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Abstract— The Lambert W function has been used in an
extremely wide variety of applications, including the stability
analysis of fractional-order as well as integer-order time-delay
systems. In this paper, we re-examine an application of using
the Lambert W function through actually constructing the
root distributions of the derived TCEs of some chosen orders.
It is found that the rightmost root of the original TCE is not
necessarily a principal branch Lambert W function solution,
and that a derived TCE obtained by taking the nth power of
the original TCE introduces superfluous roots to the system.
With these observations, some deficiencies displayed in the
literature are pointed out. Moreover, we clarify the correct use
of Lambert W function to stability analysis of a class of time-
delay systems. This will actually enlarge the application scope
of the Lambert W function, which is becoming a standard
library function for various commercial symbolic software
packages, to time-delay systems.

I. INTRODUCTION

Time-delay systems are often described by delay-
differential equations (DDEs) [1]. A linear or linearized
time-invariant system with a single delay has in general
a transcendental characteristic equation (TCE) of the form
A(s) + B(s)e−τs = 0, where τ is the delay time. Due to
the presence of the exponential function e−τs , this equation
has an infinite number of roots, which makes the analytical
stability analysis of a time-delay system extremely difficult.
Up to now, no simple and general algebraic criterion, like
the Routh-Hurwitz criterion for delay-free systems, has been
presented in the literature for testing the root distribution of
a TCE with respect to the imaginary axis of the complex
plane. Usually, the stability analysis of time-delay systems
relies on graphical methods, e.g., Nyquist criterion [2] or
D-partition technique [3], [4] .

Recently, an approach of using the Lambert W function
[5] has been presented by Chen & Moore [6], [7] to obtain
stability bound for a class of time-delay systems having the
TCE

(s + α)n/m + Kpe−τs = 0 (1)

where n and m are positive integers and α, τ > 0, Kp are
real numbers. Essentially, Chen and Moore’s approach is
an extension of the old result of Wright [8] and the recent
result of Asl and Ulsoy [9]. It is based on casting TCE (1)
in the form

(as + b)ecs + d = 0 (2)
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whose roots can be represented in terms of the Lambert W
function as

s = 1
c W (−dc

a ebc/a) − b
a (3)

where W (z) satisfies the functional equation

W (z)eW(z) = z (4)

Since the above equation always has an infinite number
of solutions, so W (z) is a multivalued function and the
different possible solutions are denoted by Wk(z) for k =
0,±1,±2, etc. Without noting the multivalued characteristic
of the Lambert W function, Chen and Moore used (3)
with only the principal branch solution W = W 0 and with
only a real argument to construct the stability bound in the
parameter space for the time-delay systems whose TCEs
are of the form (1). Unfortunately, they have not explained
why just use the principal branch W function with a real
argument in the stability analysis of time-delay systems.

As it can be noted, the cast of (1) into (2) is achieved
through taking the mth power and nth root on the equation
involved. One may naturally ask if every W function
solution to the derived TCE satisfies also the original TCE.
Due to the fact that the rightmost root of (1) play an
important role in the stability analysis, one may also ask
if the rightmost root in the set of W function solutions to
the derived TCEs of a delay system belongs to the set of
principal branch W function solutions. To answer these two
questions, we re-examine in this paper the application of
Lambert W function in stability analysis for the class of
time-delay systems having the TCE (1). Through actually
computing the W function solutions of the derived TCEs for
the some specific systems, using the Lambert W function
routine in the Symbolic software package Maple, it is found
that the answers are negative. The observation from the case
studies motivates us to present a correct use of the Lambert
W function in solving stability analysis problems of time-
delay systems.

II. THE LAMBERT W FUNCTION

The Lambert W function is the complex function which
solves for w the equation:

wew = z, w, z ∈ C (5)

where C is the set of complex numbers. The complex
function W (z) satisfies the functional equation (5) for
z ∈ C. This function has acquired popularity only recently,
due to advances in computational mathematics and its
implementation in the mathematical library of the computer
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algebra program Maple [10]. Actually, Lambert W function
received its name during the implementation of this function
in Maple. The history, mathematical developments, and
applications of the Lambert W function have been presented
in [5], [11].

