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Abstract— Stability using Proportional+Integral+Derivative
(PID) controllers is investigated for linear multi-input multi-
output (MIMO) plants. Necessary conditions are derived
for existence of PID-controllers. Systematic PID-controller
synthesis procedures are developed for several plant classes.

I. INTRODUCTION

Proportional+Integral+Derivative (PID) controllers are

widely used and preferred due to their simplicity. Con-

trol texts treat PID-control is treated extensively (see e.g.,

[7]). In spite of the importance and wide-spread use of

these low-order controllers, most PID design approaches

lack systematic procedures and closed-loop stability proofs.

Rigorous synthesis methods based on modern control theory

are being studied in recent literature (see for example [5],

[6], [8], [9]). The simplicity of PID-controllers is desir-

able from a tuning point-of-view, but it presents a major

restriction: PID-controllers can control only certain classes

of plants satisfactorily, while others cannot be stabilized.

It is important to identify plant classes that admit PID-

controllers, i.e., that can be stabilized using these simple

controllers. Most results available show existence of PID-

controllers only for low order plants. Explicit descriptions

of high-order plant classes that admit PID-controllers and

sufficient conditions for stabilizability of general multi-input

multi-output (MIMO) or single-input single-output (SISO)

unstable plants using PID-controllers are not available.

We consider closed-loop stabilization of linear, time-

invariant (LTI), MIMO plants in the standard unity-feedback

system configuration of Fig. 1. The order of the plants

is not restricted. Although the continuous-time setting is

used here, the results can be interpreted for discrete-time

systems with minor modifications. Some of these results of

existence of PID-controllers in the scalar plant case could be

derived using root-locus arguments or via a generalization

of the Hermite-Biehler Theorem (see [1], and [10], [4],

[3]); similar derivations are not known for the MIMO

case. Such existence proofs would not produce explicit

synthesis procedures. The results here emphasize systematic

designs with freedom in the design parameters. Our goal

is to establish existence of stabilizing PID-controllers; we

propose freedom in the design parameters that can be

used towards satisfaction of performance criteria. We give

simple illustrative examples, where we show only a few

controllers out of the many that can be designed using the
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methods described here. It is possible to design various

other controllers based on the given design specifications.

The following notation is used: Let CI , IR denote com-

plex and real numbers. The extended closed right-half

complex plane U = {s ∈ CI | Re(s) ≥ 0} ∪ {∞} is the

unstable region; Rp denotes real proper rational functions

of s; S ⊂ Rp is the stable subset with no poles in U ;

M(S) is the set of matrices with entries in S ; In is the

n × n identity matrix. The H∞-norm of M(s) ∈ M(S)
is ‖M‖ := sups∈∂U σ̄(M(s)), where σ̄ is the maximum

singular value and ∂U is the boundary of U . We drop

(s) in transfer matrices such as G(s) when this causes no

confusion. We use coprime factorizations over S ; i.e., G =
XY −1 ∈ Rp

ny×nu denotes a right-coprime-factorization

(RCF), where X ∈ Sny×nu , Y ∈ Snu×nu , detY (∞) �= 0;

G = Ỹ −1X̃ denotes a left-coprime-factorization (LCF),

where X̃ ∈ Sny×nu , Ỹ ∈ Sny×ny , det Ỹ (∞) �= 0.

II. PROBLEM DESCRIPTION

Consider the LTI, MIMO unity-feedback system

Sys(G,C) in Fig. 1; G ∈ Rp
ny×nu is the plant’s, C ∈

Rp
nu×ny is the controller’s transfer-function. The system

is well-posed, G and C have no unstable hidden-modes,

and G ∈ Rp
ny×nu is full (normal) row-rank.

Definition 2.1: i) The system Sys(G,C) is said to be

stable iff the closed-loop transfer-function from (r, v) to

(y, w) is stable. ii) The controller C is said to stabilize G
iff C is proper and Sys(G,C) is stable.

We consider a realizable form of proper PID-controllers,

Cpid = Kp +
Ki

s
+

Kd s

τds + 1
, (1)

where Kp , Ki , Kd ∈ IRnu×ny are called the proportional,

integral, and derivative constants, and τd ∈ IR [2]. To

implement the derivative term, a pole is added (τd > 0)

so that Cpid in (1) is proper. The integral-action in Cpid is

present when Ki �= 0. Subsets of PID-controllers obtained

by setting one or two of the three constants equal to zero:

When Kd = 0, Cpid in (1) is in proportional+integral

(PI) form Cpi = Kp +
Ki

s
. When Kp = 0, Cpid is in

integral+derivative (ID) form Cid =
Ki

s
+

Kds

τds + 1
. When

Ki = 0, Cpid is in proportional+derivative (PD) form

Cpd = Kp +
Kds

τds + 1
. When two of the three constants

are zero, Cp , Ci , Cd correspond to pure proportional (P),

integral (I), derivative (D) controllers, respectively.
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Definition 2.2: A plant G ∈ Rp
ny×nu is said to admit

a PID-controller iff there exists a PID-controller Cpid as

in (1) such that the closed-loop system is stable. We say

that G is stabilizable by a PID-controller, and Cpid is a

stabilizing PID-controller.

