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Abstract— This paper develops a novel tool of establishing
global asymptotic stability of nonlinear interconnected systems.
The aim is to incorporate useful flexibility in small-gain tech-
niques for integral Input-to-State Stable(iISS) and Input-to-State
Stable(ISS) systems. This paper introduces a unique idea of
“parametrization of supply rates”, which parametrizes a set of
many supply rates with which stability of an interconnected
system can be derived from a single small-gain condition. The
parametrization offers convenient flexibility of free functions to
determine proper supply rates that match systems and that lead to
stability of the interconnection. The new parametrization covers
iISS systems as well as ISS systems.

I. INTRODUCTION

This paper addresses the problem of global asymptotic sta-
bility of interconnection of nonlinear dissipative systems. This
paper focuses on the question of how to deduce supply rates
for establishing the stability of the interconnected systems from
simple or natural supply rates and Lyapunov(storage) functions of
constituent systems. The unique idea this paper employs to attain
this goal is incorporation of new flexibilities into advanced small-
gain theorems, and development of new stability criteria based
on parametrization of supply rates. This idea originated from the
author’s paper [5]. In [5], the author has derived a parametrization
of supply rates for input-to-state stable(ISS) systems. This paper
seeks a similar, but new parametrization of supply rates for integral
input-to-state stable(iISS) systems which are more general and
allowed to have stronger nonlinearities than ISS systems.

Let us consider a feedback interconnection of two systems Σ1
and Σ2 shown in Fig.1. In order to invoke the ISS small-gain
theorem[8], [14] for establishing stability of the interconnection,
we need to pick and fix supply rates for Σ1 and Σ2 beforehand.
Suppose that we have chosen a supply rate of Σ2 naturally. There
would be two possible ways to select a supply rate of Σ1.

S1) calculate an ISS type of supply rate as an upper bound of the
time-derivative of a naturally guessed or somehow composed
Lyapunov function along the trajectories of Σ1;

S2) borrow functions from the supply rate of Σ2, or simply select
functions, so that the ISS small-gain condition is fulfilled.

The former supply rate is not guaranteed to meet the ISS small-
gain condition(a contraction inequality) although the supply rate
is guaranteed to be accepted by Σ1. The latter one forces the
ISS small-gain condition to be satisfied. Such a supply rate is,
however, usually incompatible with Σ1. Indeed, choosing a supply
rate leading us to desired stability is not an easy task. To this
problem, this paper and [5] pursue a new approach with which
we are able to combine advantages of S1 and S2. If we select
only one function for the supply rate of Σ1 in the sense of S2,
there is usually large gap between the function and supply rates
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Fig. 1. Feedback interconnected system

accepted by Σ1 automatically in the sense of S1. In order to fill the
gap, we generate many candidates from the initial choice obtained
in view of S2. The primary idea is to parametrize a set of many
candidates for supply rate functions that meet the ISS small-gain
condition by introducing free functional parameters.

The ISS property has been playing a important role in control of
interconnected nonlinear systems[10], [9], [2]. The concept of iISS
which is broader than ISS captures a very important characteristic
essentially nonlinear systems often have[11]. In contrast to ISS,
there are few tools of making use of the iISS in analysis and design
of interconnected systems although the property of iISS by itself
has been investigated deeply. For instance, stability criteria similar
to the ISS small-gain theorem have not been available until a
very recent breakthrough accomplished in [6]. The small-gain-like
theorem developed in [6] assumes that supply rates of individual
subsystems are given and fixed a priori as the ISS small-gain
theorem does. The issue of how to select successful supply rates
remains unaddressed.

The purpose of this paper is to develop a new parametrization
of supply rates to establish stability of interconnected systems
involving iISS properties. It is demonstrated that contraction in-
equalities of the ISS small-gain ‘condition’ type are still applicable
to iISS systems although the ISS small-gain ‘theorem’ limits
the applicability to ISS systems. It is shown that the difference
between iISS systems and ISS systems appears in the allowable
set of free functions in the parametrization. Since iISS is broader
or ’weaker’ than ISS, the set of admissible free functions for iISS
systems becomes smaller than that for ISS systems. Thereby, this
paper successfully extends the work in [5] to iISS systems.

II. MOTIVATING EXAMPLE: IDEA AND USEFULNESS

Consider a nonlinear interconnected system defined by

Σ1 : ẋ1 = −µx3
1 +

x2
1x2

x2 +1
, µ = 1.1, x1(0) ∈ R+ (1)

Σ2 : ẋ2 = f (x2,x1), x2(0) ∈ R+ (2)

where x1 and x2 are scalar. The set R+ denotes the interval [0,∞).
Assume that the interconnected system has an equilibrium at the
origin x = [x1,x2]T = 0, and that all trajectories remain in the
positive cone x(t) = [x1(t),x2(t)]T ∈ R

