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Abstract
The concept of control Lyapunov functions and its

extension to control Lyapunov-Razumikhin functions
(CLRF) has proven a useful tool for designing robust
control laws for nonlinear systems. In particular, CLRF
based domination redesign can be used to robustly sta-
bilize nonlinear time-delay systems. In this paper we
explore the possibility of using the domination redesign
to obtain stabilizing control laws that do not depend on
the past state values. The advantages are simpler im-
plementation, robustness to uncertainty in the delay,
and the possibility to ”back-step” the stabilizing con-
troller for a subsystem through an integrator or a chain
of integrators.

1. Introduction

In general, it is desirable to control (stabilize) a delay
system by a feedback that is independent of the de-
layed state. Such a feedback is, in general, much more
robust to uncertainty in the delay. Knowledge of the
delayed state up to a maximal delay“r” in the system
dynamics is a part of the standard set of assumptions.
In practice, however, it is difficult to assure that such
an information is available to the controller at the mo-
ment it is turned on. The problem is compounded if
the control is designed on the system transformed for
delay dependent stability (see, for example, [8]) or if
the backstepping with cancellations of the delay terms
is employed as in [7]. In both cases, the control law
may depend on the state values delayed by a multiple
of r.

To illustrate the issue, let us consider the problem
of stabilizing a nonlinear time delay system

ẋ = x(t − τ)x2 + u (1.1)

to the equilibrium at the origin. As customary, the
initial condition is given by x(θ) = ϕ(θ), θ ∈ [−τ, 0]
where ϕ is a continuous vector valued function. An
obvious choice for the control law is

u = −x(t − τ)x2 − λx (1.2)
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with λ > 0. This control law cancels the nonlinear term
with delay providing closed loop dynamics described
by ẋ = −λx. Hence the closed loop system is globally
asymptotically stable (GAS).

There are two drawbacks to this method of con-
trol design. First, it uses cancellations and is poten-
tially sensitive to uncertainties and unmodeled dynam-
ics that would prevent exact cancellation. The second
drawback, which is the subject of this paper, is that the
control depends on past values of the state. At the very
least, dependence on the past trajectory requires that
the delay be relatively accurately known, and the past
values be constantly stored into and retrieved from the
controller memory. The standard assumption is that
the values for the past τ seconds are available at time 0
(when the system and/or controller is initialized). This
may not be the case in practical applications, and so
the control may be running for the first τ seconds with-
out needed information, potentially causing large devi-
ations of regulated variable(s).

Another potential drawback of the cancellation de-
sign is that dependence of the control on delayed state
may make it difficult or impossible to back-step it
through an integrator. Let us explain this point by
considering the system (1.1) with an integrator added
at the input(ξ is the integrator’s state):

ẋ = x(t − τ)x2 + ξ

ξ̇ = u
(1.3)

The standard backstepping control design procedure
(see [6]) is to consider ξ as the (virtual) control in-
put to the x-subsystem. So we choose the expression
in (1.2) for the virtual control and apply the change of
coordinates z1 = x, z2 = ξ + x(t − τ)x2 + λx to obtain

ż1 = −λz1 + z2

ż2 = u + 2z1z1(t − τ)(−λz1 + z2) + z2
1 ż1(t − τ)

(1.4)
In a non-delay system, the backstepping procedure
could continue by using the control input u to cancel
the nonlinear terms and introduce stabilizing, typically
linear, feedback in z1 and z2. The problem with doing
this in the delay case is that, under nominal assump-
tions, z1(t − τ) may not be differentiable. Differentia-
bility is assured if one assumes that the part of the past
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trajectory for t− τ < 0 is also generated by the system
dynamics: ż1(t− τ) = x(t− 2τ)x2(t− τ) + ξ(t− τ). To
cancel these terms, the state delayed by 2τ has to be
assumed known. A version of backstepping for delay
systems given by equation (5.5) in [4] obviously relies
on these two assumptions, though they have not been
explicitly stated in the paper. Both assumptions, how-
ever, are nonstandard and undesirable from conceptual,
as well as practical, standpoint. The same applies to
the version of adaptive backstepping presented in [7].