Lemma 2.1: (General existence conditions for stabiliz-
ing PID-controllers): Let G ∈ Rp

ny×nu . Let (normal)

rankG(s) = ny . a) If G admits a PID-controller such that

the integral constant Ki ∈ IRnu×ny is nonzero, then G
has no transmission-zeros at s = 0 and rankKi = ny .

b) If G admits a PID-controller such that any one of the

three constants Kp , Kd , Ki is nonzero, then G admits a

PID-controller such that any two of the three constants is

nonzero, and G admits a PID-controller such that all three

constants is nonzero. If G admits a PID-controller such

that two of the three constants Kp , Kd , Ki is nonzero,

then G admits a PID-controller such that all three constants

is nonzero. In these statements, the integral constant is

nonzero only if G has no transmission-zeros at s = 0.

Lemma 2.2: (Integral controllers for stable systems): Let

H ∈ Sny×nu , (normal) rankH = ny ≤ nu . i) There exists a

stabilizing I-controller for H if and only if rankH(0) = ny .

ii) Suppose rankH(0) = ny . Let H(0)I ∈ IRnu×ny be any

right-inverse of H(0). Then for any ρ ∈ IR satisfying

0 < ρ < ‖ H(s) H(0)I − I

s
‖−1, (2)

H is stabilized by the I-controller Ci =
ρH(0)I

s
.

Proof : i) Let Ci = Ki/s stabilize H . For positive a ∈ IR,

M := s
s+aIny + H Ki

s+a = (Iny + HCi) s
s+aIny is uni-

modular. Since a �= 0, rankM(0) = rank(a−1H(0)Ki) =
ny ≤ min{rankH(0), rankKi} ≤ min{ny, nu} = ny

implies rankH(0) = ny . Then there exists a right inverse

H(0)I ∈ IRnu×ny , i.e., H(0)H(0)I = Iny . ii) Let Ki =
ρH(0)I ; define M̂ := (s+a)

(s+ρ)M = s I
s+ρ + HCi s

s+ρ = Iny
+

ρs
s+ρ ( H(s)H(0)I−Iny

s ). Since ‖ ρs
s+ρ‖ = ρ, for any ρ > 0 as in

(2), we have ‖ ρs
s+ρ ( H(s)H(0)I−Iny

s ) ‖ < 1. Therefore, M̂ is

unimodular; equivalently, M is unimodular since a, ρ > 0;

therefore Ci = ρH(0)I/s stabilizes H .

Proposition 2.1: (Two step PID-controller synthesis): Let

G ∈ Rp
ny×nu , (normal) rankG(s) = ny , G have no

transmission-zeros at s = 0. Suppose G admits a stabi-

lizing PD-controller Cpd . Let Ki/s be any I-controller that

stabilizes H := G(I + CpdG)−1 . Then

Cpid = Cpd +
Ki

s
, (3)

is a PID-controller that stabilizes G.

Proof: Let G = XY −1 be an RCF, G = Ỹ −1X̃ be

an LCF. Since Cpd stabilizes G, Mpd := Y + CpdX

and equivalently, M̃pd = Ỹ + X̃Cpd are unimodular, and

Y M−1
pd + CpdXM−1

pd = I . By assumption, Ki/s stabilizes

H = XM−1
pd . For any a ∈ IR, a > 0, Mg := s I

s+a +
H Ki

s+a = s I
s+a +XM−1

pd
Ki

s+a is unimodular. An RCF Cpid =

NcD
−1
c for Cpid = Cpd + Ki/s is NcD

−1
c := ( s

s+aCpd +
Ki

s+a )( s
s+aI)−1 = (Cpd Mg + Y M−1

pd
Ki

s+a )( s
s+aI)−1. Since

Ỹ X = X̃Y , we have Ỹ Dc + X̃ Nc = Ỹ ( s
s+aI +

XM−1
pd

Ki

s+a )+ X̃Cpd Mg = (Ỹ + X̃Cpd)Mg = M̃pdMg is

unimodular. Therefore, Cpid in (3) stabilizes G.

In Proposition 2.1, the I-controller Ki/s for the stable

system H := G(I + CpdG)−1 can be chosen as in

Lemma 2.2: Choose any ρ ∈ IR satisfying

0 < ρ < ‖ (I + GCpd)−1G(s)H(0)I − I

s
‖−1, (4)

where H(0) = G(0)(I + Cpd(0)G(0))−1 = G(0)(I +
KpG(0))−1. Condition (4) can be expressed as (5) and (6):

0 < ρ < ‖(I+GCpd)−1 G(s)(H(0)I − Cpd) − I

s
‖−1, (5)

0 < ρ < ‖(I+GCpd)−1 G(s)GI(0) − I

s
−H(s)

Kd

τds + 1
‖−1.

