
Abstract—In this paper, the problems of stabilizing integral 
plants with time delay using the classical proportional- 
integral-derivative (PID) controllers and the practical 
single-parameter (containing only one adjustable parameter) 
PID controllers are considered, respectively. The complete set 
of stabilizing parameters of the classical PID controller for the 
integral plant with time delay and time constant is determined 
using the extended Hermite-Biehler Theorem applicable to 
quasi-polynomials. Owning to the difficulty in analyzing the 
complex closed-loop characteristic equation based on the 
extended Hermite-Biehler Theorem, a simple method called 
dual-locus diagram, is adopted to present the stabilizing region 
of the practical single-parameter PID controller.  

I. INTRODUCTION

 NTEGRAL plants with time delay are frequently 
encountered in industrial process control. Generally, these 

integral processes are modeled as /ske s  or 
/[ ( 1)]ske s s for the purpose of controller design. The 

combined effect of the poles at the original point and the 
delay lead to great difficulty in controller design and system 
stability [1]. PID control remains the most popular approach 
for industrial process control. Thus, it is of great significance 
to solve the stability problem of PID controller and to find 
new design methods leading to the optimal operation of PID 
controllers for integral processes with time delay. Morari [2] 
and Zhang [3, 4] presented two kinds of single-parameter 
PID controllers analytically for integral processes with time 
delay: 2H  PID controller and H  PID controller. These 
controllers can provide quantitative time-domain and 
frequency-domain responses. 

Since the minimal requirement for PID controllers is to 
make the system stable, it is desirable to know the complete 
set of the stabilizing PID controller parameter for a given 
plant before controller design and tuning. However, it is not 
a trivial task to analyze the stability of plants with time delay. 
Recently, using the extended Hermite-Biehler Theorem, the 
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complete PID stability regions for first-order plants with 
time delay have been derived [5]. Whereas, the results are 
not applicable to integral plants with time delay and time 
constant since the plants are of second order. The 
D-partition technique has been used to construct the 
complete set of the stabilizing PID controller parameters for 
first-order plus dead-time unstable processes [6], but the 
results cannot imply that the determination of the stabilizing 
region of the proportional gain is independent of the integral 
and derivative gains. Moreover, this method requires a 
change in the time scale and is not applicable to high-order 
plants. Although the method of PID stabilization for general 
plants with time delay has been developed [7], the 
stabilizing set of the proportional gain of PID controller 
cannot be determined. Furthermore, for integral plants with 
time delay and time constant, taking the approach cannot 
present the complete stabilizing set in the space of the 
integral and derivative gains since there is no corresponding 

 value to make ( )L  in the crucial equation (35) (in [7]) 
equivalent to the delay 0L .Thus, in this paper, the stabilizing 
problem of the classical PID controller for integral processes 
with time delay and time constant is analyzed on the basis of 
the Hermite-Biehler Theorem. The range of the admissible 
proportional parameter is first determined. The set of 
stabilizing integral and derivative constant values are then 
derived. 

The single-parameter PID controllers are suboptimal and 
easy to use. However, they are designed based on Pade 
approximation, indicating that they may fail to stabilize the 
original plant in spite of their absolute stabilization for the 
approximated plants. In order to stabilize the original 
integral process, certain constraints must be imposed on the 
only adjustable parameter. Because of the complexity of the 
resulting closed-loop characteristic equation, it is relatively 
difficult to derive the exact stabilization range for the 
adjustable parameter based on the Hermite-Biehler Theorem. 
Though the method developed by Xu [7] can be used to 
compute the stabilizing region, the analytical results and the 
relationship between the stabilizing region and the plant 
parameters are not be derived. The dual-locus diagram 
method is used in this paper to analyze the stabilizing 
problem of the single-parameter PID controller for integral 
processes with time delay. It employs a counterclockwise 
unit circle and requires only the plotting of a simple curve 
derived from the open-looped transfer function free of delay. 
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II. STABILITY ANALYSIS OF CLASSICAL PID CONTROLLER

The integral process with time delay and time constant is 
described as the following transfer function, 