A better version of backstepping also considered
in [4] is based on ”domination redesign” in which the
nonlinearities and delay terms are dominated rather
than cancelled. The domination redesign is derived di-
rectly from a control Lyapunov-Razumikhin function
(discussed in the next section). For the system (1.1), a
control Lyapunov-Razumikhin function is V (x) = 1

2x2,
and the domination redesign control law (see [4]) is
given by u = −(1−2V (x))∂V

∂x g(x) = −x−2x3. Not that
this control law is independent of the delay state and,
hence, it is robust to uncertainty in the delay. Such a
control law does not produce delay-state time deriva-
tive in the case it needs to be ”back-stepped” through
an integrator.

The CLRF approach guarantees that the domi-
nation redesign control law for a system of the form
ẋ = f(x, x(t − τ)) + g(x)u is delay free. In this paper,
we allow g = g(x, x(t−τ)) (for notational simplicity we
shall consider only one discrete delay in the vector field
g) and show that a system such as

ẋ = x(t − τ)x2 + (x − 0.9x(t − τ))u (1.5)

can be stabilized by a delay-free feedback even though
the sign of the term multiplying the control input de-
pends on the delay term. Next we show that the ”lower-
triangular” system of the form (5.6) in [4], under the
assumptions of that paper, can be stabilized by a delay-
free feedback. Such a result has not been claimed in [4].

This paper is organized as follows. Section 2 re-
views the definition of CLRF and the domination re-
design control law. Section 3 provides the results that
allows delay-state free stabilizing control for a class of
systems that contains (1.5). In Section 4 we give a
globally asymptotically stabilizing feedback law for de-
lay systems in the strict feedback form [6]. The form
allows the delayed states in the interconnecting terms,
but they must be sign definite.

Notation
Two types of objects describe the state of the time de-
lay system: x(t) ∈ Rn a time dependent vector and
xd(t) : [−r, 0] �→ Rn a time dependent function defined
by xd(t)(θ) = xd(t + θ). For the sake of simplicity
we shall often omit the dependence on t in the nota-
tion; for example, we shall write ẋ = f(xd) instead of

ẋ(t) = f(xd(t)) and xd(θ) instead of xd(t)(θ). The no-
tation | · | is used to denote the Euclidean 2-norm of
a vector, while || · || denotes the norm of uniform con-
vergence of functions, that is, for φd : [−r, 0] �→ Rn,
||φd|| = supθ∈[−r,0]|φd(θ)|. By C([−r, 0], R) we denote
the space of continuous functions and by CP ([−r, 0], R)
the space of piecewise continuous functions from [−r, 0]
into R. A continuous function α is said to belong
to class K∞ if it is strictly increasing, α(0) = 0, and
α(s) → ∞ as s → ∞.

2. CLRF based domination redesign

In this section we review the concept of CLRF’s and the
stabilization results of [4]. The starting point is a class
of input affine, time delay nonlinear systems described
by

ẋ(t) = f(xd) + g(xd)u (2.1)

with the initial condition given by xd(0)(·) = φd, where
φd : [−r, 0] �→ Rn is a continuous vector valued func-
tion. Vector fields f and g are assumed smooth func-
tionals.

The stability theory underlying our definition of
control Lyapunov-Razumikhin functions is provided by
Razumikhin theorems [2, 5], which state that the equi-
librium at the origin for the system

ẋ = f(xd)

is globally stable1 if there exist two K∞ function β1 and
β2, and a differentiable function V (x) such that

β1(|x|) ≤ V (x) ≤ β2(|x|),
and V̇ = LfV ≤ 0

whenever V (x) ≥ V (x(t + θ)), θ ∈ [−r, 0). The equi-
librium at the origin is globally asymptotically stable if
there exists a function α, α(s) > 0 for s > 0, such that

V̇ = LfV ≤ −α(|x|)
whenever π(V (x)) ≥ V (x(t + θ)), θ ∈ [−r, 0), with
the continuous nondecreasing function π : R+ �→ R+

satisfying π(s) > s for all s > 0.