(6)

Then H is stabilized by the I-controller Ci = ρ H(0)I/s .

Lemma 2.1 states that if a stabilizing Cp , Ci , Cd exists

for G, then the remaining constants can be selected to ex-

tend to stabilizing PI, ID, PD, PID-controllers. Lemma 2.1

does not explicitly describe the plants that admit P, I, or

D-controllers. Specific plant classes are investigated next.

III. MAIN RESULTS

We propose methods to explicitly synthesize Cpid for five

plant classes that admit PID-controllers. Let G ∈ Rp
ny×nu ,

(normal) rankG(s) = ny . 1) Stable plants: If G ∈ Sny×nu ,

then there exist P, D, PD-controllers. If rankG(0) = ny ,

then there also exist I, PI, ID, PID-controllers. 2) Unstable

(square) plants with no finite zeros in U and with relative

degree equal to 0: If G−1 ∈ Sny×ny , then there exist P,

I, D, PD, PI, PID-controllers. 3) Unstable (square) plants

with no zeros in U and with relative degree equal to 1: If
1

(s+a)G
−1 ∈ Sny×ny (for any a ∈ IR, a > 0), then there

exist P, PD, PI, PID-controllers. 4) Unstable (square) plants

with only one zero at s = 0, no other zeros in U , and

with relative degree equal to 0: If s
(s+a)G

−1 ∈ Sny×ny

(for any a ∈ IR, a > 0), then there exist P, D, PD-

controllers. 5) Unstable (square) plants with only one pole

or only two poles at s = 0 and no other poles in U : If

either s
s+aG ∈ Sny×ny , or s2

(s+a)(s+b)G ∈ Sny×ny (for any

a, b ∈ IR, a, b > 0), then there exist P, I, D, PI, PD, PID-

controllers.

A. Stable Plants

Let G ∈ Sny×nu ; rankG = ny ; G has no poles in U . By

Lemma 2.1, PID-controllers with nonzero Ki exist only if

G has no transmission-zeros at s = 0. Stable plants admit

P, D, PD-controllers; G admits I, PI, ID, PID-controllers if

and only if rankG(0) = ny . Proposition 3.1 (i) develops

a PD-controller. The PID-controller in (ii) adds an integral

term. An alternate PID-controller is in (iii), which is not

based on adding an integral term onto a PD-controller.
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Proposition 3.1: Let G ∈ Sny×nu , rankG(s) = ny. i)
PD-design: Choose any K̂p , K̂d ∈ IRny×nu , τd > 0.

Choose any α ∈ IR satisfying

0 < α < ‖ ( K̂p +
K̂ds

τds + 1
) G(s) ‖−1 . (7)

Let Kp = αK̂p , Kd = αK̂d ; then a stabilizing PD-

controller for G is

Cpd = αK̂p +
αK̂ds

τds + 1
. (8)

For K̂d = 0, (8) is a P-controller Cp ; for K̂p = 0, (8) is

a D-controller Cd . ii) PID-design: Let rankG(0) = ny;

let GI(0) be a right-inverse of G(0). Let Cpd be as in

(8). Choose any ρ ∈ IR satisfying (6). Let Ki = ρ(αK̂p +
G(0)I); then a stabilizing PID-controller for G is

Cpid = αK̂p +
ρ(αK̂p + G(0)I)

s
+

αK̂ds

τds + 1
. (9)

For K̂d = 0, (9) is a PI-controller Cpi; for K̂p = 0,

(9) is an ID-controller Cid. iii) Alternate PID-design: Let

rankG(0) = ny; let GI(0) be a right-inverse of G(0).
Choose any K̂p , K̂d ∈ IRny×nu , τd > 0. Choose any

γ ∈ IR satisfying

0 < γ < ‖G(s)(K̂p +
K̂ds

τds + 1
) +

G(s)GI(0) − I

s
‖−1.

(10)

Let Kp = γK̂p , Kd = γK̂d , Ki = γGI(0); then

Cpid = γK̂p +
γGI(0)

s
+

γK̂ds

τds + 1
(11)

is a PID-controller that stabilizes G. For K̂d = 0, (11) is

a PI-controller Cpi ; for K̂p = 0, (11) is an ID-controller

Cid ; for K̂d = K̂p = 0, (11) is an I-controller Ci .

Proof : i) Let Cpd be as in (8) for α ∈ IR as in (7).

Then Mpd := I + CpdG is unimodular and Cpd stabilizes

G. Since K̂p , K̂d are arbitrary, they can be zero. ii)
Since Cpd in (8) is a stabilizing controller for G, H =
GM−1

pd ∈ Sny×nu . Since Mpd is unimodular, rankH(0) =
rankG(0)Mpd(0)−1 = rankG(0) = ny ; H(0) = G(0)(I +
αK̂pG(0))−1, H(0)I = αK̂p + GI(0). By Lemma 2.2,

for any ρ ∈ IR as in (6), Ki/s = ρH(0)I/s = ρ (αK̂p +
GI(0) ) is an I-controller stabilizing H . By Proposition 2.1,

Cpid = Cpd + Ki/s in (9) stabilizes G. iii) Let Cpid

be as in (11) for γ ∈ IR as in (10). Then Mpid :=
s I

s+γ +G s
s+γ Cpid = I + γ s

s+γ [G (K̂p + K̂ds
τds+1 )+ GGI(0)−I

s ]
is unimodular and Cpid stabilizes G.