( )
( 1)

sk
G s e

s s
                                (1) 

where k ,  and  are assumed to be positive. Consider the 
unity feedback control system in Fig.1, where ( )C s  is the 
controller, )(sG is the plant to be controlled, r  is the 
setpoint, and y  is the output of the plant. If ( )C s  in Fig.1 is 
the PID controller with the transfer function,

( ) i
p d

k
C s k k s

s
                                (2) 

the characteristic equation of the closed-loop system is 
2 2( ) ( 1) ( ) s

i p ds s s kk kk s kk s e               (3) 

A. The Extension of the Hermite-Biehler Theorem 

 For a linear time invariant system with time delay the 
characteristic equation can be written as 

1

( ) ( )j

n
s

j
j

f s e P s                               (4) 

where ( )jP s  for 1, ,j n  is an arbitrary polynomial, and 
the j ’s are real numbers satisfy 1 2 n , 1 n .
Function (4) is called a quasi-polynomial [8]. ( )rf and

( )if  denote the real and imaginary parts of ( )f j
respectively, i.e. ( ) ( ) ( )r if j f jf .
    The extended Hermite-Biehler Theorem to study the 
stability of quasi-polynomial (4) is stated as follows [9]: 

Theorem 2.1 ( )f s is stable if and only if 
1) ( )rf and ( )if  have only real roots and these roots 

interlace,
2) * * * *( ) ( ) ( ) ( ) 0i r i rf f f f  for some * ( ,
) , where ( )rf  and ( )if  denote the first derivative 

with respect to  of ( )rf and ( )if , respectively. 
To make sure that ( )rf  and ( )if  have only real roots, 

the following theorem is introduced [9, 10]: 
Theorem 2.2 Let p  and q  denote the highest powers of 

s  and se  respectively in ( )f s . Let  be a constant such 
that the coefficients of terms of highest degree in ( )rf and

( )if  do not vanish at . Then the necessary and 
sufficient condition that ( ) 0rf or ( ) 0if  has only 
real roots is that: in the strip 2 2l l , ( )rf
or ( )if  has exactly 4lq p real roots starting with a 
sufficiently large l .

B. Stabilization Scope of the Classical PID Controller 
The open-looped transfer function is written as: 

( )( ) ( ) ( )
( )

sN s
H s G s C s e

D s
Where ( )N s  and ( )D s  represent real polynomials of degree 
m and n, respectively. 

First of all, in order to make the closed-loop system with 
time delay stable, the following two necessary requirements 
must be satisfied [7]: 

1) n m , or, / 1m nb a  for n m , where na  and mb  are 
leading coefficients of ( )D s  and ( )N s , respectively. 

2) The corresponding delay-free closed-loop system is 
stable.

For the integral plant (1) and the classical PID controller 
(2), the system shown in Fig.1 satisfies requirement 1 since 
n m ( 3n and 2m ). Then, requirement 2 is analyzed. 
For the integral plant free of delay, the closed-loop 
characteristic equation is given by 

2 2( ) ( 1) ( )i p ds s s kk kk s kk s

Using the Routh-Hurwitz criterion to determine closed loop 
stability, the following inequalities must hold:   

0pk , 0ik , 0p d p ik kk k k              (5) 
     Convert the characteristic function (3) into the following 
quasi-polynomial: 

( ) ( ) sf s s e 2 2 ( 1) s
i p dkk kk s kk s s s e    (6) 

Since se has not any finite zeros, the zeros of ( )s  are 
identical to those of ( )f s . Then, the stability of the system 
with characteristic equation (6) is equivalent to the condition 
that all the zeros of ( )f s  are in the open left-half plane. 
Substituting s j  into (6) and taking z  yield 

2 2 2 2 3 3( ) / cos( ) / sin( ) /r i df z kk kk z z z z z    (7) 
2 2( ) / cos( ) / sin( ) /i pf z kk z z z z z        (8) 