2
+ for all t ∈ R+, i.e.,

f2(0,0) = 0, f2(0,x1) ≥ 0, ∀x1 ∈ R+

Supposed that we do not have information about f2(x2,x1) except
the existence of a continuously differentiable radially unbounded
function V2 : x2 ∈ R+ → R+ satisfying

dV2(x2)
dt

≤− x2

x2 +1
+ x1 (3)
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along the trajectories of Σ2. Without any loss of generality, the
function V2 is increasing with respect to x2 ∈ R+. This section
addresses the question of whether the x = 0 of the interconnected
system is globally asymptotically stable. The assumption (3)
allows systems which are not ISS with respect to input x1 and
state x2. It only guarantees iISS since V2 is an iISS Lyapunov
function[11]. In contrast, the system Σ1 is ISS with respect to input
x2 and state x1, and V1 = x1 is an ISS Lyapunov function[10], [12].
We cannot resort to the ISS small-gain theorem[8], [14] in order
to establish the global asymptotic stability of x = [x1,x2]T = 0.

First, let V1(x1) be defined as V1 = x1. It is verified easily from
(1) and (3) that for any constant c > 0, there are not positive
definite functions ρe(x1,x2) such that

V̇1(x1)+ cV̇2(x2) ≤−ρe(x1,x2), ∀x1,x2 ∈ R+ (4)

is achieved along the trajectories of (1)-(2). . Notice that if (4) was
achieved, the function Vcl(x1,x2) = V1(x1) + cV2(x2) could be a
Lyapunov function establishing the global asymptotic stability. The
selection Vcl(x1,x2) =V1(x1)+cV2(x2) is, however, not successful.

Time-derivative of V1 = x1 along the trajectories of (1) satisfies

V̇1(x1) ≤
⎧⎨
⎩

−µx3
1 +a−1

1 x3
1 for x1 ≥ a1

x2
x2+1

−µx3
1 +a2

1

(
x2

x2+1

)3
for x1 ≤ a1

x2
x2+1

≤ −α1(s)+σ1(s)

α1(s) = (µ −a−1
1 )s3, σ1(s) = a2

1

(
s

s+1

)3

(5)

for any a1 > 0. The nonlinear gain function of Σ1 with respect to
input x2 and state x1 is obtained from (5) as

Γ1(s) = (1+ε1)
(

a2
1

µ −a−1
1

)1/3 (
s

s+1

)

for any ε1 > 0 [12], [2]. The minimum of the gain function is
achieved with a1 = 1.5/µ as follows:

Γ1,min(s) = (1+ε1)
(27/4)1/3

µ

(
s

s+1

)
� (1+ε1)

1.890
µ

(
s

s+1

)

The ISS small-gain theorem can tell nothing about stability of the
interconnection with the help of this nonlinear gain. However, a
stability theorem which is recently developed in [6] and called the
iISS-ISS small-gain theorem is applicable to the interconnection
although Σ2 is only iISS. To see this, write (3) as

V̇2(x2) ≤−α2(x2)+σ2(x1), α2(s) =
s

s+1
, σ2(s) = s (6)

and we obtain

σ2 ◦Γ1,min(s) = (1+ε1)
(27/4)1/3

µ

(
s

s+1

)
,

[σ2(s)]k

α1(s)
=

3sk−3

µ
Thus, there exist ε1,ε2 > 0 such that

(1+ε2)σ2 ◦Γ1,min(s) ≤ α2(s), ∀s ∈ R+ (7)

holds for µ > (27/4)1/3 � 1.890. There exists k > 0 such that

[σ2(s)]k

α1(s)
is non-decreasing. (8)

According to the iISS-ISS small-gain theorem[6], the contraction
condition (7) with the help of the non-decreasing property (8)
could imply the global asymptotic stability of x = 0 if µ >
(27/4)1/3 � 1.890 held. However, the stability is not established
for µ = 1.1 given in (1) using [6].

Next, motivated by

V̇1(x1) = x2
1

{
−µx1 +

x2

x2 +1

}
(9)

held for V1 = x1 along the trajectories of (1), we define

V̂1(x1) =
∫ V1(x1)

0

1
s2 ds (10)

For the following choice of α1 and σ1

˙̂V1(x1) = −µx1 +
x2

x2 +1
, α1(s) = µs, σ1(s) =

s
s+1

(11)

there exist ε1,ε2 > 0 and k > 0 such that the contraction condition
(7) holds for µ > 1 and the non-decreasing property (8) holds.
The function in (10) is, however, not integrable, so that V̂1(x1) in
(10) is not qualified as a Lyapunov function. It should be stressed
that a function in the form of

V̂1(x1) =
∫ V1(x1)

0
β (s)ds

with a positive-valued function β (s) decreasing faster than or as
fast as 1/s2 toward ∞ is not radially unbounded, so that it cannot
be used for proving global properties[13]. Indeed, it is not allowed
to use the iISS-ISS small-gain theorem with (10). The selection
Vcl(x1,x2) = V̂1(x1)+cV2(x2) does not prove the global asymptotic
stability either.