Example 3.1: Let G =
[ 1

s+1 3
3

s+2
s+1
s+3

]
; rankG(0) = 2.

Let K̂p =
[

1 2
0 2

]
, K̂d =

[
1 0
6 0

]
, τd = 0.1. Then α =

0.0026 < 0.0053 satisfies (7). The PD-controller in (8) is

Cpd =
[ 0.0286s+0.026

s+10 0.0052
0.156s
s+10 0.0052

]
. Choose ρ = 0.5420 <

1.0840 satisfying (6). The PID-controller in (9) is Cpid =

Cpd +
1
s

[ −0.0419 0.3931
0.1951 −0.1272

]
. The closed-loop poles

are {−6.6929,−2.8749,−1.1724 ± j0.5087,−0.6096}.

B. Unstable plants with no U-zeros:

Let G ∈ Rp
ny×ny be square, rankG = ny ; G has no

transmission-zeros in U (including infinity). Therefore, G
has an RCF G = XY −1 = Iny (G−1)−1. The necessary

condition in Lemma 2.1 for existence of PID-controllers

with nonzero Ki is satisfied since G has no transmission-

zeros at s = 0 ∈ U . Then G admits P, I, PI, PD, PID-

controllers; G admits D-controllers if and only if G has no

poles at s = 0. Proposition 3.2 (i) develops a PD-controller

synthesis; it gives a P-controller for Kd = 0. For G with no

poles at s = 0, a D-controller is in (ii). The PID-controller

in (iii) adds an integral term; it gives a PI-controller for

Kd = 0. An ID-controller is in (iv) for plants with no poles

at s = 0 based on the D-controller in (ii). An alternate PID-

controller is in (v), which is not based on adding an integral

term.

Proposition 3.2: Let G ∈ Rp
ny×ny , rankG(s) = ny .

Let G have no transmission-zeros in U . i) PD-design:

Choose any Kd ∈ IRny×ny , τd > 0; choose any nonsingular

K̂p ∈ IRny×ny . Choose any α ∈ IR satisfying

α > ‖ K̂
−1

p ( G−1(s) +
Kds

τds + 1
) ‖ . (12)

Let Kp = αK̂p ; then a stabilizing PD-controller for G is

Cpd = α K̂p +
Kds

τds + 1
. (13)

For Kd = 0, (13) is a P-controller. ii) PID-design: Let Cpd

be as in (13). With G−1(0) replacing GI(0) in (6), choose

any positive ρ ∈ IR satisfying (6). Let Ki = ρ(αK̂p +
G−1(0) ); then a stabilizing PID-controller for G is

Cpid = αK̂p +
ρ(αK̂p + G−1(0))

s
+

Kds

τds + 1
. (14)

If Kd = 0, (14) is a PI-controller. iii) D-design: Let

rankG−1(s)|s=0 = ny. Choose any τd > 0. Choose any

δ ∈ IR satisfying

δ > ‖ (τds + 1) G−1(s) G(0) − I

s
‖ . (15)

Let Kp = 0, Kd = δ G−1(0); then a stabilizing D-controller

for G is

Cd =
δ G−1(0) s

τds + 1
. (16)

iv) ID-design: Let rankG−1(s)|s=0 = ny . Let Kp = 0; let

Cd be as in (16). Choose any positive β ∈ IR satisfying

0 < β < ‖ (I + GCd)−1G(s)G−1(0) − I

s
‖−1 . (17)

Let Ki = βG−1(0); then a stabilizing ID-controller for G
is

Cid =
βG−1(0)

s
+

δ G−1(0) s

τds + 1
. (18)
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v) Alternate PID-design: Choose Kp,Kd ∈ IRny×ny , τd >
0 such that det[I +(Kp + τ−1

d Kd)G(∞)] �= 0. Let Wpd :=

G−1(s) + Kp +
Kds

τds + 1
. Choose any γ ∈ IR satisfying

γ > ‖s [ Wpd (G(∞)−1 +Kp + τ−1
d Kd )−1 − I ] ‖. (19)

Let Ki = γ ( G(∞)−1 + Kp + τ−1
d Kd ); then

Cpid = Kp+
γ[G(∞)−1 + Kp + τ−1

d Kd]
s

+
Kds

τds + 1
(20)

is a stabilizing PID-controller for G. If Kd = 0, (20) is a

PI-controller; if Kp = 0, (20) is an ID-controller; if Kp =
Kd = 0, (20) is an I-controller.