Secondly, Theorem 2.2 is used to obtain the requirement 
that ( )if z  has only real roots. We choose / 3  to satisfy 
the condition that sin( ) 0 . Substituting 1s s  into (6), it 
is seen that for the new quasi-polynomial in 1s , 3p
and 1q . From (8) it is known that one root of the 
imaginary part is 0 0z  and the other roots are given by 

2 2cos( ) / sin( ) / 0pkk z z z z               (9) 
Equation (9) can be rewritten as 

2 2[ cos( ) / ] / sin( ) /pkk z z z z              (10) 
It is difficult to be solved analytically. However, the nature 
of the solution can be examined graphically by plotting the 
left and right terms of equation (10). We sketch 

2 2[ cos( ) / ] / sin( )pkk z z z and /z to obtain the plot 
shown in Fig.2. Fig. 2(b) is the local enlarged image of Fig. 
2(a). Denote 2 2[ cos( ) / ] / sin( )pkk z z z by ( )L z . The plot 
in Fig. 2(b) corresponds to the case where 0 p uk k and

uk is the value that makes the line /z  tangent to the plot of 
( )L z .Since ( )L z  is an odd function of z , it is seen from 

Fig.2  that only if the line /z  intersects the plot of ( )L z
twice in the interval (0, ) , ( )if  has exactly 4 3l  real

Fig. 1.  Feedback control system 
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Fig. 2.  Plot of the left and right terms involved in equation (10) 
 (a) 0 p uk k . (b) local enlarged image of Fig.2(a). (c) p uk k .

roots in the interval [ 2 / 3, 2 / 3]l l  for 1, 2,l ,
including a root at the origin. If pk  increases to a enough 
large value, the line /z  and the plot of ( )L z  will have only 
one intersection or no intersection in the interval (0, ) ,
leading to the number of the real roots of ( )if z  not 
satisfying Theorem 2.2 and thereby ruling out closed-loop 
stability. The upper bound uk  on the allowable value of pk
is determined according to the case of Fig. 2(c), i.e. the 
line /z  is tangent to the plot of ( )L z  in the interval (0, ) .
Denote by  the value of z  for which this intersection 
occurs. Then, the following set of equations can be obtained 

2 2 2[ cos( )] /[ sin( )] /ukk             (11) 

2 2 2{[ cos( )] /[ sin( )]} 1/u z

d
kk z z z

dz
     (12) 

Eliminating ukk in equations (11) and (12), we yield the 
value of in the interval (0, )  from the following 
equation:

2

2( )tg                             (13) 

If we substitute the resultant value of   into (11), uk  is 
obtained as: 

2

2

1 cos( ) sin( )uk
k

Since the minimal requirement (5) to make the system in 
Fig.1 stable implies that 0pk , the imaginary part of ( )f s
has only simple real roots if and only if 

2

2

10 cos( ) sin( )pk
k

               (14) 

Thirdly, consider the condition that ( )rf has only real 
roots and these roots interlace with that of ( )if  in 
Theorem 2.1. The real part ( )rf z in (7) is rewritten as 

2

2( ) ( ( ) ( ))r d i

kz
f z k m z k b z                (15) 

where                     
2

2( )m z
z

                                  (16) 

1( ) cos( ) sin( )z
b z z z

k k
                (17) 

For 0 0z , using (7) yields: 

0( )r if z kk

In view of the stability requirement 0ik for the delay-free 
case in (5), it is known that 0( ) 0rf z . The condition that the 
roots of ( )rf z  interlace with those of ( )if z  indicates: 

1 2 2 1 2( ) 0, ( ) 0, ( ) 0, ( ) 0r r r j r jf z f z f z f z

where 1,2,3j , 1 2 3 2 1, , , jz z z z  and 2 jz  are the positive 
real roots of (8) arranged in increasing order of magnitude. 
Since ( )rf z  is an even function, the negative-real values of 
z  are not considered. Thus, 

( 1) ( 1) ( ) ( 1) ( ), 1,2,3j j j
d j i jk m z k b z j     (18) 

The intersection of all these regions in the i dk k  space is 
exactly the set of ( , )i dk k  for which the roots of ( )rf z  and 