The Lambert function W (z) is multivalued and as such
it has many branches [5], [12]. The different possible
branches are denoted by Wk(z) for any k = 0,±1,±2,
etc. According to the implementation in Maple [5], the
curve which separates the principal branch W0(z) from the
branches W1(z) and W−1(z) is

{−η cot η + iη : −π < η < π}, i =
√−1 (6)

The curve separating W1(z) and W−1(z) is simply
(−∞,−1]. Finally, the curves separating the remaining
branches are

{−η cot η + iη : 2kπ < ±η < (2k + 1)π} k = 1, 2, . . .
(7)

Since the images of boundary curves under the mapping
z = wew with w = W (z) are the branch cuts in the z-plane,
each boundary curve belongs to the region below it. Such
an assignment conforms to the rule of counter-clockwise
continuity around the branch points.

The branch W0(z) is called the principal branch of W .
It contains the real line [−1, +∞) in its range and has a
double branch point at z = −e−1 corresponding to w = −1,
which it shares with both W1(z) and W−1(z). It is noted
that W−1(z) is real for real z ∈ [−e−1, 0). Thus W0(z)
and W−1(z) are the only branches of W that take on real
values. The computer algebra system Maple has had an
arbitrary precision implementation of real-valued branches
of W for many years, and since Release 2 has had an
arbitrary precision implementation of all branches [10].

III. INTEGER-ORDER TIME-DELAY SYSTEMS

Consider the proportional feedback control system shown
in Fig. 1 with the time-delay plant

Gp(s) = e−τs

(s + α)n (8)

where n is an positive integer and τ the delay time.
The closed-loop transfer function of this control system is
readily obtained as

GCL(s) = Kpe−τs

(s + α)n + Kpe−τs (9)

The closed-loop TCE can be alternatively written as

(s + α)neτs = −Kp (10)

For n = 1, Asl and Ulsoy [9] obtained roots sk of the above
characteristic equation in terms of Lambert W function as
follows:

sk = 1
τ Wk(−Kpτeτα) − α, k = 0,±1,±2, . . . (11)

They also used these formulas to construct the stability do-
main in the parameter space and to compute time response.

Recently, Chen and Moore [6] has extended the above
approach to construct the stability bound on the negative
controller gain Kp for n = 2. With n = 2 and Kp being
replaced by −Kp, they first took the square root for both
sides of (10) to yield

(s + α)e(τ/2)s = ±√
Kp (12)

then represented the roots of the above-derived TCE in
terms of the Lambert W function as

s = 2
τ W (τ

2 e(τ/2)α(±√
Kp)) − α (13)

and finally concluded the stability condition for all possible
τ, α and Kp as

2
τ W (τ

2 e(τ/2)α(±√
Kp)) − α ≤ 0 (14)

Moreover, they further remarked that the stability bound of
the closed-loop system (9) with a positive integer order n
is given by

n
τ W ( τ

ne(τ/n)α n
√

Kp) − α ≤ 0 (15)

Before making comments on the result of Chen and
Moore [6], we first consider the Lambert W function
solutions to (10) for an arbitrary positive integer n. Taking
the nth root for both sides of (10) gives the following n
derived TCEs:

(sl + α)e(τ/n)sl =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n
√|Kp| exp(i(2l + 1)π

n ),
if Kp ≥ 0

n
√|Kp| exp(i2lπ

n ),
if Kp < 0

(16)

In terms of the Lambert W function, the roots of these TCEs
can be written as

sl,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n
τ Wk( τ

ne(τ/n)α n
√|Kp| exp(i(2l + 1)π

n )) − α
if Kp ≥ 0

n
τ Wk( τ

ne(τ/n)α n
√|Kp| exp(i2lπ

n )) − α
if Kp < 0

(17)
where k = 0,±1,±2, . . ..