Proof : By assumption, G = XY −1, X = Iny
, Y = G−1.

i) Let Cpd be as in (13) for α ∈ IR as in (12). Then Cpd

stabilizes G since Mpd := Y + Cpd X = G−1 + Cpd =
Kp(I + 1

αK̂
−1

p (G−1 + Kds
τds+1 ) ) is unimodular. Since Kd is

arbitrary, it can be zero. ii) Since Cpd in (13) stabilizes G,

H := G(I +CpdG)−1 is stable. Since Mpd is unimodular,

H = XM−1
pd = M−1

pd is unimodular; hence rankH(0) =
ny , H(0)−1 = Mpd(0) = αK̂p + G−1(0). By Lemma 2.2,

for ρ ∈ IR as in (6), Ki/s = ρH(0)−1/s stabilizes H . By

Proposition 2.1, Cpid = Cpd + Ki/s in (14) stabilizes G.

iii) Let Cd be as in (16) for δ ∈ IR as in (15). Then Md :=
Y + CdX = G−1 + δG(0)−1s

τds+1 is unimodular since δ, τd > 0

and MdG(0) (τds+1)
(δs+1) = I + s

(δs+1) [
(τds+1)G−1G(0)−I

s ] is

unimodular. Therefore, Cd stabilizes G. iv) Since Cd in

(16) stabilizes G, H is stable. Since Md is unimodular,

H = XM−1
d = M−1

d is unimodular; hence rankH(0) =
ny , H(0)−1 = Md(0) = G(0)−1. By Lemma 2.2, for

β ∈ IR as in (17), Ki/s = βH(0)−1/s is an I-controller

stabilizing H . By Proposition 2.1, Cid = Cd + Ki/s in

(18) stabilizes G. v) Let Cpid be as in (20) for γ ∈ IR as

in (19). Since Kp,Kd, τd are such that Wpd(∞) is non-

singular, W−1
pd (∞) exists. Then Mpid := s G−1

s+γ + sCpid
s+γ =

s
s+γ Wpd + γ

s+γ Wpd(∞) = [I + 1
s+γ s (Wpd(s)W−1

pd (∞)−
I) ]Wpd(∞) is unimodular. Therefore, Cpid stabilizes G.

Since K̂p , K̂d are arbitrary, they can be zero.

Example 3.2: Given G = (s+2)(s+3)(s+4)
5s(s−1)(s−5) ; G−1 is sta-

ble. Let Kd = −1.5, τd = 0.01, K̂p = 2. Choos-

ing α = 200 as in (12), the PD-controller in (13) is

Cpd = 400 − 1.5s/(0.01s + 1). The closed-loop poles

are {−158.71,−3.50 ± j0.87,−1.83}. Following Propo-

sition 3.2-(v), let Kp = −10, Kd = 0.5, τd =
0.01. Let Ki = 45γ with γ = 120 satisfying (19).

Then the PID-controller in (20) is Cpid = −10 +
5400/s + 0.5s/(0.01s + 1). The closed-loop poles are

{−2.0442,−2.7801,−4.2818,−53.5580 ± j94.693}.

Example 3.3: Let G =
[

s+1
s−1

s+1
s−1

0 2

]
; G−1 is stable;

rankG−1(s)|s=0 = 2. Follow Proposition 3.2-(iii): Choos-

ing τd = 0.1, (15) is satisfied for δ > 2.7596. With δ = 3,

the D-controller in (16) is Cd =
[ −30s

s+10
−15s
s+10

0 15s
s+10

]
. The

closed-loop poles are {−0.3621 ± j0.4623,−0.3226}.

C. Unstable plants with only one zero at infinity:

Let G ∈ Rp
ny×ny be square, have full (normal) row-

rank and be strictly-proper. Other than a blocking-zero at

infinity (of multiplicity one), let G have no transmission-

zeros in U . For SISO systems, the unstable plant has relative

degree one. Therefore, G has an RCF G = XY −1 =
1

s + a
Iny

(
1

s + a
G−1)−1, a ∈ IR, a > 0. The necessary

condition in Lemma 2.1 for existence of PID-controllers

with nonzero Ki is satisfied since G has no transmission-

zeros at s = 0 ∈ U . Plants in this class admit P, PI, PD, PID-

controllers; but some (for example, G = 1
s−p , p > 0) do

not admit stabilizing D-controllers Cd = Kds/(τds+1) for

any τd > 0 or I-controllers Ci = Ki/s . Proposition 3.3 (i)

develops a PD-controller synthesis; the PID-design in (ii)

adds an integral term to the PD-controller in (i).

Proposition 3.3: Let G ∈ Rp
ny×ny , rankG(s) = ny .