( )if z  interlace for a given admissible value of pk . The 
boundaries are determined by the following equations: 

( ) ( )d j i jk m z k b z      for 1,2,3j              (19) 
It is known from Equation (16), ( ) 0m z , 1( ) ( )j jm z m z ,
and ( ) 0jm z  as j . The change of ( )jb z  is difficult 
to be found with the theoretical approach, so it is examined 
with the graphic approach. Given a stabilizing pk value 
satisfying (14), the intersections of the curves 

2 2[ cos( ) / ] /pkk z z k  and sin( ) /z z k  are plotted in 
Fig.3 to obtain the real roots of equation (9), denoted 
by 1 2 3, ,z z z . Fig. 3(b) is the enlarged image of Fig. 3(a). It 
is observed that, for the odd roots of (9), the corresponding 

sin( ) /z z k  is decreasing by large magnitude, and for the 
even ones, the corresponding sin( ) /z z k  is increasing by 
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                                               (a) 

z
                                               (b) 

4z 6z 8z 10z1z 2z
3z 5z 7z 9z 11z

z
Fig.3. plots of 2 2( cos( ) / ) /pkk z z k  (thin solid line), 

sin( ) /z z k  (thick solid line) and cos( ) /z k  (dotted line) 

dk

2 2( ) ( )d ik m z k b z

ik

1 1( ) ( )d ik m z k b z

0

Fig.4. Stabilizing region of ( , )i dk k for the admissible pk

large magnitude. However, compared to the change 
of sin( ) /j jz z k , the difference between the values 
of 2cos( ) /jz k  and cos( ) /jz k is much smaller both for 
odd and even j . Thus, ( )jb z in (17) have the similar change 
rules as sin( ) /j jz z k , i.e. 
    1) 2j jb b and jb  as j  for odd values of j ,

2) 2j jb b and jb  as j for even values of j .
Denote as 1 2( , )i jk z z  the abscissa value of the intersection of 
the lines 1( )dk z  and 2( )d jk z . In terms of (19), we know 
that 1 2 2 1 1 2( , ) [ ( ) ( )] /[ ( ) ( )]i j j jk z z b z b z m z m z .Though
the values of 2 1( ) ( )jb z b z  and 1 2( ) ( )jm z m z are
increasing with j , the ascending magnitude of the former is 
much larger than that of the latter owing to the change 
characteristics of 2( )jb z and 2( )jm z . This makes 1 2( , )i jk z z
increase with j , since the values of 2 1( ) ( )jb z b z and

1 2( ) ( )jm z m z are the positive ones. Therefore, in view of 
the stability requirements (5) that 0ik and the behavior of 

the parameters ( )jb z , ( )jm z and 1 2( , )i jk z z , the triangle 
cross-intersection P of the stabilizing region in the ( , )i dk k
space is derived (see Fig.4). The values of ik  and dk
corresponding to the point in the shadow region of Fig.4 are 
certain to satisfy the requirement 0p d p ik kk k k in (5), 
the proof of which is based on simply mathematical 
calculation and is omitted. 

Finally, Condition 2 of Theorem 2.1 is checked. Taking 
0 0  yields 0( ) 0rf z , 0( )r if z kk  and ( ) /i pf z kk .

Then, 2
0 0 0 0 0( ) ( ) ( ) ( ) ( ) / 0i r i r p iE z f z f z f z f z k k k

Consequently, the necessary and sufficient conditions 
making the closed-looped characteristic equation stable in 
Theorem 2.1 are satisfied. The complete stabilizing region 
of the PID controller parameters is given by: 

Theorem 2.3 The range of pk  values for which a given 
integral plant G(s) with transfer function in (1) can be 
stabilized using the classical PID controller is that 0 pk

2 2cos( ) / sin( ) / / k , where  is the solution 
of the equation (13) in the interval (0, ) . For each pk  in the 
range, the stabilizing region in the ( , )i dk k space is presented 
by the triangle P with known boundaries (see Fig. 4). 

