right Half Plane �(s) ≥ 0.
2) which satisfies Q̂r(jωi + α) = Q(jωi)

M
.

3) which satisfies:

sup
�(s)≥0

σ(Q̂r(s)) ≤ 1 (9)

With reference to Lemmas 3.2 and 3.3 the interpolation
constraint, which is obtained by applying Lemma 3.2 to
Q̂r(s), is thus:

P =

[
Ino

− Q(jωk)Q∗(jωl)
M2

j(ωk − ωl) + 2α

]
1≤k,l≤N

≥ 0 (10)

where no (resp. ni) represents the number of outputs (resp.
inputs) of Q(s). This interpolation constraint equivalently
implies the existence of Q̂r(s) and Qr(s).

Proof of Lemma 3.3: we first prove that the existence of
Qr(s) implies the existence of Q̂r(s). let Q̂r(s) = Qr(s−α)

M
.

Then Q̂r(jωi + α) = Qr(jωi)
M

= Q(jωi)
M

. Moreover Qr(s)

analytic in the Half Plane �(s) ≥ −α implies Q̂r(s)
analytic in the Right Half Plane �(s) ≥ 0. Finally (8)
implies (9).

In the same way we prove that the existence of Q̂r(s)
implies the existence of Qr(s). Let Qr(s) = MQ̂r(s + α).
Then Qr(jωi) = MQ̂r(jωi + α) = Q(jωi). Moreover
Q̂r(s) analytic in the Right Half Plane �(s) ≥ 0 implies
Qr(s) analytic in the Half Plane �(s) ≥ −α. Finally (9)
implies (8).

Proposition 3.4: Let (ωi)i∈[1, N ] a fixed frequency grid-
ding of [ω, ω]. let J2 the minimal value of γ under the
constraints (4,5,6) and under the additional interpolation
constraint (10). If constraints (5,6,10) are not feasible the
initial design problem (1,2,3) is not feasible. Otherwise, J2

is a lower bound of J∗.

Remarks:
(i) With reference to proposition 3.1 J2 ≥ J1 since the
optimisation problem is more constrained.
(ii) The computational requirement can be much higher
than the one in proposition 3.1, since it’s no more possible
to independently solve the problem at each frequency.

As a final point the interpolation constraint (10) must be
put under an LMI form to use an LMI solver.

Lemma 3.5: Let Ro =
[

Ino

jωk−jωl+2α

]
1≤k,l≤N

,

Ri =
[

Ini

jωk−jωl+2α

]
1≤k,l≤N

and Q̃ =

blockdiag(Q(jω1)
M

, . . . ,
Q(jωN )

M
). Then P > 0 if and

only if

[
Ro Q̃

Q̃∗ R−1
i

]
> 0

To prove this lemma simply apply the Schur complement
to P = Ro − Q̃RiQ̃

∗, where Ro > 0.

IV. AN UPPER BOUND

The issue is to compute a transfer matrix Qr(s) that
interpolates the frequency reponse (Q(jωi))i∈[1, N ] given
by the computation of the lower bound J2. We will first
compute a state-space representation of Q̂r(s). Then,
using the equivalence given by lemma 3.3 a representation
of Qr(s) is deduced. Several algorithms are available
to compute solutions to the classical Pick interpolation
problem. We focus in this paper on the solution proposed
by [7], since the direct computation of a state-space
representation is expected to be better conditioned than the
computation of a polynomial one, i.e. the computation of
the coefficients of a high order transfer matrix.

Proposition 4.1: Let :

1) (si)i∈[1, N ], N complex points satisfying �(si) > 0
2) (Wi)i∈[1, N ], N matrices of Cno×ni satisfying

σ(Wi) ≤ 1 for i ∈ [1, N ]
3) si = si−N and Wi = Wi−N for i ∈ [N + 1, 2N ]
4) G ∈ C

no×ni a fixed complex matrix satisfying
σ(G) < 1

5) The Pick matrix P =
[

Ino−WkW∗

l

sk+s̄l

]
1≤k,l≤2N

If P is positive definite the transfer matrix H(s) described
by the real state-space representation (A, B, C, D) below is
analytic in the Right Half Plane, its H∞ norm is less than
1 and H(si) = Wi is satisfied for i ∈ [1, 2N ].

A =

2
666664

�(s1)Ini
�(s1)Ini

· · · 0 0
−�(s1)Ini

�(s1)Ini
· · · 0 0

...
...

. . .
...