Definition 1 (Control Lyapunov Razumikhin Func-
tion)
A smooth function V : Rn → R, that satisfies

β1(|x|) ≤ V (x) ≤ β2(|x|) (2.2)

is a control Lyapunov-Razumikhin function (CLRF) for
the system (2.1) if there exists a continuous nondecreas-
ing function π : R+ → R+, π(s) > s for s > 0, and a

1We say that an equilibrium is globally stable if it is lo-
cally Lyapunov stable and all the trajectories of the system are
bounded.
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function α : R+ �→ R+, α(s) > 0 for s > 0, such that,
for all piecewise continuous functions χd : [−r, 0] �→ Rn

with χd(0) = x,

LgV (χd) = 0 ⇒ LfV (χd) ≤ −α(|x|)
whenever

π(V (x)) ≥ V (χd(θ)), ∀θ ∈ [−r, 0) (2.3)

The condition (2.3) is referred to as the Razumikhin
condition. �

To design an asymptotically stabilizing controller
based on a CLRF, the class of time-delay systems under
consideration has been restricted in [4] to

ẋ = f(xd) + g(xd) u = f0(x, x(t − τ1), . . . , x(t − τl))

+
∫ 0

−r
Γ(θ)F (x, x(t − τ1), . . . , x(t − τl), x(t + θ)) dθ

+ g(x, x(t − τ1), . . . , x(t − τl)) u
(2.4)

with the initial condition xd(0) = φ, where f0, g, and
F : R(l+2)n �→ RrΓ are smooth functions of their ar-
guments. Without loss of generality we assume that
F (x, x(t − τ1), . . . , x(t − τl), 0)) = 0. The matrix
Γ : [−r, 0] �→ Rn×rΓ is assumed to be piecewise contin-
uous (hence, integrable) and bounded. The restriction
in the class of systems under consideration is needed to
avoid the problems that arise due to noncompactness of
closed bounded sets in the space (C([−r, 0], Rn), || · ||).

Several “universal formulas” exist for global sta-
bilization of a nonlinear systems with a known CLF
[1, 10]. However, because the CLRF conditions do not
guarantee that LfV ≤ 0 when LgV = 0 along every
trajectory, these formulas may result in infinite values
of the control input and, hence, are not applicable. A
formula that can be applied is given by the domination
redesign control law [9]

u = −γ(V (x))(LgV (xd))T (2.5)

where the domination function γ(·) must satisfy γ(s) >

0, and limT→∞
∫ T

0
γ(s) ds = ∞.

It has been shown in [4] that if, for all x in a neigh-
borhood of the origin,

LfV (xd)
|LgV (xd)|2 < c, c > 0 (2.6)

whenever the Razumikhin condition (2.3) holds and
LgV 	= 0, then the control law (2.5) achieves global
asymptotic stability. This condition is a delay-system
version of the one employed in [3] to prove the global
asymptotic stabilization by the CLF based domina-
tion redesign control law for non-delay systems. It
was shown in [4] that the condition (2.6) is satisfied

if V2 = xT Px (where P = 1
2

∂2V
∂x2 (0)) is a CLRF for the

Jacobian linearization of (2.4),

ẋ = A0x +
l∑

i=1

Aix(t − τi) +
∫ 0

−r

G(θ)x(t + θ) dθ + Bu

(2.7)
where A0 := ∂f0

∂x (0), Ai := ∂f0
∂xd(t−τi)

(0), G(θ) :=
Γ(θ) ∂F

∂xd(θ) (0), and B = g(0). The following theorem
summarizes the results of [4] relevant to this paper.

Theorem 1 If π(s) ≥ p s, p > 1, and V2, the quadratic
part of the CLRF V , is a CLRF for the Jacobian lin-
earization (2.7) then there exists a smooth function γ∗

such that the closed loop system (2.4), (2.5) is globally
asymptotically stable for all γ with γ(s) ≥ γ∗(s) for all
s ≥ 0. Moreover, the time derivative of V (t) satisfies

V̇ = LfV − γ(V )|LgV |2 ≤ −µ(|x|) (2.8)

with µ(s) > 0 for all s > 0 and, in a neighborhood of
x = 0, µ(|x|) > νx2, ν > 0.

3. Stabilization by delay-independent
control law

To simplify the notation let us assume that the control
vector field g depends only on one discrete delay τ , that
is,

ẋ = f(xd) + g(x(t), x(t − τ))u (3.1)

The case of multiple discrete delays is completely anal-
ogous, while the case of distributed delay in the control
vector field g is not covered by the theory presented in
[4], which is the foundation for this paper.

If the assumption of Theorem 1 are satisfied, the
domination redesign control law is given by

u = −γ(V )LgV
T (x, x(t − τ))

= −γ(V (x))
(

∂V (x)
∂x

g(x, x(t − τ))
)T

and, hence, depends on delayed terms. As discussed
in the introduction, delay-state dependence has several
practical and conceptual drawbacks. The goal of this
section is to introduce conditions such that the system
(3.1) can be stabilized by a delay independent feedback.