Let
1

s + a
G−1 ∈ M(S), for a ∈ IR, a > 0. i) PD-design:

Choose any Kd ∈ IRny×ny , τd > 0. With Y (∞)−1 =
(s + a)G(s)|s→∞, choose any positive α ∈ IR satisfying

α > ‖ Y (∞)−1 ( G−1(s) +
Kds

τds + 1
) − sI ‖ . (21)

Let Kp = αY (∞); then a stabilizing PD-controller for G
is

Cpd = α Y (∞) +
Kds

τds + 1
. (22)

If Kd = 0, (22) is a P-controller.

ii) PID-design: Let Cpd be as in (22). With Kd arbitrary,

and G−1(0) replacing GI(0) in condition (6), choose any

positive ρ ∈ IR satisfying (6). Let Ki = ρ(G−1(0) +
αY (∞)); then a stabilizing PID-controller for G is

Cpid = αY (∞)+
ρ(αY (∞) + G−1(0))

s
+

Kds

τds + 1
. (23)

If Kd = 0, (23) is a PI-controller.

Proof : By assumption, G = XY −1; X = (s + a)−1Iny ,

Y = (s + a)−1G−1. i) Let Cpd be as in (22) for

α ∈ IR satisfying (21). Then Mpd := Y + CpdX =
1

s+a [G−1+(Kp+ Kds
τds+1 )] is unimodular since a, α > 0 and

(s+a)
(s+α)Y (∞)−1Mpd = I + 1

s+α [ Y (∞)−1( G−1 + Kds
τds+1 )−

sI] is unimodular. Since Kd is arbitrary, it can be zero.

ii) Since Cpd in (22) stabilizes G, H = XM−1
pd is stable.

Since Mpd is unimodular, H = (s + a)−1M−1
pd implies

rankH(0) = ny , H(0)−1 = aMpd(0) = Kp + G−1(0) =
αY (∞) + G−1(0). By Lemma 2.2, for ρ ∈ IR as in (6),

Ki/s = ρH(0)−1/s stabilizes H . By Proposition 2.1,

Cpid = Cpd + Ki/s in (23) stabilizes G.

Example 3.4: Given G = −2(s+2)(s+3)
(s−4)[(s−2)2+9] , let Kd =

−0.1, τd = 0.004. Choose α = 38 satisfying (21). With

Y (∞)−1 = −2, the PD-controller in (22) is Cpd =
−19 − 0.1s/(0.004s + 1). The closed-loop poles are

{−0.91,−304.42,−12.34 ± j2.5}. If Kd = 0, choosing

α = 80 satisfying (21), the P-controller Cp = −40. The

closed-loop poles are {−1.2591,−5.1854,−65.556}. For a
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PID-design, start with Cpd , i.e., Kp = −19, Kd = −0.1,

τd = 0.004. Choosing ρ = 0.39 satisfying (6), Cpid =
−19 − 5.72/s − 0.1s/(0.004s + 1) as in (23). The closed-

loop poles are {−304.41,−12.23± j3.58,−0.56± j0.17}.

Example 3.5: Given G = 1
s−1

[
1 2
3 1

]
, let τd = 0.1,

Kd =
[

1 0
0 0

]
. With Y (∞)−1 =

[
1 2
3 1

]
, choose

α = 22 > 21.9507 satisfying (21). The PD-controller in

(22) is Cpd =
[

5.6s−44
s+10 8.8
13.2 −4.4

]
. The closed-loop poles

are {−35,−21,−6}. With this Cpd , ρ = 2.8360 < 5.6719
satisfies (6). The PID-controller in (23) is Cpid = Cpd +
1
s

[ −11.9112 23.8224
35.7336 −11.9112

]
. The closed-loop poles are

{−33.4801,−17.6200,−3.7599 ± j1.9108,−3.38}.

D. Unstable plants with only one zero at the origin:
Let G ∈ Rp

ny×ny be square, have full (normal) row-

rank. Other than a blocking-zero at s = 0 (of multiplicity

one), let G have no transmission-zeros in U (including

infinity); i.e., the G has no poles at s = 0. Therefore, G has

an RCF G = XY −1 =
s

as + 1
Iny (

s

as + 1
G−1)−1, a ∈ IR,

a > 0. The necessary condition in Lemma 2.1 for existence

of PID-controllers with nonzero Ki is not satisfied. Plants in

this class admit P-controllers and PD-controllers. Proposi-

tion 3.4 develops a PD-controller synthesis, which converts

to a P-design. These plants may admit D-controllers, but

the synthesis in Proposition 3.4 does not address this case.
Proposition 3.4: Let G ∈ Rp

ny×ny , rankG(s) = ny .

Let
s

as + 1
G−1 ∈ M(S), for a ∈ IR, a > 0. Choose

any Kd ∈ IRny×ny , τd > 0. With Y (0)−1 = s−1G(s)|s=0,

choose any positive α ∈ IR satisfying

α > ‖s Y (0)−1 G−1(s) − I

s
+ Y (0)−1 Kds

τds + 1
‖. (24)

Let Kp = αY (0); then a stabilizing PD-controller for G is

Cpd = α Y (0) +
Kds

τds + 1
. (25)

If Kd = 0, (25) is a P-controller.
Proof : By assumption, G = XY −1, X = s(as + 1)−1Iny ,

Y = s(as + 1)−1G−1 implies Y (0)−1sG|s=0 = I . Let

Cpd be as in (25) for α ∈ IR as in (24). Then Mpd :=
Y + CpdX = s

as+1 [ G−1 + Kp + Kds
τds+1 ] = Y (0)[ αs

as+1I +
s

as+1Y (0)−1(G−1 + Kds
τds+1 )] is unimodular since a, α >

0 and
(as+1)
(αs+1) Y (0)−1Mpd = I + s

αs+1 [Y (0)−1sG−1−I
s +

Y (0)−1 Kds
τds+1 ] is unimodular. Therefore, Cpd stabilizes G.