...
0 0 · · · �(sN )Ini

�(sN )Ini

0 0 · · · −�(sN )Ini
�(sN )Ini

3
777775

−

2
666664

0ni

Ini

...
0ni

Ini

3
777775

2
66666664

−2�(K(1))
T

2�(K(1))
T

...

−2�(K(N))
T

2�(K(N))
T

3
77777775

T

B =
√

2
ˆ

0ni
Ini

· · · 0ni
Ini

˜T

C =
√

2

2
666664

−�((W1 − GIni
)K(1))T

�((W1 − GIni
)K(1))T

...
−�((WN − GIni

)K(N))T

�((WN − GIni
)K(N))T

3
777775

T

D = G

and
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K = P−1

2
64

Ini
− W ∗

1 G

...
Ini

− W ∗

2N
G

3
75 =

2
664

K(1)

...
K(2N)

3
775

Remarks:
(i) The use of this result implies to modify the interpolation
constraint in the computation of the lower bound J2, since
positive and negative frequencies ωi and −ωi are now to
be considered in this constraint.
(ii) The state-space representation of Qr(s) is simply
deduced from the one of Q̂r(s) (computed with the above
proposition) using Qr(s) = MQ̂r(s + α).

V. CONVERGENCE OF THE ALGORITHM

Feasibility of the design specifications is first checked,
before minimising the criterion. Convergence is proved.

A. A feasibility algorithm

The issue is to compute λ∗, the minimal value of λ under
the constraints on the interval [ω, ω]:

σ(T4(jω) + T5(jω)Q(jω)T6(jω)) ≤ λ (11)

and under constraint (3). If λ∗ is less than 1 the design
problem (1,2,3) is feasible. The following algorithm is used:

1) An initial frequency gridding (ωi)i∈[1, N ] is defined,
possibly on the basis of the frequency response of
the open loop plant or of the initial closed loop (i.e.
corresponding to the initial controller). The maximal
allowable α shifted H∞ norm M of Q(s), as well as
its minimal degree of stability α are fixed. Let also ε

a small strictly positive scalar value.
2) Solve the LMI problem of minimising λ under the

constraints:

σ(T4(jωi) + T5(jωi)Q(jωi)T6(jωi)) ≤ λ

σ(Q(jωi)) ≤ M

on the frequency gridding, with the interpolation
constraint (10). This LMI problem is always feasi-
ble, since Q(jωi) = 0 is a solution. Let λ∗

LB the
associated minimal value of λ. λ∗

LB ≤ λ∗.
3) Compute a transfer matrix Qr(s) which corresponds

to the frequency response (Q(jωi))i∈[1, N ] obtained
at step 2. The interpolation algorithm ensures that the
α shifted H∞ norm of Qr(s) is less than M , and
that Qr(s) satisfies the minimal degree of stability
constraint. Let λ∗

UB the minimal value of λ satisfying
(11) on the interval [ω, ω]. λ∗ ≤ λ∗

UB .
4) If the gap between the bounds of λ∗ is less than ε

STOP, λ∗ is computed with a satisfactory accuracy.
Otherwise compute the frequency corresponding to
the peak value of λ∗

UB , include it in the frequency
gridding and go back to step 2.

Remark: if the issue is just to check the feasibility of the
design specifications the algorithm can be stopped as soon

as λ∗
LB > 1, which means infeasibility, or λ∗

UB ≤ 1, which
means feasibility.

Finite-time convergence of the algorithm is now proved. To
this aim the issue is essentially to bound the variation of
T4(jω) + T5(jω)Qr(jω)T6(jω) between the points of the
frequency gridding. This is done using the minimal degree
of stability and maximal H∞ norm assumptions on Qr(s),
as explained in the following Lemma. As a preliminary
let B̄H∞(Cα+ , M) the set of transfer matrices that are
analytic in �(s) ≥ −α and whose α shifted H∞ norm is
less than M .

Lemma 5.1: Let :
1) β = min(α, λ) where α is the minimal degree of

stability of Qr(s) and λ the degree of stability of the

initial closed loop

(
T4(s) T5(s)
T6(s) 0

)
2) L = ‖T4‖∞,β + M‖T5‖∞,β‖T6‖∞,β , where ‖.‖∞,β

is the β shifted H∞ norm
3) (ωi)i∈[1, N ] a fixed frequency gridding of [ω, ω]
4) (Wi)i∈[1, N ], a set of N matrices of Cno×ni satisfying

both σ(Wi) ≤ M for i ∈ [1, N ] and the Pick
interpolation condition over B̄H∞(Cα+ , M)

5) Ŵ (s) an interpolating function of B̄H∞(Cα+ , M),
satisfying Ŵ (jωi) = Wi ∀i ∈ [1, N ].