Finally, we give an affirmative answer to our question of
stability by choosing the following candidate for a Lyapunov
function of the overall interconnected system.

Vcl(x1,x2) = x1 +
∫ V2(x2)

0

(
s

s+1

)2

ds (12)

If we assume that Σ2 achieves (3) with V2(x2) = x2, we obtain

V̇cl(x1,x2) ≤ −µx3
1 +

x2
1x2

x2 +1
−

(
x2

x2 +1

)3

+ x1

(
x2

x2 +1

)2

≤ −ρe(x1,x2) (13)

along the trajectories of (1)-(2). It is verified that the inequality
(13) holds for some positive definite ρe(x1,x2) if and only if µ > 1
holds. Since Vcl in (12) is positive definite and radially unbounded,
the global asymptotic stability of x = 0 follows from (13).

The above discussions have suggested the following.

A. The existence of a positive definite function V1(x1) which is
radially unbounded and satisfies

V̇1≤ x2
1

{
−µx1 +

x2

x2 +1

}
(14)

1/µ < 1 (15)

implies the global asymptotic stability of the interconnected
system under the assumption (3).

The claim A is trivial due to the iISS-ISS small-gain theorem if
(14) is replaced by immediate copies of functions in (3) as follows:

V̇1 ≤−µx1 +
x2

x2 +1
(16)

Indeed, the stability is also verified with Vcl(x1,x2) = V1(x1) +
cV2(x2). A significant point suggested by the claim A is that the
properties of global asymptotic stability may be often established
even if the property (16) is relaxed in the form of

V̇1 ≤ λ̂ (x1)
{
−µx1 +

x2

x2 +1

}
(17)
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It is desirable if we can predict when and what kind of functions
λ̂ (x1) are allowed without discovering an ad hoc Lyapunov
function Vcl(x1,x2). In the above example, the usage of a particular
λ̂ (x1) is justified in a heuristic manner only when V2(x2) = x2. It
is greatly useful if the appropriateness of incorporating λ̂ (x1) is
answered without knowing V2. The rest of this paper addresses

• the claim A is justified independently of the choice of V2;
• the idea of (17) is formulated precisely so that the problem

of stability can be answered without constructing a heuristic
Lyapunov function Vcl of the interconnected system;

• the degree of freedom to choose λ̂ (x1) is investigated.

III. FORMULATION OF OBJECTIVE

Consider the interconnected system in Fig.1 consisting of

Σ1 : ẋ1 = f1(t,x1,u1), u1 = x2 ∈ R
n2 (18)

Σ2 : ẋ2 = f2(t,x2,u2), u2 = x1 ∈ R
n1 (19)

For each i = 1,2, we assume that fi(t,0,0) = 0 holds for all t ∈
[t0,∞), t0 ∈ R+, and fi(t,xi,ui) is piecewise continuous in t, and
locally Lipschitz in the other arguments. The state vector of the
interconnected system is given by x = [xT

1 ,xT
2 ]T ∈ R

n.
Stability criteria for interconnected systems based on the dis-

sipative (or Lyapunov) systems theory, such as the passivity
theorems, the L2 small-gain theorem and the circle and Popov
criteria, first assume that supply rates of individual subsystems
are given a priori[15], [1], [2]. To put it shortly, a continuous
function ρi(xi.ui) is said to be a supply rate of Σi if

∂Vi

∂ t
+

∂Vi

∂xi
fi(t,xi,ui)≤ρi(xi,ui), ∀xi∈R

ni ,ui∈R
nui , t∈R+

holds for a positive semi-definite function V (t,xi). In order to ob-
tain specific properties of stability, we often impose additional con-
straints on V . The ISS small-gain theorem can be also explained
in terms of dissipation and Lyapunov functions[7], [3]. Recently, a
framework of state-dependent scaling has been proposed in [4], [6]
and it unifies and extends these existing stability criteria. However,
it also assumes supply rates fixed a priori. In general, supply
rates of systems are not given automatically. Although we are
occasionally able to obtain supply rates intuitively from a physical
point of view, there are many practical cases where natural supply
rates of individual subsystems prevent us from establishing desired
stability of interconnected systems. It would be nice if there were
some guidelines for selecting judicious supply rate successfully.

Toward this end, this paper treats Σ1 and Σ2 differently. It is
supposed that a supply rate of one system Σ2 is given and fixed
a priori, while we do not know a proper supply rate of the other
system Σ1. The underlying aim in the process of selecting a supply
rate of Σ1 is the establishment of global asymptotic stability of
the equilibrium at the origin x = 0. The supply rate of Σ1 is not
determined a priori. We need to search for a supply rate which
establishes the stability of the interconnection of Σ1 and Σ2 using
the information of Σ2 given a priori. We assume that there exists
and we know a pair of continuous functions α2 and σ2 such that