Using the Lambert W function of Maple, we plot in
Figs. 2-5 the root distributions of s l,k for (n, Kp) =
(2,−2), (2, 2), (3,−2) and (3, 2), respectively, where the
parameters (α, τ) is set to (1, 1). It is noted that in these
figures the roots marked with a solid circle satisfy the
original TCE (10) and they are the poles of the closed-loop
system. From Figs. 3-6, we have the following observations:
(i) all the roots sl,k of the derived TCEs in (16) are the poles
of the closed-loop system (9); (ii) the rightmost root(s) of
the system can be real root or complex conjugate and the
principal branch solution s0,0 of the derived TCE in (16)
with l = 0 is a rightmost root; (iii) the roots of the n derived
TCE locate in an interlaced manner in either upper or lower
root branch.

Now, some comments on the results displayed in equa-
tions (12)-(16) for constructing stability bound have certain
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deficiencies are in order. First, according to equations (14)
and (15) and Figure 1 shown in [6], it seems that Chen and
Moore have made the following two presumptions: (i) the
arguments of the W functions in (14) and (15) are real; (ii)
the principal branch Lambert W function of the first derived
TCE, i.e., the equation with l = 0 in (16), also ensures
real value. The disadvantage of presumption (i) is that it
restricts the gain Kp to be negative because, according to
(17), a positive Kp leads to a complex argument for the
W function. Negative gain is seldom used in a practical
feedback control system since a positive feedback often
tends to destabilize the system. Next, we note from Figs.
2 and 4 that the principal branch solutions s0,0 and s1,0

for n = 2, and s0,0 and s2,0 for n = 3 are complex values
whose imaginary parts do not vanish. Moreover, as reviewed
in Section II, the value of the principal branch W function
can be complex even if its argument is real. Hence, the
inequality (15), which is a consequence of presumption (ii),
becomes sometimes meaningless when the principal branch
solution s0,0 is a complex value. In fact, the generally
correct equation for describing the boundary of the stability
region in the parameter space should read as

�{s0,0} =

⎧⎪⎪⎨
⎪⎪⎩

n
τ W0( τ

ne(τ/n)α n
√|Kp| exp(iπn )) − α = 0

if Kp ≥ 0
n
τ W0( τ

ne(τ/n)α n
√|Kp| − α = 0

if Kp < 0
(18)

where �{·} denotes the operator of taking real part of the
indicated quantity. Finally, it should be noted that in [6] the
stability region in the τ − Kp plane is constructed through
first making grids on the parameter plane, then evaluating
the rightmost root s0,0 with the Lambert W library function
of Maple for each grid point, and finally obtaining the
stable region by identifying the area of those grid points
at each of which the rightmost root of the TCE has a
negative real part. Obviously, this brute-force approach to
constructing stability region is by no means efficient and it
cannot produce an analytic stability bound.

Before leaving the section we note that the stability
boundary consists of those points in the parameter space
at which the principal branch Lambert function W0 in (18)
has a real part α. In a two-dimensional parameter plane, say,
Kp − τ plane, (18) defines one-dimensional manifolds or
curves, which can be traced approximately but efficiently
with an integer-labeling pivot procedure [13]. Using this
cited path-following algorithm, we have constructed in Fig.
6 the stability domain in the Kp−τ parameter plane for the
system with n = 2 and α = 1. It is seen from this figure
that the stability domain covers both positive and negative
regions of Kp. However, the stability domain shown in Fig.
1 of [6] only lies in negative Kp half plane, which suggests
a positive feedback has to be used in the control system in
of Fig. 1.