III. STABILITY ANALYSIS OF THE SINGLE-PARAMETER PID
CONTROLLER

A.  Dual-locus Diagram Method 

The dual-locus diagram method is based on the argument 
principle. 

Theorem 3.1 (Argument principle [11]): Let a function 
f  be meromorphic in the domain interior to a positively 

oriented simple closed contour C , and suppose that f  is 
analytic and nonzero on C . If, counting multiplicities, Z is
the number of zeros and P  is the number of poles inside C ,
then the number of times ( )f s  winds around the origin is 

1( ( ),0) arg ( )
2 Cn f s f s Z P

where arg ( )C f s  represents the variation of the argument 
of ( )f s  along the contour C .

The characteristic equation of the closed-loop system is 
usually written in the form 

1 ( ) 0L s                                  (20) 
where ( )L s  is the open-looped transfer function without 
poles in the right-half plane. Since ( )L s  has no poles on the 
right-half plane, the number of the right-half plane poles of 
the closed-loop transfer function is zero (i.e. 0P ). Here, 
the closed contour C  is the Nyquist contour. If the 
characteristic equation (20) is rearranged as 

1 2( ) ( )L s L s                                 (21) 
The dual-locus diagram is obtained when s  traverses the 
Nyquist contour. The argument of 1 2( ) ( )L s L s  is the angle 
between the vector joining the corresponding points on the 
Nyquist plots of 1( )L s  and 2 ( )L s , and the positive real axis. 
According to the argument principle, the system is stable 
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(i.e. 0Z ) if and only if the variation of the argument of 
1 2( ) ( )L s L s  is zero. 

    For plants with time delay, the characteristic equation 
may be transformed into the following form, 

( ) sH s e                                (22) 
where ( )H s is the open-looped transfer function without 
poles in the right-half plane polynomials of degree m  and 
n  respectively, and  is time delay. The dual-locus 
diagram method is simply illustrated as follows [10,12]: 

Corollary 3.1: If the following conditions are satisfied, 
the system is stable. Otherwise, it is unstable. 

1) Provided that 0 , the system satisfies two principle 
necessary requirements given in Section II. 

2) Either the loci of ( )H s  and se  have no intersection 
or the locus of ( )H s  arrives at the point of intersection 
earlier than that of se  if the two loci intersect. 

B. Stabilization Using Single-parameter PID Controllers 
If the model of the integral plant with time delay is 

described as  

( ) sk
G s e

s
                                (23) 

( )C s  in Fig.1 is chosen as the following single-parameter 
PID controller [4] 

1 1( ) (1 )
1C D

I F

C s K T s
T s T s

                    (24) 

where
2

2 22 4FT , 32
2IT

(2 )
2D

I

T
T

, 2 2

1
2 / 2

I
C

T
K

K

is the positive adjustable parameter. The characteristic 
equation of the system in Fig.1 is given by 

2 3 2 2 2

(1 / 2)[(2 ) 1]1 0
/ 2 ( 2 / 2)

ss s
e

s s
             (25) 

which is equivalent to  
( ) sH s e                                     (26) 

i.e.

2 3 2 2 2

(1 / 2)[(2 ) 1]( )
/ 2 ( 2 / 2)

s s
H s

s s
           (27) 

The loci of ( )H s  and se are shown in Fig.5. When 
increases from 0 to , the locus of se  is the 
counterclockwise unit circle originating at (-1, 0), and the 
locus of ( )H s  is a curve starting at infinity. The locus 
of ( )H s  corresponding to ~ 0  is symmetric with 
respect to the real axis. Since the transfer function ( )H s  has 
two poles at the origin, its Nyquist plot shifts clockwise 
from  to  with the infinite radius when s  changes 
from 0j  to 0j . Due to the symmetry property of Nyquist 
plot, the negative values of  are not considered. 