Then ∀ε ∈]0, 2L[:

sup
ω∈[ωk−δ , ωk+δ]

σ̄(T4(jω) + T5(jω)Ŵ (jω)T6(jω)

−T4(jωk) − T5(jωk)WkT6(jωk)) ≤ ε

is guaranteed ∀k ∈ [1, N ] and δ = 2β√
( 2L

ε
)2−1

.

Proof: let ε ∈]0 , 2L[, k ∈ [1, N ]. hk(s) = T4(s) +
T5(s)Ŵ (s)T6(s) − T4(jωk) − T5(jωk)WkT6(jωk) is a
function of B̄H∞(Cβ+ , 2L) that interpolates zero at s =
jωk. Thus, with reference to the Nevanlinna-Pick theory
[5], hk(s) can be rewritten under the form hk(s) =

s−jωk

s−jωk+2β
g(s) with g ∈ B̄H∞(Cβ+ , 2L). Then :

σ̄(hk(jω)) ≤ |ω − ωk|√
|ω − ωk|2 + 4β2

σ̄(g(jω))

Since x√
x2+4β2

is non-decreasing for x in R+:

sup
ω∈[ωk−δ , ωk+δ]

σ̄(hk(jω)) ≤ δ√
4β2 + δ2

2L

ε = δ√
4β2+δ2

2L is equivalent to δ = 2β√
( 2L

ε
)2−1

.

Proposition 5.2 (Finite time convergence): First assume
that the initial frequency gridding satisfies ω1 = ω, ωN =
ω and that all points ωi are further than δ. Let λ∗

LBN

and λ∗
UBN

the lower and upper bounds computed by the
algorithm with N points in the frequency gridding. For all
ε ∈ (0, 2L) there exists N̂ ∈ N such that :

∀N ≥ N̂ , λ∗
UBN

− λ∗
LBN

≤ ε
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A possible value of N̂ is N̂ = E

[
(ω − ω)

q
( 2L

ε )2
−1

2β

]
+1,

where E(x) is the integer part of a real x.

B. A minimisation algorithm

The issue is to compute an interval for J∗, the minimized
objective of the initial design problem (1,2,3). We assume
in this section that the problem is strictly feasible, i.e. there
exists a small ε1 > 0 such that λ∗ ≤ 1− ε1. Let also ε2 the
minimal tolerated gap between the lower and upper bounds
of J∗. The algorithm, whose convergence is proved in the
same way as in the previous subsection, is the following:

1) An initial frequency gridding is defined, either using
the final frequency gridding of the feasibility phase
or on the basis of the frequency response of the
open loop plant or of the initial closed loop (i.e.
corresponding to the initial controller). The maximal
allowable α shifted H∞ norm M of Q(s), as well as
its minimal degree of stability are fixed.

2) Solve the LMI problem of proposition 3.4. This LMI
problem is necessarily feasible. A lower bound J∗

LB

of J∗ is obtained.
3) Solve here again the LMI problem of proposition 3.4,

but with constraint (5) replaced by:

σ (T4(jωi) + T5(jωi)Q(jωi)T6(jωi)) ≤ 1 − ε1

This LMI problem is necessarily feasible. Strictly
speaking the minimal value of γ is not guaranteed to
be a lower bound of J∗ since the problem is slightly
more constrained.

4) Compute a transfer matrix Qr(s) which corresponds
to the frequency response (Q(jωi))i∈[1, N ] obtained
at step 3.

5) If Qr(s) does not satisfy constraint (2) no upper
bound of J∗ can be computed. In this case compute
the frequency where constraint (2) is the most vio-
lated, include it in the frequency gridding and go back
to step 2.

6) If Qr(s) satisfies constraint (2) an upper bound of J∗

is easily computed as the minimal value of γ satisfy-
ing (1). If the gap between the bounds is less than ε2
STOP, J∗ is computed with a satisfactory accuracy.
Otherwise compute the frequency corresponding to
the peak value of γ in (1), include it in the frequency
gridding and go back to step 2.

VI. APPLICATION

We apply this method to the lateral flight control law
design of a flexible civil transport aicraft. The presentation
of this application and its requirements set were developped
in [13]. We consider here a simplified problem.

