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Abstract— In this paper, adaptive sliding mode control is
presented for a class of parametric-strict-feedback nonlin-
ear systems with unknown time delays. Using appropriate
Lyapunov-Krasovskii functionals, the uncertainties from un-
known time delays are compensated for so that the proposed
control scheme is delay-independent. Controller singularity
problems are solved by employing practical control and
regrouping unknown parameters. By using novel differentiable
approximation, sliding mode control and practical control can
be carried out in the backstepping design. It is proved that
the proposed systematic backstepping design method is able
to guarantee global uniformly ultimately boundedness of all
the signals in the closed-loop system and the tracking error is
proven to converge to a small neighborhood of the origin.

I. INTRODUCTION

The sliding mode control (SMC) has a large histori-
cal background, belonging to the framework of variable
structure systems. In a finite-dimension framework (without
delay), it is known that if a complex system can be written
in a so-called “normal form”, then an appropriate sliding
mode strategy can be designed so as to dominate the non-
linear terms and the disturbances, provided the disturbance
satisfies appropriate “matching condition”. The combination
of delay phenomena with relay actuators or sensors makes
the situation much more complex.

Robust control of systems with time delays has at-
tracted much attention due to the great challenge in the
mathematical complexity and the application demand in
real-time control systems. The existence of time delays
may make the stabilization problem become more difficult.
Lyapunov-Krasovskii functionals [1] combined with the
LMI technique [2] has been used to establish a framework
for the stability and control of time-delay systems. For the
tremendous work contributed to this area, please refer to
the two latest monograph [3] [4] and the references therein.
For nonlinear systems with delay in the state, few results
are reported. In [5] and [6], the authors have studied a class
of nonlinear time-delay systems in strict-feedback form
and systematic and practical backstepping design has been
presented. Under the mild assumption on the upper bound
of the unknown time-delay, the proposed design based on
the Lyapunov stability is delay-independent in the sense that
the design is totally free of unknown delays. The controller
singularity problem is solved by introducing the practical
design. The problem of differentiation of the control func-
tions at the discontinuous points can be solved by simply
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setting the finite value at these points. However, the control
functions are not smooth at all. In this paper, we present
a practical adaptive sliding mode control for a class of
nonlinear time-delay systems in parametric-strict-feedback
form. A novel smooth approximation is introduced to solve
the differentiability problem for the control functions, while
the stability of the closed-loop systems remains.

In this paper, decoupled backstepping design [7], [5], [6]
is utilized in the practical design, where the coupling term
sisi+1 in each step is decoupled by elegantly using the
Young’s inequality rather than leaving to it to be cancelled
in the next step as classic backstepping design usually
does. The residual set of each state in si coordinate can
be iteratively determined individually. The last but never
the least, as the practical control (intermediate and final
control) will be only activated in the unbounded region Ω0

si

and the compact region ΩI
si

, while there is no control effort
in the other bounded region, i.e., Ωsi

. The stability of the
proposed control methodology can only be guaranteed using
decoupled backstepping design, which will be remarked
later.

II. PROBLEM FORMULATION AND
PRELIMINARIES

Consider a class of single-input-single-output (SISO)
nonlinear time-delay systems

ẋi(t) = gixi+1(t) + θT
i fi(x̄i(t)) + hi(x̄i(t − τi))

ẋn(t) = gnu(t) + θT
n fn(x(t)) + hn(x(t − τn)) (1)

where 1 ≤ i ≤ n − 1, x̄i = [x1, x2, · · · , xi]T , x =
[x1, x2, · · · , xn]T ∈ Rn, u ∈ R are the state variables and
system input respectively, fi(·) ∈ Rmi are known vector
fields, θi ∈ Rmi are unknown constant vectors, hi(·) are
unknown smooth functions, gi are unknown constants, and
τi are unknown time delays of the states, i = 1, · · · , n. The
control objective is to design a controller for system (1) such
that the state x1(t) follows a desired reference signal yd(t),
while all signals in the closed-loop system are bounded.
Define the desired trajectory x̄d(i+1) = [yd, ẏd, · · · , y(i)

d ]T ,
i = 1, · · · , n − 1, which is a vector of yd up to its ith
time derivative y

(i)
d . We have the following assumptions for

the system functions, unknown time delays and reference
signals.