0s j

j
j

0

c

Re

Im

( )H j

je

0s j

Fig. 5. The loci of ( )H j  and je

Firstly, compute the frequency c  satisfying the equation 

2 3 2 2 2

(1 / 2)[ (2 ) 1]( ) 1
( ) / 2 ( 2 / 2)( )c

j j
H j

j j
(28)

Simplifying (28) yields  
6 4 2 1 0c c ca b c                             (29) 

where 2 4 / 4a
2 2 2( 3 )( )b

2 2(4 4 5 / 4)c
Equation (29) has six analytical roots, among which the 
valid solution for c  is 

2 3 2 3

3 3

2 2 3 2 2 3 3c

q q p q q p b
a

(30)
where

2

23
c b

p
a a

  and 
3

3 2

2 1
27 3

b bc
q

a a a
The other five roots are either negative or complex values. 
Taking /  , we have 

2 2 2 2
4

4 6

16 16 5 ( 3 1) ( 1)
3

p  (31) 

2 2

7

( 3 1)(64 64 20)( 1)
3

q

2 3 3
6

9 4

128( 3 1) ( 1) 4
27

               (32)

Thus, the equation (30) can be rewritten as 
( ) /c f                                    (33) 

where ( )f  denotes the function only relating to . The 
phase angle of ( )H s  at c is

1 arctan( / 2) arctan(2 )c c c

2

2 2arctan( )
2 4

c                     (34) 
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0.3034

1 2

Fig. 6.  Plot of 1 2  as a function of 

and the phase angle of se  at c  is

2 c                                      (35) 
      From Fig.5, it is seen that the stabilizing condition in 
Corollary 3.1 can be satisfied only when the phase angle of 

( )H j  at c  is larger than that of je  (i.e. 1 2 0 ).
Substituting (30)-(35) and  into the equation 

1 2 0 , the following equation is obtained.  
( )arctan arctan(2 ( ) ( ))
2

f
f f

2

2

( )arctan ( ) 0
2 4 1

f
f                    (36) 

It is clear that equation (36) is only related to  (i.e. / ).
The solution of equation (36) is that / 0.3034 . From 
Fig.6, it is found that the requirement 1 2 0  is satisfied 
only if / 0.3034 .

From (27), it is known that the denominator degree of 
( )H s  is larger than its numerator. Using the Routh-Hurwitz 

criterion, the closed-loop characteristic equation (25) has no 
right half zeros in the case that 0 . Moreover, the locus 
of ( )H s  arrives at the point of intersection earlier than that 
of se  if / 0.3034 . Therefore, in order to stabilize the 
integral plant with the transfer function in (23) using the 
single-parameter PID controller (24), the value of the 
adjustable parameter  must be larger than 0.3034  in 
terms of the stability criterions in Corollary 3.1. 
      For an integral process involving time constant and time 
delay given by the transfer function (1), the derived practical 
single-parameter PID controller are [3]: 

1 1( ) (1 )
1C D

I F

C s K T s
T s T s

                (37) 

where
3

2 23 3FT , 3IT

(3 )
D

I

T
T

, 2 2

1
3 3

I
C

T
K

K

Following similar steps as in the case of the integral plant 
(23), the range of the adjustable parameter  for which the 
single-parameter PID controller (37) can stabilize the 

integral plant with the transfer function (1) is that 
0.2291 .

IV. CONCLUSIONS

The complete set of the stabilizing classical PID 
controller parameters for the integral plant with time delay 
and time constant has been obtained on the basis of the 
extended Hermite-Biehler Theorem. The range of the 
proportional parameter for which a stabilizing PID 
controller exists is first determined. For a given admissible 
proportional parameter, the set of stabilizing integral and 
derivative constant values is shown to be a triangle. 
Considering the difficulty in analyzing the complex 
closed-loop characteristic equation based on Hermite- 
Biehler Theorem and the objective of finding the analytical 
stabilizing region for the analytical single-parameter PID 
controller, the dual-locus diagram method is introduced to 
derive the exact stabilizing range of the adjustable parameter. 
The derived stabilizing region is analytical and only related 
to the delay of the plant. The dual-locus diagram method for 
systems with time delay is simple and effective for the 
stabilization analysis of the practical single-parameter PID 
controller. The results in this paper provide insight into the 
PID stabilization of the integral process with time delay and 
offer convenience for the tuning of PID controllers. 
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