Since Kd is arbitrary, it can be zero.

Example 3.6: Given G = s
s−1

[
1 2
3 1

]
, let τd = 1,

Kd =
[

0 3
1 1

]
. With Y (0)−1 =

[ −1 −1
−3 −2

]
, choose

α = 13 > 12.9020 satisfying (24). The PD-controller in

(25) is Cpd =
[

26 −10s−13
s+1−38s−39

s+1
14s+13

s+1

]
. The closed-loop

poles are {−50.8161,−1.0237,−0.0832,−0.0770}.

E. Plants with poles in the stable region and at the origin:

The plants in this class are square and have poles at s = 0
of multiplicity one or two, but no other U-poles. The poles

at s = 0 appear in some or all entries of G. If the poles at

s = 0 appear in some but not all entries of G, we further

assume that G has no transmission-zeros at s = 0. When

every entry of G has poles at s = 0, the assumption of no

transmission-zeros at s = 0 is obviously satisfied.

1) Plants with poles in the stable region and only one
pole at the origin: Let Y :=

s

as + 1
I , a ∈ IR, a > 0.

Let G ∈ Rp
ny×ny have full normal rank. Let X :=

GY = s
as+1G ∈ Sny×ny for a ∈ IR, a > 0, and let

rankX(0) = ny . Some or all entries of G(s) have a pole

(of multiplicity one) at s = 0; G has no other poles in U .

Furthermore, X(0) = GY (s)|s=0 = sG(s)|s=0 nonsingular

implies G has no transmission-zeros at s = 0; hence, the

necessary condition in Lemma 2.1 for existence of PID-

controllers with nonzero Ki is satisfied. Then G admits

P, PD, PI, PID-controllers. G does not admit D-controllers

Cd = Kds/(τds + 1) since the plant pole at s = 0 would

then cancel the controller’s zero. Some plants (for example,

G = 1
s(s+p) , p ≥ 0) do not admit I-controllers Ci = Ki/s.

Proposition 3.5 (i) develops a PD-controller synthesis; the

PID-controller in (ii) adds an integral term.

Proposition 3.5: Let G ∈ Rp
ny×ny , rankG(s) = ny .

Let X :=
s

as + 1
G ∈ M(S), for a ∈ IR, a > 0. Let

X(0) = sG(s)|s=0 be nonsingular. i) PD-design: Choose

any K̂d ∈ IRny×ny , τd > 0. Choose any α ∈ IR satisfying

0 < α < ‖ X(0)−1s G(s) − I

s
+

K̂ds

τds + 1
G(s) ‖−1 . (26)

Let Kp = αX(0)−1, Kd = αK̂d ; then a stabilizing PD-

controller for G is

Cpd = αX(0)−1 +
αK̂ds

τds + 1
. (27)

If K̂d = 0, (27) is a P-controller.

ii) PID design: Let Cpd be as in (27). With Kd = αK̂d ,

and G−1(0) replacing GI(0) in (6), choose any ρ ∈ IR
satisfying (6). Let Ki = ραX(0)−1; then a stabilizing PID-

controller for G is

Cpid = αX(0)−1 +
ραX(0)−1

s
+

αK̂ds

τds + 1
. (28)

If Kd = 0, (28) is a PI-controller.

Proof : By assumption, G = XY −1, where X = (as +
1)−1sG , Y = (as + 1)−1sI . i) Let Cpd be as in (27)

for α ∈ IR satisfying (26). Then Mpd := Y + Cpd X =
s I

as+1+Cpd
s G

as+1 = (s+α)
(as+1) [I+ α s

s+α (X(0)−1s G−I
s + Kd s

τds+1G)]
is unimodular since a, α > 0. Therefore, Cpd stabilizes G.

Since Kd is arbitrary, it can be chosen as zero. ii) Since

Cpd in (27) is a stabilizing controller for G, H = XM−1
pd is

stable. Since rankX(0) = ny , rankH(0) = ny , H(0)−1 =
Kp = αX(0)−1. By Lemma 2.2, for any ρ ∈ IR as in
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(6), Ki/s = ρH(0)−1/s stabilizes H . By Proposition 2.1,

Cpid = Cpd + Ki/s in (28) stabilizes G.