α2(|x2|) ≤V2(t,x2) ≤ ᾱ2(|x2|) (20)
∂V2

∂ t
+

∂V2

∂x2
f2(t,x1,x2) ≤−α2(|x2|)+σ2(|x1|) (21)

are satisfied with some C1 function V2 : R+×R
n2 →R+ and some

continuous functions α2, ᾱ2 ∈ K∞ for all x ∈ R
n and t ∈ R+. The

pair of α2 and σ2 determines degrees of stability of the system

Σ2. The functions α2 and σ2 are supposed to be defined on R+
and satisfy α2(0) = σ2(0) = 0. We will assume that each of α2
and σ2 belongs either the class K or the class K∞. Remember
that a class K function γ(·) is a continuous, increasing function
γ : R+ → R+ such that γ(0) = 0. A class K∞ function γ(·) is a
class K function which satisfies lims→∞ γ(s) = ∞. By definition,
for continuous functions of a single non-negative variable,

K∞ ⊂ K ⊂ positive definite functions (22)

holds. The system Σ2 is said to be integral input-to-state stable
(iISS) if α2 is a positive definite function and σ2 is a class K
function. In this paper, such a pair is called the iISS supply rate.
The function V2(t,x2) satisfying (20) and (21) for an iISS supply
rate is called the C1 iISS Lyapunov function[11]. The system
Σi is said to be input-to-state stable (ISS) if αi is a class K∞
function and σ2 is a class K function. Such a pair is called the
ISS supply rate. The function V2(t,x2) satisfying (20) and (21) for
an ISS supply rate is called the C1 ISS Lyapunov function[12].
By definition, ISS implies iISS. The converse is not true.

The purpose of this paper is to extend the following theorem
proposed basically in [5] to more general classes of supply rates.

Theorem 1: The system Σ2 is supposed to accept an ISS supply
rate (21) defined with

α2 ∈ K∞, σ2 ∈ K∞ (23)

Suppose that real numbers νi > 0, ci > 1, i = 1,2 satisfy

α−1
1 ◦ ᾱ1 ◦σ−1

2 ◦ c1
ν2

ν1
α2 ◦α−1

2 ◦ ᾱ2 ◦α−1
2 ◦ c2σ2(s) ≤ s (24)

∀s∈R+

If there exist a continuous function λ̂ : R+ →R+ and a C1 function
V1 : R+ ×R

n1 → R+ such that

λ̂ (s) > 0, ∀s ∈ (0,∞) (25)

α1(|x1|) ≤V1(t,x1) ≤ ᾱ1(|x1|) (26)
∂V1

∂ t
+

∂V1

∂x1
f1(t,x1,x2)≤ λ̂ (V1(t,x1)) [−ν1σ2(|x1|)+ν2α2(|x2|)](27)

hold for all x ∈ R
n and t ∈ R+ with some α1, ᾱ1 ∈ K∞, the equi-

librium x = 0 of the interconnected system (18)-(19) is globally
uniformly asymptotically stable.

When we pick λ̂ = 1, Theorem 1 reduces to the ISS small-
gain ‘theorem’[8], [14], and the contraction inequality (24) is
the same as the ISS small-gain ‘condition’. In contrast to the
ISS small-gain ‘theorem’, the supply rate employed in Theorem
1 provides a free parameter λ̂ . Theorem 1 does not require Σ1
to take a supply rate given directly by functions appearing in
the ISS small-gain ‘condition’. The function λ̂ in (27) provides
us with flexibility of ‘state-dependently scaling’ an initial choice
−ν1σ2(|x1|)+ ν2α2(|x2|) for a supply rate of Σ1 borrowed from
functions of Σ2 in (21). The advantages of using Theorem 1 is
that the freedom of λ̂ can be utilized to render (27) acceptable for
Σ1. Theorem 1 is considered as a parametrization of supply rates
for Σ1 to establish the stability of the interconnected system.

The assumption of (23) determines the broadness of systems
to which Theorem 1 is applicable. The requirement (23) imposed
on Σ2 is equivalent to ISS although the original definition of ISS
is given with σ2 ∈ K instead of σ2 ∈ K∞[2]. Nevertheless, the
difference between σ2 ∈K and σ2 ∈K∞ is crucial in terms of the
property imposed on Σ1. The supply rate given by −ν1σ2(|x1|)+
ν2α2(|x2|) to be applied to Σ1 is ISS if σ2 ∈ K∞. In the case of
σ2 ∈ K , the supply rate −ν1σ2(|x1|)+ ν2α2(|x2|) only requires
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Σ1 to be iISS. Thus, the assignment of σ2 ∈K would allow us to
deal with a more general class of Σ1 than σ2 ∈ K∞. On the other
hand, the example in Section II is not covered by Theorem 1. To
answer the example, we need to handle a class K function α2
which is not class K∞. The objective of this paper is to extend
Theorem 1 to such broader classes of systems.

Remark 1: Theorem 1 is better than the result previously
presented in [5]. The previous version of Theorem 1 uses an
assumption (c1−1)(c2−1) > 1 in addition to (24). A further study
has yielded that the technical assumption can be removed.