A. Model description

The fly-by-wire enables any kind of control architecture.
Below we give a conventional one for lateral control. The
pilot’s orders are transmitted by the side stick and pedals

and respectively correspond to a roll rate objective and to a
sideslip demand. The measurements consist of accelerations
and angular information:

• p: roll rate
• r: yaw rate
• φ: bank angle
• Nyfront: lateral acceleration at the front of the aircraft
• Nyrear: lateral acceleration at the rear of the aircraft
• Nzwing: vertical acceleration on the wing
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Fig. 2. Lateral law architecture

The pilot’s orders and measurements are mixed through
feedforward and feedback to produce orders for the ailerons
(δp) and rudder (δr).

A complete aircraft model is required to compute laws.
We thus consider a state-space representation built by cou-
pling rigid and elastic body models. The evaluation methods
are described in [11]. Note that the two models are coupled
by connecting respective measurements outputs at the same
structural point of the aircraft. Other methods for translating
interactions between rigid and flexible bodies are known.
Nevertheless, they are more complex and the one given here
provides a good enough representation.

B. The design problem

Our study deals with the optimization of the feedback
part. The feedback mission is to ensure a robust stabilization
of the aircraft and a good rejection of perturbations without
saturating the actuators. We thus formalize the design
problem as the minimisation of an objective under three
constraints. The aim of the control law is to minimise the
lateral accelerations (Ny) felt by passengers in turbulence
(Wy). This objective is thus characterised by the transfer
function HWy→Ny . Requirements are :

1) Stabilize the aircraft. This requirement is ensured by
the initial controller (an H∞ one synthesized in [13])
and the Youla parametrisation itself.

2) Keep good robustness through the T margin (the
complementary sensitivity function KG(I−KG)−1).
Here ‖T ‖∞ ≤ 2 is required.

3) Satisfy a roll-off constraint on the T transfer function
to reject high frequency unmodelled dynamics and
perturbations.

The last two requirements on the T transfer function are
mixed through the frequency domain template Wr(s). The
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issue is thus to minimize γ under the constraints:

‖HWy→Nyfront
‖∞ ≤ γ (12)

‖HWy→Nyrear
‖∞ ≤ γ (13)

‖T.W−1
r ‖∞ ≤ 1 (14)

The frequency domain is restricted to [0, 6 Hz].

C. Results

The minimisation algorithm is applied with the following
assumptions: the degree of stability is α = 1 and the α-
shifted H∞ norm is M = 10. The tolerance on constraints
is ε1 = 5% and the gap between the bounds of the
minimisation objective is ε2 = 2%.

The convergence of the minimisation algorithm is shown
on figure 3. When starting with a 14 points frequency grid-
ding 27 points are enough to achieve the desired accuracy.
The computational time is rather high, around 12000 s, but
remember the complexity of the initial design problem over
an infinite dimensional basis of filters, and also the difficulty
of our flexible aircraft application (with 9 bending modes).

Moreover the computed solution is quite satisfactory. The
response HWy→Nyfront

is presented on figure 4. The dashed
line shows the initial closed loop (Q(s) = 0), the solid line
the final solution, corresponding to the upper bound of the
minimisation objective, and the dash-dotted line represents
the lower bound (the bounds nearly coincide because of
the gap that is lower than ε2). The ’◦’ finally represent
the interpolated points. The reduction of the H∞ norm of
the initial closed loop (i.e. corresponding to Q(s) = 0) is
around 65% on the front transfer function, which is more
than we hoped. We finally check the α-stability and α-
shifted H∞ norm of the solution Q(s) (these properties are
ensured by the interpolation algorithm).
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Fig. 3. Convergence of the minimisation algorithm.

VII. CONCLUSION

A method was proposed to check the feasibility of H∞

design specifications, and more generally to compute the
minimal value J∗ of an H∞ design objective under H∞

constraints, using an infinite dimensional basis for the Youla
parameter Q(s). More precisely lower and upper bounds of
J∗ were computed using a finite frequency gridding and an
interpolation Nevanlinna-Pick method.

When classically solving an H∞ or convex closed loop
design problem with the KYP lemma the computational
burden is directly linked to the order of the open or closed

loop model. This is not the case here, so that the method
should be applicable to rather large dimension models, as
testified by the applicative section. The limitation is rather
the size of the frequency gridding, so that it is important to
minimise this size, as done in our algorithm. More generally
the applicative section enabled us to prove the applicability
of our technique to a realistic, large dimension problem.
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Fig. 4. Objective.
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