IV. FRACTIONAL-ORDER TIME-DELAY SYSTEMS

Many real-world physical systems are well characterized
by fractional-order differential equations [14], i.e., equations
involving noninteger-order derivatives. Moreover, with the
success in the synthesis of real noninteger differentiator
and the emergence of new electrical circuit element called
“fractance” [15] fractional-order controllers [16], including
fractional-order PID controllers [17], have been designed
and applied to control a variety of dynamical processes
of noninteger orders. The latter development has motivated
the study of stability analysis for fractional-order control
systems with or without time delays [18], [19]. In this line
of research, Chen and Moore [7] have recently applied the
Lambert W function to construct the stability bound for a
class of fractional-order systems. In this section, we shall
revisit the problem of stability analysis for fractional-order
systems using the Lambert W function and present our
findings.

Consider the feedback control system shown in Fig.1 with
a fractional-order plant:

Gp(s) = e−τs

(s + α)n/m (19)

It is readily shown that the closed-loop system has the TCE
in (1), which can be cast as

(s + α)n/meτs = −Kp =
{ |Kp|eiπ, Kp ≥ 0
|Kp|, Kp < 0

(20)

Taking first the mth power and then the nth root on both
sides of the above equation, we have

(sl + α)e(τ/n)sl =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n
√|Kp|m exp(i(2l + m)π

n ),
if Kp ≥ 0

n
√|Kp|m exp(i2lπ

n ),
if Kp < 0

(21)
where l = 0, 1, . . . , n − 1. According to (2) and (3), the
roots of the derived TCEs in (21) are given by

sl,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n
mτ Wk(mτ

n e(mτ/n)α n
√|Kp|m exp(i(2l + m)π

n ))
−α, if Kp ≥ 0

n
mτ Wk(mτ

n e(mτ/n)α n
√|Kp|m exp(i2lπ

n )) − α
if Kp < 0

(22)
To have an insight into the relationship between the

roots of the derived TCEs and the poles of the system,
we actually compute the roots sl,k for systems of orders
n/m = 1/2, 1/3, and 2/3 using the Lambert W function
implemented in Maple. First, consider the system of order
n/m = 1/2. We show in Figures 7 and 8, where α =
0.5, τ = 1.5, the root distributions for Kp = 1.5 and Kp =
−1.5, respectively. Since n = 1, there is only one derived
TCE, which is simply obtained by taking square on both
sides of the original TCE (1), and its roots are denoted by
sk in these two figures. The roots sk that satisfy the original
TCE (1) are marked with a solid circle. It is observed from
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Figures 7 and 8 that the roots s±1, s±3, . . . , for Kp = 1.5
while the roots s0, s±2, s±4, . . . , for Kp = 1.5 do not
satisfy the original TCE. Also observed is that the true roots
and superfluous roots interlace. These observations imply
that taking power of 2 on both sides of the original TCE
(1) gives rise to a derived TCE which introduces superfluous
roots to the original one. To verify this implication, we then
consider the system of order 1/3. In this case, the derived
TCE is obtained by taking the power of 3 on both sides
of the original TCE (1). Figures 9 and 10 show the root
distributions for Kp = 1 and −1, respectively, whereas
the parameters (α, τ) are set as (0.5, 1). It is seen from
these two figures that on each root branch, there is only
one pole of the system among every three adjacent roots
of the derived TCEs. The same observation can be made
from Figures 11 and 12, where the system order is 2/3 and
the parameters (α, τ, Kp) are (1, 1, 1.5) and (1, 1,−1.5),
respectively. It is noted that there are two TCEs for the
system of oder 2/3.

With the observations on root distributions shown in
Figures 7-12, we may reasonably infer that for a TCE
derived from the original TCE by taking an integer power
of m > 1, there is only one true root for the original TCE
in the m-element root set {sl,k±j}m−1

j=0 , k ≥ 0. Without
recognizing the generation of false poles using the Lambert
W function representation, direct use of the roots (22) will
result in an incorrect result. Moreover, as it can be seen
from Figures 7, 9, and 11, the rightmost root(s) of the
derived TCEs are not necessarily the roots of the original
TCE. Hence, stability bound for the fractional-order time-
delay system (2) cannot be constructed directly using (18).
However, to be safe, the boundary of stability domain in
the space of parameters α, and τ, Kp, can be constructed
with the formula:

max
l=0,n−1,k=0,m−1

∆(sl,k)=0

�{sl,k} = 0 (23)

where ∆(s) = 0 denotes the original TCE (1).
Finally, it is noted that Chen and Moore [7] have applied

the Lambert W function approach to construct the stability
bound for fractional-order time-delay control system with
the TCE