IV. MAIN RESULTS

The pair of α2 and σ2 this section focuses on is broader than
(23) considered in Theorem 1. It is expected naturally that the set
of admissible free functions λ̂ is required to be smaller for less
restricted α2 and σ2. This section answers the question of how
the set of λ̂ needs to be narrowed for less restrictive α2 and σ2.

Theorem 2: The system Σ2 is supposed to accept an ISS supply
rate (21) defined with

α2 ∈ K∞, σ2 ∈ K (28)

Suppose that real numbers νi > 0, ci > 1, i = 1,2 satisfy

c1
ν2

ν1
α2 ◦α−1

2 ◦ ᾱ2 ◦α−1
2 ◦ c2σ2(s) ≤ σ2 ◦ ᾱ−1

1 ◦α1(s)
, ∀s∈R+ (29)

If there exists a C1 function V1 : R+×R
n1 →R+ and a continuous

function λ̂ : R+ → R+ such that

α1(|x1|) ≤V1(t,x1) ≤ ᾱ1(|x1|), ∀x1 ∈ R
n1 ,∀t ∈ R+ (30)

∂V1

∂ t
+

∂V1

∂x1
f1(t,x1,x2)≤ λ̂ (V1(t,x1)) [−ν1σ2(|x1|)+ν2α2(|x2|)](31)

∀x1 ∈ R
n1 ,x2 ∈ R

n2 ,∀t ∈ R+

λ̂ (s) > 0, ∀s ∈ (0,∞) (32)

lim
s→0+

[σ2 ◦ ᾱ−1
1 (s)]m

λ̂ (s)
< ∞ (33)

liminf
s→∞

s[σ2 ◦ ᾱ−1
1 (s)]m

λ̂ (s)
> 0 (34)

hold with some α1, ᾱ1 ∈ K∞ and some m ≥ 0, the equilibrium
x = 0 of the interconnected system (18)-(19) is globally uniformly
asymptotically stable.

Proof: Consider an inequality given by

λ1(V1(t,x1)){−ν1σ2(|x1|)+ν2α2(|x2|)}+
λ2(V2(t,x2)){−α2(|x2|)+σ2(|x1|)} ≤ ρe(x)

, ∀x1∈R
n1 ,x2∈R

n2 , t∈R+ (35)

where the continuous function ρe(x) is

ρe(x) = −(1−δ )
[

λ1(α1(|x1|))ν1σ2(|x1|)

+
τ−1

τ
λ2(α2(|x2|))α2(|x2|)

]
, 0<δ <1, 1<τ (36)

Suppose that λ1, λ2 : R+ → R+ are non-decreasing continuous
functions which have yet to be determined. Define θ2 ∈ K by

θ2(s) = ᾱ2 ◦α−1
2 ◦ τσ2(s), , τ > 1 (37)

Using Young’s inequality, we obtain the following inequality.

λ1(V1(t,x1)){−ν1σ2(|x1|)+ν2α2(|x2|)}
≤ −λ1(V1(t,x1))ν1σ2(|x1|)+ λ1(V1(t,x1))p

pµ p +
µqν2α2(|x2|)q

q

for arbitrary µ > 0 and q > 1 satisfying (1/p) + (1/q) = 1.
Combining calculations for two cases separated by α2(|x2|) ≥
τσ2(|x1|) and α2(|x2|) < τσ2(|x1|), we obtain

λ2(V2(t,x2)){−α2(|x2|)+σ2(|x1|)}
≤ − τ−1

τ
λ2(V2(t,x2))α2(|x2|)+λ2(θ1(|x1|))σ2(|x1|)

Thus, the inequality (35) holds if

1
pµ p λ1(s)p −δλ1(s)ν1σ2(ᾱ−1

1 (s))

+λ2(θ2(α−1
1 (s)))σ2(α−1

1 (s)) ≤ 0, ∀s ∈ R+(38)

−δ
τ−1

τ
λ2(s)+

µq

q
[ν2α2(α−1

2 (s))]q−1≤0, ∀s∈R+ (39)

are satisfied. The inequality (39) holds if and only if

λ2(s) ≥ µqτ
δq(τ−1)

[ν2α2(α−1
2 (s))]q−1, ∀s ∈ R+ (40)

is achieved by λ2. Define an increasing function of s as

λ1(s) = µ p/(p−1)[δν1σ2(ᾱ−1
1 (s))]1/(p−1) (41)

The inequality (38) holds if and only if λ2(·) satisfies

λ2(θ2((s)) ≤ µq

q

[δν1σ2(ᾱ−1
1 (α1(s)))]

q

σ2(s)
, ∀s ∈ R+ (42)

Let d = lims→∞ θ2(s) ∈ (0,∞]. Let θ−1
2 (·) denote a continuous

function such that θ−1
2 (θ2(s)) = s hold for all s ∈ R+. The pair

of (40) and (42) holds if and only if

µqτ[ν2α2(α−1
2 (s))]q−1

δq(τ−1)
≤λ2(s), ∀s ∈ [d,∞) (43)