Assumption 1 There exists a smooth vector valued
function ψ : Rn → Rm such that ψ(0) = 0 and for all
x and y in Rn

π(V (x)) ≥ V (y) ⇒ |LgV (x, y)|2 ≤ LgV (x, y)ψ(x)
(3.2)

�

The condition (3.2) in general means that, if
the Razumikhin condition π(V (x)) ≥ V (x(t − τ)) is

4255



satisfied, the sign of each component of the vector
LgV

T (x, x(t−τ)) is determined by the value of x alone
(and is independent of the delayed state x(t − τ)). A
more formal statement is available in the case m = 1
(scalar input u).

Proposition 1 If m = 1, the condition (3.2) is equiv-
alent to the following statement: ∀x, y1, y2 ∈ Rn

π(V (x)) ≥ V (y1) AND π(V (x)) ≥ V (y2)
⇒ LgV (x, y1)LgV (x, y2) ≥ 0

(3.3)

Proof: First let us assume that the condition
(3.3) does not hold, that is, for some x, y1, y2,
LgV (x, y1)LgV (x, y2) < 0. Thus, regardless of what
ψ(x) is, either LgV (x, y1)ψ(x) < 0 or LgV (x, y2)ψ(x) <
0 and the condition (3.2) cannot be satisfied.

To prove the other direction, assume that the con-
dition (3.3) is satisfied and denote set SV (x) = {y ∈
Rn : π(V (x)) ≥ V (y)}. Note that the Razumikhin con-
dition can be rewritten as x(t + θ) ∈ SV (x(t)),∀θ ∈
[−r, 0). Next, define two sets P = {x ∈ Rn : ∃y ∈
SV (x)) such that LgV (x, y) > 0} and N = {x ∈ Rn :
∃y ∈ SV (x) such that LgV (x, y) < 0}. By assumption
(3.3), P

⋂
N = ∅ and Rn−(P

⋃
N) = {x : LgV (x, y) =

0, ∀y}.
Consider the function

φ(x) = exty∈SV (x)LgV (x, y)

=

⎧⎨
⎩

miny∈SV (x) LgV (x, y) if x ∈ N
maxy∈SV (x) LgV (x, y) if x ∈ P
0 otherwise

The function φ(x) is Lipschitz continuous in N and
P , and ∀y ∈ SV (x) φ(x)LgV (x, y) ≥ 0 and by defi-
nition, |φ(x)| ≥ |LgV (x, y)|. Note that φ(x) = 0 ⇔
LgV (x, ·) = 0 which allows us to show that the function
φ(x) is differentiable at all x where φ(x) = 0 (details
are omitted).

Hence, one can find a smooth function ψ(x) such
that ψ(x) > φ(x) on P , ψ(x) < φ(x) on N , and ψ(x) =
0 ⇔ φ(x) = 0.

By construction, ψ(x) satisfies ψ(x)LgV (x, y) ≥ 0
and |ψ(x)| ≥ |LgV (x, y)| ∀y ∈ S(π(V (x))), which
means that the condition (3.2) is satisfied. �

If the Assumption 1 is satisfied, the obvious choice
for the control law is

u(x) = −γ(V (x))ψ(x) (3.4)

Then, whenever π(V (x)) ≥ V (x(t + θ), θ ∈ [−r, 0),

V̇ (x) = LfV (xd) − γ(V (x))LgV (x, x(t − τ))ψ(x)
≤ LfV (xd) − γ(V (x))|LgV (x, x(t − τ))|2 ≤ −µ(|x|)

where the second inequality follows from Theorem 1.
By the Razumikhin theorem, the closed loop system is

globally asymptotically stable. Hence, (3.4) provides a
delay-state independent control law.