Assumption 1: The signs of gi are known, and there exist
constants gmax ≥ gmin > 0 such that gmin ≤ |gi| ≤ gmax.

Assumption 2: The unknown functions hi(·) satisfy the
following properties

|hi(x̄i(t))| ≤ p∗i φi(x̄i(t)) (2)
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where φi(·) are known positive functions, p∗i are unknown
constants.

Assumption 3: The size of the unknown time delays is
bounded by a known constants, i.e., τi ≤ τmax, i =
1, · · · , n.

Assumption 4: The desired trajectory vectors x̄di ∈
Ωdi ⊂ Ri, i = 2, · · · , n are continuous and available with
Ωdi known compact set.

Lemma 1: Even function qi(x) : R → R

qi(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, |x| ≥ λai + λbi

cqi

∫ x

λai
[(λbi

2 )2 − (σ − λai − λbi

2 )2]n−idσ,

λai < x < λai + λbi

cqi

∫ −λai

x
[(λbi

2 )2 − (σ + λai + λbi

2 )2]n−idσ,
− (λai + λbi) < x < −λai

0, |x| ≤ λai

(3)

where cqi = [2(n−i)+1]!

λ
2(n−i)+1
bi

[(n−i)!]2
[8], λai, λbi > 0 and integer

i ∈ R+, is (n − i)th differentiable, i.e., qi(x) ∈ Cn−i and
bounded by 1.

Proof: The derivative of qi(x) w.r.t. x is

dqi(x)
dx

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, |x| ≥ λai + λbi

cqi[(x − λai)(λai + λbi − x)]n−i,
λai < x < λai + λbi

−cqi[−(x + λai)(x + λai + λbi)]n−i,
− (λai + λbi) < x < −λai

0, |x| ≤ λai

(4)

From (4), we have that
d

dx
qi(x)

∣∣∣
|x|=λai

= 0,
d

dx
qi(x)

∣∣∣
|x|=λai+λbi

= 0

Similarly, we have

dj

dxj
qi(x)

∣∣∣
|x|=λai

= 0,
dj

dxj
qi(x)

∣∣∣
|x|=λai+λbi

= 0

dn−i+1

dxn−i+1
qi(x)

∣∣∣
|x|=λai

�= 0,
dn−i+1

dxn−i+1
qi(x)

∣∣∣
|x|=λai+λbi

�= 0

from which we know that dj

dxj qi(x), j = 1, · · · , n − i, is
continuous while dj

dxj qi(x), j > n − i is not continuous.
Thus, qi(x) ∈ Cn−i.

Corollary 1: The function qs
i (x) : R → R

qs
i (x) = qi(x)sgn(x) (5)

with sgn(·) being the sign function, is (n − i)th differen-
tiable, i.e., qs

i (x) ∈ Cn−i.

III. SMC DESIGN FOR FIRST-ORDER SYSTEMS

To illustrate the design methodology clearly, let us first
consider the tracking problem of a first-order system

ẋ1(t) = g1u(t) + θT
1 f1(x1(t)) + h1(x1(t − τ1)) (6)

with u(t) being the control input. Defining the sliding
surface as s1(t) = x1 − yd, we have

s1(t)ṡ1(t) ≤ g1s1(t)[u(t) +
1
g1

θT
1 f1(x1(t)) − 1

g1
ẏd(t)]

+
1
2
s2
1(t)p

∗2

1 +
1
2
φ2

1(x1(t − τ1))

Though the function φ1(·) is known, it could not be used
for the construction of control laws as x1(t − τ1) is not
obtainable due to the unknown time-delay τ1. To tackle
this problem, let us introduce the following Lyapunov-
Krasovskii functional