µqτ[ν2α2(α−1
2 (s))]q−1

δq(τ−1)
≤ λ2(s)≤

µq[δν1σ2◦ᾱ−1
1 ◦α1◦θ−1

2 (s)]q

qσ2◦θ−1
2 (s)

, ∀s ∈ [0,d) (44)

There exists an increasing continuous function λ2(·) such that (43)
and (44) are achieved if(

1
(τ−1)δ q+1

)1/qν2

ν1
α2◦α−1

2 ◦ᾱ2◦α−1
2 ◦τσ2(s) ≤ σ2◦ᾱ−1

1 ◦α1(s)
∀s ∈ R+ (45)

is satisfied. If there exist c1,c2 > 1 such that (29) holds, there exist
τ > 1, 0 	 δ < 1 and l > 0 such that (45) is satisfied for any q ≥ l.
Let the function λ1 be represented by

λ1(s) = λ0(s)λ̂ (s) (46)

The function λ0 becomes continuous on R+ and

λi(s) > 0 ∀s ∈ (0,∞), lim
s→0+

λi(s) < ∞ (47)

are satisfied for i = 0 if

lim
s→0+

λ1(s)

λ̂ (s)
< ∞ (48)

Due to (41), this inequality is equivalent to

lim
s→0+

[σ2(ᾱ−1
1 (s))]q−1

λ̂ (s)
< ∞ (49)

The assumption (33) ensures (49) for any q ≥ m + 1. For any
q ≥ m+1,

liminf
s→∞

s[σ2(ᾱ−1
1 (s))]q−1

λ̂ (s)
> 0 (50)
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is implied by the assumption (34), which guarantees∫ ∞

1
λi(s)ds = ∞ (51)

for i = 0. The inequalities (43) and (44) allow us to select λ2(s)
which is positive for all s ∈ (0,∞) and increasing. Then, (47) and
(51) are satisfied for i = 2. Since

λ0(V1(t,x1))ρ1(x1,x2)+λ2(V2(t,x2))ρ2(x2,x1) ≤ ρe(x)

, ∀x∈R
n, t∈R+ (52)

is implied by the pair of (35) and (46), the C1 function

Vcl(t,x)=
∫ V1(t,x1)

0
λ0(s)ds+

∫ V2(t,x2)

0
λ2(s)ds (53)

satisfies dVcl/dt ≤ ρe(x) < 0,∀x ∈ R
n \ {0},∀t ∈ R+ along the

trajectories of the system. The properties (47) and (51) held
for i = 0,2 guarantee the existence of αcl , ᾱcl ∈ K∞. satisfying
αcl(|x|) ≤Vcl(t,x) ≤ ᾱcl(|x|) for all x ∈ R

n and t ∈ R+.
If we set λ̂ = 1, the statement of Theorem 2 becomes similar to

the ISS small-gain ‘theorem’[8], [14]. In fact, the inequality (29)
is the ISS small-gain ‘condition’ for Σ2 and Σ1 satisfying (21) and

∂V1

∂ t
+

∂V1

∂x1
f1(t,x1,x2)≤−ν1σ2(|x1|)+ν2α2(|x2|) (54)

However, it should be emphasized that the supply rate (54) defined
with (28) does not require Σ1 to be ISS. Thus, ISS small-gain
‘theorem’ is not applicable to systems Theorem 2 deals with.
Theorem 2 demonstrates that the ISS small-gain ‘condition’ can
lead us to the stability even if one of subsystems is only iISS.

Theorem 2 provides us with the flexibility of the function λ̂ in
the supply rate of Σ1. We can use any function λ̂ in (31) whenever
(32)-(34) are met. The set of supply rates parametrized by the free
function λ̂ allows us to use supply rate functions which do not
appear in the the small-gain condition. There will be more chance
to come at a supply rate that fit Σ1 under a single fixed small-
gain condition. Compared with Theorem 1, we have additional
constraints (33)-(34) on λ̂ since Σ1 is allowed to be only iISS.

Remark 2: For the set of functions λ̂ allowed by Theorem 2, the
choice

∫ V1
0 1/λ̂ (s)ds is not guaranteed to be radially unbounded, so

that it is not qualified to be a Lyapunov function proving the global
asymptotic stability. Indeed, Theorem 2 employs the Lyapunov
function (53) which is totally different from

∫ V1
0 1/λ̂ (s)ds. There-

fore, the parametrization is fundamentally beyond the technique in
[13], [2], and enables us to use a broader class of free functions.
The integrability and radially unboundedness of

∫ V1
0 1/λ̂ (s)ds are

not implied by (33)-(34) unless we intentionally limiting the
freedom to m = 0.