With this result we return to the problem intro-
duce earlier in the paper, that is, delay-independent
stabilization of the system

ẋ = x(t − τ)x2 + (x − 0.9x(t − τ))u

Selecting V (x) = 1
2x2 and π(s) = 1.052s, we have that,

whenever the Razumikhin condition holds (i.e. |x(t −
τ)| < 1.05|x|), the sign of LgV (x, x(t − τ)) = x(x −
0.9x(t − τ)) is known. Thus we select ψ(x) = 2x2 and
note that |LgV |2 = x2(x − 0.9x(t − τ))2 ≤ 2x3(x −
0.9x(t − τ)). Straightforward computation shows that
if we select γ(V ) = 10 (that is, u = −20x2), and the
Razumikhin condition holds,

V̇ = x3x(t − τ) − 20x3(x − 0.9x(t − τ)) ≤ −0.9x4

Thus the closed loop system is GAS.

4. Backstepping for delay systems

With the result of the previous section, one may be able
to complete a backstepping design and avoid issues re-
lated to differentiation of the delayed states discussed
in the introduction. One remaining problem is that,
for repeated application, it is difficult to establish con-
ditions that can be checked a-priori. Indeed, as condi-
tion (3.2) depends on the CLRF V , at each stage of the
backstepping design Assumption 1 depends on the “vir-
tual” CLRF at that stage, which in turn depends on the
virtual controls chosen in the preceding stages. While
one may proceed with the design and verify Assump-
tion 1 at each step, we prefer to give conditions that are
independent of the virtual control selection. In this case
we assume that g(x, x(t − τ)) 	= 0, ∀x, x(t − τ) ∈ Rn.
That is, the class of systems considered is given by

ẋ1 = f1(x1d) + g1(x1d)x2

ẋ2 = f2(x1d, x2d) + g2(x1d, x2d)x3

...
ẋn = fn(xd) + gn(xd)u

(4.1)

where we have assumed that each fi, gi are of the form
(2.4) and that gi(x1d, . . . , xid) 	= 0. Again, for clarity of
presentation we will consider the case when the control
vector field is a function of x and x(t−τ) only and show
the backstepping design for n = 2. The cases when g
depends on more than one discrete delay and n > 2 are
straightforward extensions of the presented result.

According to the standard backstepping procedure
[6], in the first stage we stabilize the first x1-subsystem,
considering x2 as the virtual control v1. That is, con-
sider the system

ẋ1 = f1(x1d) + g1(x1, x1(t − τ))v1 (4.2)
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and the CLRF candidate V1(x1) = 1
2x2

1. That V1 is
indeed a CLRF follows from

Lg1V1 = x1g1(x1, x1(t, t − τ)) = 0 ⇔ x1 = 0
⇒ Lf1V1 = x1f1(xd) = 0

The Razumikhin condition did not play a role here,
but we’ll need it in the subsequent derivation, so we set
π(s) = p s, p > 1.

In contrast to non-delay backstepping, we shall
design a virtual control for the system (4.2) in two
steps. First we show that the conventional domina-
tion redesign stabilizes the system and then replace
delay-state dependent feedback with a delay-state in-
dependent one. The first part consists of checking
that the conditions of Theorem 1 are satisfied. Indeed,
π(s) = ps, g(0, 0) 	= 0, and V1(x1) is quadratic, so us-
ing the same argument that showed V1 is a CLRF for
(4.2), one can show that it is a CLRF for the Jacobian
linearization of (4.2). Thus, the conditions of Theorem
1 are satisfied and the control law of the form

u = −γ1(V1(x1))x1g1(x1, x1(t − τ)) (4.3)

results in V̇1 ≤ −µ1(|x1|) achieving global asymptotic
stability. Without loss of generality we assume that we
have chosen γ1(0) > 0 sufficiently large which guaran-
tees that, in a neighborhood of x1 = 0, µ1(|x1|) ≥ ν1x

2
1

for some ν1 > 0 .
Now note that the Razumikhin condition implies

that |x(t − τ)| ≤ β−1
11 (pV1(x1)) where β11 is the

K∞ function from the CLRF definition (in this case
β11(s) = 1

2s2). As g1 is never equal to 0, its sign, de-
noted by sign(g1), is a constant. Moreover, there exists
a class K function q1(.) such that

|g1(x, x(t − τ))| ≤ q1 (|[x1, x(t − τ)]|)
≤ q1(|[x1, β

−1
11 (pV1(x1))]|) = η1(|x1|)

Note that the function η1 “dominates” |g1| only when
the Razumikhin condition holds, that is, when the past
values of the state were closer (in a certain “Lyapunov”
sense) to the origin then the present state. The advan-
tage of the Razumikhin theory is that this is the only
time the domination is needed.