Example 3.7: Given G =
[

s+2
s

1
s

s+1
s 1

]
, let τd = 0.1,

K̂d =
[

1 0
2 3

]
. With X(0) =

[
2 1
1 0

]
, choose α =

0.0116 < 0.0231 satisfying (26). The PD-controller in (27)

is Cpd =
[ 0.116s

s+10 0.0116
0.2436s+0.116

s+10
0.3248s−0.232

s+10

]
.

2) Plants with poles in the stable region and two poles

at the origin: Define Y :=
s2

(as + 1)(bs + 1)
I , a, b ∈

IR, a, b > 0. Let G ∈ Rp
ny×ny have full normal rank.

Let X := GY = s2

(as+1)(bs+1)G ∈ Sny×ny , for a, b ∈
IR, a, b > 0 and let rankX(0) = ny. Some or all entries

of G(s) have a pole of multiplicity two at s = 0; other

entries may have a pole of multiplicity one or no poles at

s = 0; G has no other poles in U . Furthermore, X(0) =
GY (s)|s=0 = s2G(s)|s=0 nonsingular implies G has no

transmission-zeros at s = 0; hence, the necessary condition

in Lemma 2.1 for existence of PID-controllers with nonzero

Ki is satisfied. Then G admits PD, PID-controllers; it does

not admit D-controllers Cd = Kds/(τds + 1) since the

plant pole at s = 0 would cancel the controller’s zero.

Some plants (for example, G = 1
s2(s+p) , p ≥ 0) do not

admit P-controllers Cp = Kp or I-controllers Ci = Ki/s.

Proposition 3.6 (i) develops a PD-controller synthesis; the

PID-controller in (ii) adds an integral term.

Proposition 3.6: Let G ∈ Rp
ny×ny , rankG(s) = ny .

Let X :=
s2

(as + 1)(bs + 1)
G ∈ M(S), for a ∈ IR, a > 0.

Let X(0) = s2 G(s)|s=0 be nonsingular. i) PD-design:

Choose any δ ∈ IR satisfying

0 < δ < ‖
1

(τds+1)X(0)−1s2 G(s) − I

s
‖−1 . (29)

Let Kd = αX(0)−1, τd > 0. Choose any α ∈ IR satisfying

0 < α < ‖
δX(0)−1(I + G Kds

(τds+1) )
−1sG(s) − I

s
‖−1.

(30)

Let Kp = αδX(0)−1; then

Cpd = αδX(0)−1 +
δX(0)s
τds + 1

(31)

is a stabilizing PD-controller for G.

ii) PID design: Let Cpd be as in (31). With Kd = δ X(0)−1,

and G−1(0) replacing GI(0) in (6), choose any ρ ∈ IR
satisfying (6). Let Ki = ραδX(0)−1; then

Cpid = δαX(0)−1 +
δαρ X(0)−1

s
+

δX(0)−1s

τds + 1
(32)

is a stabilizing PID-controller for G.

Proof : By assumption, G = XY −1, X = (as + 1)−1(bs +
1)−1s2 G , Y = (as + 1)−1(bs + 1)−1s2I . i) For δ ∈ IR as

in (29), Wd := s I
as+1 + Kd s

(τds+1) (bs + 1)X = (s+δ)
(as+1) [ I +

δ s
s+δ (

1
(τds+1) X(0)−1s2G−I

s ) ] is unimodular. Let Cpd be as in

(31) for α ∈ IR as in (29). Define Hd := (bs+1) X W−1
d =

s(I + G Kd s
(τds+1) )

−1G ; then Hd(0)−1 = δX(0)−1. Then

Mpd := Y + Cpd X s
bs+1 [ s

as+1I + Kd s
τds+1 (bs + 1)X ] +

KpX = (s+α)
(bs+1) [I + α s

s+α ( δ X(0)−1Hd−I
s ) ]Wd is unimod-

ular since b, α > 0 and Wd is unimodular. Therefore,

Cpd stabilizes G. ii) Since Cpd in (31) stabilizes G,

H = XM−1
pd = XW−1

d (bs + 1)s−1(I + KpXW−1
d (bs +

1)s−1)−1 = s−1Hd(I + Kds
−1Hd)−1 is stable. Since

rankX(0) = ny , rankH(0) = ny , H(0)−1 = Kp =
αδX(0)−1. By Lemma 2.2, for any ρ ∈ IR satisfying (6),

Ki/s = ρH(0)−1/s is an I-controller that stabilizes H . By

Proposition 2.1, Cpid = Cpd +Ki/s in (32) stabilizes G.

IV. CONCLUSIONS

We showed existence of stabilizing PID-controllers for

several LTI, MIMO plant classes. We proposed systematic

PID-controller synthesis procedures that guarantee robust

closed-loop stability. We achieved stabilizing PID-controller

designs with freedom in the design parameters that can be

used towards satisfaction of performance criteria. Future

goals of this study include consideration of performance

issues. While PID-controllers can be designed using various

other methods, the systematic procedures proposed here are

straightforward and offer great design flexibility.

� � � C � ��� G �
�−
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v

w y

Fig. 1. Unity-Feedback System Sys(G, C).
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