Remark 3: If we replace |xi| by Vi(xi) for i = 1,2 in (21) and
(31), the functions α i and ᾱi vanish in all arguments of Theorem
2. In fact, the conditions (29), (33) and (34) are replaced by

ν2 < ν1, lim
s→0+

[σ2(s)]m

λ̂ (s)
< ∞, liminf

s→∞

s[σ2(s)]m

λ̂ (s)
> 0

respectively. The same occurs in the case of α i = ᾱi i = 1,2.
Remark 4: It is worth noting that (33) and (34) are satisfied for

all m > l if they are fulfilled for m = l. If lims→∞ σ2(s) < ∞ holds,
the existence of m ≥ 0 fulfilling (34) is equivalent to

liminf
s→∞

s/λ̂ (s) > 0 (55)

This stronger constraint is reasonable since the supply rate as-
signed to Σ1 in (31) with σ2∈K \K∞ is ’weaker’ than the one with
σ2∈K∞. Note that (55) is not necessary for (34) when σ2∈K∞.

Theorem 3: The system Σ2 is supposed to accept an iISS supply
rate (21) defined with

α2 ∈ K \K∞, σ2 ∈ K∞ (56)

Suppose that real numbers νi > 0, ci > 1, i = 1,2 satisfy

c2σ2 ◦α−1
1 ◦ ᾱ1 ◦σ−1

2 ◦ c1
ν2

ν1
α2(s) ≤ α2 ◦ ᾱ−1

2 ◦α2(s)
, ∀s∈R+ (57)

If there exists a C1 function V1 : R+×R
n1 →R+ and a continuous

function λ̂ : R+ → R+ such that

α1(|x1|) ≤V1(t,x1) ≤ ᾱ1(|x1|), ∀x1 ∈ R
n1 ,∀t ∈ R+ (58)

∂V1

∂ t
+

∂V1

∂x1
f1(t,x1,x2)≤ λ̂ (V1(t,x1)) [−ν1σ2(|x1|)+ν2α2(|x2|)] (59)

∀x1 ∈ R
n1 ,x2 ∈ R

n2 ,∀t ∈ R+

λ̂ (s) > 0, ∀s ∈ (0,∞) (60)

lim
s→0+

[σ2 ◦α−1
1 (s)]m

λ̂ (s)
< ∞ (61)

hold with some α1, ᾱ1 ∈ K∞ and some m ≥ 0, the equilibrium
x = 0 of the interconnected system (18)-(19) is globally uniformly
asymptotically stable.

Proof: Define a class K function by

θ1(s) = ᾱ1 ◦σ−1
2 ◦ ν2

ν1
τα2(s), τ > 1 (62)

Let λ1, λ2 : R+ → R+ be non-decreasing continuous functions.
Calculation for ν1σ2(|x1|) ≥ (and <)τν2α2(|x2|) lead to

λ1(V1(t,x1)){−ν1σ2(|x1|)+ν2α2(|x2|)}
≤ − τ−1

τ
λ1(V1(t,x1))ν1σ2(|x1|)+λ1(θ1(|x2|))ν2α2(|x2|)

For arbitrary µ > 0 and q > 1, Young’s inequality yields

λ2(V2(t,x2)){−α2(|x2|)+σ2(|x1|)}
≤ −λ2(V2(t,x2))α2(|x2|)+

1
pµ p λ2(V2(t,x2))p +

µq

q
σ2(|x1|)q

where (1/p)+(1/q) = 1. Pick ρe(x) as

ρe(x) = −(1−δ )
[

τ−1
τ

λ1(α1(|x1|))ν1σ2(|x1|)

+λ2(α2(|x2|))α2(|x2|)
]
, 0<δ <1 (63)

Then, a sufficient condition for (35) is obtained as

−δ
τ−1

τ
λ1(s)ν1 +

µq

q
[σ2(α−1

1 (s))]q−1≤0, ∀s∈R+ (64)

1
pµ p λ2(s)p −δλ2(s)α2(ᾱ−1

2 (s))

+λ1(θ1(α−1
2 (s)))ν2α2(α−1

2 (s))≤0, ∀s ∈ R+ (65)

The inequality (64) holds if and only if

λ1(s) ≥ µqτ
δq(τ−1)ν1

[σ2(α−1
1 (s))]q−1, ∀s ∈ R+ (66)

is achieved by λ1. Take

λ2(s) = µ p/(p−1)[δα2(ᾱ−1
2 (s))]1/(p−1) (67)

which is an increasing function of s. The inequality (65) holds if
and only if λ1(·) satisfies

λ1(θ1((s)) ≤ µq

q

[δα2(ᾱ−1
2 (α2(s)))]

q

ν2α2(s)
, ∀s ∈ R+ (68)
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Let d = lims→∞ θ1(s) ∈ (0,∞). Let θ−1
1 (·) denote a continuous

function such that θ−1
1 (θ1(s)) = s hold for all s ∈ R+. The pair

of (66) and (68) holds if and only if

µqτ[σ2(α−1
1 (s))]q−1

δq(τ−1)ν1
≤ λ1(s), ∀s ∈ [d,∞) (69)