To reduce the notational complexity we combine
η1(|x1|) with γ1(V1). The function η1(|x1|) is strictly
positive so we choose a smooth function ρ1(.) such that
ρ1(V1(x1)) > γ1(V1(x1))η̃1(|x1|), with γ1(.) chosen in
(4.3). Now choose the control

v1 = −a1(x) = −sign(g1)ρ1(V1(x1))x1 (4.4)

As this control law has the same sign and larger mag-
nitude than Lg1V1, it also results in

V̇1 = Lf1V1 + Lg1V1a1 ≤ −µ1(|x1|)

and the closed loop system is globally asymptotically
stable.

Note that the design freedom provided by the pro-
cedure is in the domination function γ1(·). The de-
signer may decide to use a large, but constant gain
in the operating region, or use relatively small gain in
the neighborhood of the origin (operating point) and
much larger gain away form it. Even though the re-
sult of Theorem 1 guarantees asymptotic stability only
if the domination function is sufficiently large, there is
nothing in the derivation or construction that prevents
designer from choosing v1 = 0 if the x1-subsystem (4.2)
is open-loop stable. These points apply to the virtual
and final control design in subsequent stages.

The next step is the standard change of coordinates
z1 = x1, z1 = x2 − a1(x1). Note that sign(g1) is a con-
stant, and ρ1(·) is a smooth function. In other words
a1(·) is smooth, and we can rewrite the system dynam-
ics as

ż1 = f1(z1d) + g1(z1d)a1(z1) + g1(z1d)z2

ż2 = f2(zd) + g2(zd)u − ∂a1
∂z1

ż1
(4.5)

Choose the CLRF candidate V2(z) = V1(z1) + 1
2z2

2 and
again π(s) = p s. The condition LgV = 0 is in this case
z2 = 0, and the Razumikhin condition becomes

pV1(z1) ≥ V1(z1(t + θ)) +
1
2
z2
2(t + θ) ≥ V1(z1(t + θ))

which is, actually, the Razumikhin condition for the
x1-subsystem. Thus,

LfV2|z2=0 = Lf1V1 + Lf1V1a1 ≤ −µ1(|z1|)
implies that V2 is the CLRF for (4.5).

Next we need that the quadratic part of V2, which
is V2 itself, be the CLRF for the Jacobian linearization
of (4.5). This follows from our design in the first stage
which guarantees that µ1(|x1|) ≥ ν1x

2
1 in a neighbor-

hood of x1 = 0, because this can only be accomplished
through linear terms in the x1 subsystem. Theorem 1
directly implies that the feedback of the form

u = −γ2(V2)g2(z, z(t − τ))z2

achieves GAS and that V̇2 ≤ −µ2(|z|) where µ2(|z|) ≥
ν2z

T z for some ν2 > 0.
Finally, we replace g2(zd) with a function of z only

that dominates g2:

|g2(z, z(t − τ)| ≤ q2(|(z, z(t − τ))|)
≤ q2(|(z, β−1

12 (pV2(z))|) = η2(|z|)
We combine η2 and γ2 into the single dominating func-
tion ρ2 to obtain

u = −sign(g2)ρ2(V2(z))z2 (4.6)
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which again achieves V̇2 ≤ −µ2(|z|) and GAS.
If there are more than two states, the design process

continues in the obvious way and provides a globally
asymptotically stabilizing feedback which is indepen-
dent of the delayed state.

From the practical point of view, it makes sense
to parameterize the domination functions ρi, which are
the only free design variables, and tune the parame-
ters for best transient response. For example, one may
choose

ρi(V ) = ki0 + ki1ρi1(V )

where ρi1 is a fixed function, and k1, k2, or both are
adjusted in simulations or experimentally.

5. Conclusion

It is of theoretical and practical importance to de-
sign feedback laws for delay system that are indepen-
dent of delayed state. In this paper we provide such a
design for nonlinear delay systems that have a control
Lyapunov-Razumikhin function. We extend this result
to design a delay-state independent feedback for sys-
tems in the strict feedback form using a version of the
well known backstepping design. The condition that al-
lows delay-state independent feedback is that the com-
ponents of the control vector field g don’t change their
signs.

Acknowledgement: The author is grateful to I.
Karafilis and Z. Pan for pointing out the deficiency of
the delay-state dependent feedback design for (4.1) pro-
posed in [4].
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