(s + α)r − Kpe
−τs = 0 (24)

where r is positive rational number. They arrived at the
stability condition

r
τ W ( r

τ e(τ/r)α(Kp)1/r) − α ≤ 0 (25)

Due to the facts that the same presumptions as those
stated in the previous section for integer-order delayed
systems were made, and that the unawareness of superfluous
roots generated from derived TCEs, their results are by no
means generally correct for constructing stability bounds
for fractional-order systems. Indeed, the stability bound
shown in Fig. 2 of [7] for α = 0.5 and r = 1/3 is not
complete since the surface corresponding to the Lambert W

function solutions with nonzero imaginary parts is missed.
We present the correct one in Fig. 13, in which the vertical
coordinate �{s(kp, τ)} represents the real part of the right-
most root of the original TCE. Note that the missing surface
in Fig. 2 of [7] might be due to an inappropriate use of
Maple’s plot function.1 However, even if the Maple’s plot
function is invoked correctly, the use of principal branch
W function solutions as the rightmost roots of the original
TCE also gives rise to an erroneous plot since the missing
solution surface locates in an area of the τ−Kp plane within
which the rightmost root of the original is the W 1 branch
rather than the principal branch W0.

V. CONCLUSIONS

In this note, the application of Lambert W function to the
stability analysis of time-delay systems is re-examined. We
have the following key observations obtained from the case
study of fractional-order systems: (i) the operation of taking
power on a transcendental characteristic equation gives rise
to a derived transcendental characteristic equation which
introduces superfluous roots to the original TCE; (ii) the
rightmost root of the derived TCEs is not necessarily the
principal branch Lambert W function solution of a derived
TCE. With these observations, we have clarified the correct
use of Lambert W function to stability analysis of a class
of time-delay systems. Moreover, some unclear points or
deficiencies displayed in the literature are pointed out. The
critical points clarified in the paper will actually enlarge the
application scope of the Lambert W function, which is be-
coming a standard library function for various commercial
symbolic software packages, to time-delay systems.
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Fig. 1. A typical feedback control system.
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Fig. 2. Root distribution of the derived TCEs for (n,Kp ,α,τ )=(2,-2,1,1).
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Fig. 3. Root distribution of the derived TCEs for (n,Kp ,α,τ )=(2,2,1,1).
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Fig. 4. Root distribution of the derived TCEs for (n,Kp ,α,τ )=(3,-2,1,1).
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Fig. 5. Root distribution of the derived TCEs for (n,Kp ,α,τ )=(3,2,1,1).
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Fig. 6. Stable region in the Kp-τ plane for the system with n=2 and
α=1.
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Fig. 7. Root distribution of the derived TCE for
(n/m,Kp,α,τ )=(1/2,1.5,0.5,1.5).
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Fig. 8. Root distribution of the derived TCE for (n/m,Kp ,α,τ )=(1/2,-
1.5,0.5,1.5).
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Fig. 9. Root distribution of the derived TCE for
(n/m,Kp,α,τ )=(1/3,1,0.5,1).
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Fig. 10. Root distribution of the derived TCE for (n/m,Kp ,α,τ )=(1/3,-
1,0.5,1).
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Fig. 11. Root distribution of the derived TCEs for
(n/m,Kp,α,τ )=(2/3,1.5,1,1).
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Fig. 12. Root distribution of the derived TCEs for (n/m,Kp ,α,τ )=(2/3,-
1.5,1,1).
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Fig. 13. The stability bound for system with n/m=1/3 and α=0.5.
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