µqτ[σ2(α−1
1 (s))]q−1

δq(τ−1)ν1
≤ λ1(s) ≤

µq[δα2 ◦ ᾱ−1
2 ◦α2 ◦θ−1

1 (s)]q

qν2α2 ◦θ−1
1 (s)

, ∀s ∈ [0,d) (70)

There exits an increasing continuous function λ1(·) such that (69)
and (70) are achieved if
(

1
(τ−1)δ q+1

)1/q

σ2◦α−1
1 ◦ᾱ1◦σ−1

2 ◦ ν2

ν1
τα2(s)≤α2◦ᾱ−1

2 ◦α2(s)
, ∀s ∈ R+ (71)

is satisfied. If there exist c1,c2 > 1 such that (57) holds, there exist
τ > 1, 0 	 δ < 1 and l > 0 such that (71) is satisfied for any q ≥ l.
Let the function λ1(·) be represented by (46). The function λ0(·)
becomes continuous on R+ and (47) are satisfied if (48) holds.
Due to (69) and (70), this inequality holds if we have

lim
s→0+

[σ2(α−1
1 (s))]q−1

λ̂ (s)
< ∞ (72)

assured by (61). It follows from (69) that we can select λ1 so that

liminf
s→∞

sλ1(s)

λ̂ (s)
> 0 (73)

is fulfilled to guarantee (51). The function λ2(s) given in (67) is
positive for all s ∈ (0,∞) and increasing, so that (47) and (51)
are satisfied. Finally, since (52) follows from (35) and (46), the
Lyapunov function (53) proves the global asymptotic stability.

Remark 3 applies to Theorem 3.
Remark 5: The set of continuous functions λ̂ (s) satisfying (61)

is quite broad. Note that the existence of m is guaranteed whenever
λ̂ (s) is bounded from below by [σ2 ◦α−1

1 (s)]k for a finite k ≥
0 in an arbitrarily small neighborhood of s = 0. Therefore, the
parametrization offered by Theorem 3 is much more flexible than
the technique in [13], [2]. Theorem 2 requires (34) in addition
to (61). Nevertheless, the existence of m in (34) is guaranteed
whenever λ̂ (s) is bounded from above by s[σ2 ◦α−1

1 (s)]k for a
finite k ≥ 0 and all s beyond an arbitrarily large number.

Theorem 4: The system Σ2 is supposed to accept an iISS supply
rate (21) defined with

α2 ∈ K , σ2 ∈ K (74)

Suppose that real numbers νi > 0, i = 1,2 satisfy

ν2 < ν1 (75)

If there exists a C1 function V1 : R+×R
n1 →R+ and a continuous

function λ̂ : R+ → R+ such that

α1(|x1|) ≤V1(t,x1) ≤ ᾱ1(|x1|), ∀x1 ∈ R
n1 ,∀t ∈ R+ (76)

∂V1

∂ t
+

∂V1

∂x1
f1(t,x1,x2)≤ λ̂ (V1(t,x1)) [−ν1σ2(|x1|)+ν2α2(|x2|)] (77)

∀x1 ∈ R
n1 ,x2 ∈ R

n2 ,∀t ∈ R+

λ̂ (s) > 0, ∀s ∈ R+ (78)

liminf
s→∞

s

λ̂ (s)
> 0 (79)

hold with some α1, ᾱ1∈K∞, the equilibrium x=0 of the system
(18)-(19) is globally uniformly asymptotically stable.

The constraint (79) is more restrictive than (34). Theorem 3
does not need any constraint like (79) and (34) on λ̂ with respect
to s → ∞. It is natural because Theorem 4 is applicable to a class
of systems broader than Theorem 2 and Theorem 3. Theorem
3 dealing with σ2 ∈ K∞ requires Σ1 to have stronger stability
than Theorem 2, so that (34) is not necessary in Theorem 3. On
the other hand, Theorem 1 does not require any constraints on λ̂
with respect to s → ∞ and s → 0+. The assumption (23) is more
restrictive than (28), (56) and (74), so that Theorem 1 is applicable
to the smallest class of systems, while it allows the largest class of
the free function λ̂ . It should be stressed that the three conditions
(24), (29) and (57) are identical when α2 and σ2 satisfy (23). They
are also the same as (75) except the small amount of difference
arising from α i(s) ≤ ᾱi(s). The slight discrepancy is inevitable
as far as we derive contractive conditions from Lyapunov-based
properties. Three conditions (24), (29) and (57) reduce to (75)
precisely if |xi| = Vi(xi) or α i = ᾱi holds for i = 1,2.

V. CONCLUSION

This paper has developed a new “parametrization of supply
rates” in order to characterize a set of supply rates with which
stability of a nonlinear interconnected system can be established
under a fixed single small-gain condition. The result covers
iISS systems which include more general nonlinearities than ISS
systems considered in a previous paper[5]. The results in this
paper are more useful than the small-gain type of theorem given
for fixed supply rates[6]. The parametrization offers flexibility
which provides more chances to come at supply rates establishing
stability of interconnected systems.
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