VU1(t) =
1
2

∫ t

t−τ1

φ2
1(x1(τ))dτ (7)

The time derivative of VU1(t) is

V̇U1(t) =
1
2
φ2

1(x1(t)) − 1
2
φ2

1(x1(t − τ1))

in which, the non-positive term −1
2φ2

1(x1(t − τ1)) can be
used to compensate for the terms with unknown time delay.
Accordingly, we have

s1(t)ṡ1(t) + V̇U1(t) ≤ g1s1(t)[u(t) + θT
a,1Fa,1(t)] (8)

where θa,1 ∈ Rm1+2 is unknown parameter vector and
Fa,1 ∈ Rm1+2 is known function vector defined as

θa,1 = [
1
g1

θT
1 ,

1
g1

,
p∗

2

1

g1
]T (9)

Fa,1(t) = [f1(x1(t)),−ẏd(t) +
1

2s1
φ2

1(x1(t)),
1
2
s1]T (10)

It can be seen from Fa,1(t) that singularity problems may
occur when s1(t) = 0. Thus, the boundedness of the control
should be taken into account. For convenience of notation,
let us define the compact set Ωs1 = {s1 ∈ R | |s1| ≤ λa1}.

Lemma 2: For the first-order system (6), if the practical
adaptive control law is chosen as

u(t) =
{ −θ̂T

a,1Fa,1 − sgn(s1)ε, s1 /∈ Ωs1

0, s1 ∈ Ωs1

(11)

where ε > 0 is a design constant, and the parameters are
updated by

˙̂
θa,1 = s1Γa,1Fa,1 (12)

with Γa,1 = ΓT
a,1 > 0, then for any initial conditions

x1(t) = ϕ(t) = 0, ∀t ∈ [−τ1, 0] and θ̂a,1(0), all signals
in the closed-loop systems are bounded, and the tracking
error s1 = x1 − yd will converge to the bounded compact
set Ωs1 = {s1 ∈ R | |s1| ≤ λa,1}.

Proof: To show Ωs1 to be a domain of attraction, let
us first consider s1 /∈ Ωs1 , i.e., |s1| > λa1. Consider the
Lyapunov function candidate V1(t) as

V1(t) =
1
2
s2
1(t) + VU1(t) +

1
2
θ̃T

a,1(t)Γ
−1
1 θ̃a,1(t)

with VU1 given in (7) and (̃·) = (̂·)−(·). The time derivative
of V1(t) along (8), (11) and (12) is

V̇1(t) ≤ −g1|s1(t)|ε < 0 (13)

which establishes that domain Ωs1 is attractive in the sense
that s1 will be driven onto compact set Ωs1 in a finite
time, and then after stay within. In fact, from (13), we
know that 1

2s2
1(t) ≤ V1(t) ≤ V1(0) and V1(t) ≤ V1(0) −
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∫ t

0
g1|s1(τ)|εdτ , i.e., s1 and θ̂a,1 are bounded. For s1 ∈ Ωs1 ,

i.e., |s1| ≤ λa1, since s1 = x1 − xd and xd are bounded,

we know that x1 is also bounded. In addition, as ˙̂
θa,1 = 0

for |s1| ≤ λa1, i.e., θ̂a,1 is kept unchanged in a bounded
value, it is bounded as well.

The key point of the proposed design lies in two as-
pects. Firstly, the Lyapunov-Krasovskii functional is utilized
such that the design difficulties from unknown time delay
has been removed. Secondly, the practical sliding mode
control scheme has employed to avoid possible controller
singularity. It is well known in [9][10] that the above
discontinuous control scheme should be avoided as it will
cause chattering phenomena and excite high-frequency un-
modeled dynamics. Furthermore, we would like to extend
the methodology described in this section from first-order
systems to more general nth-order systems. To achieve
this objective, the iterative backstepping design can be
used, which requires the differentiation of the control u at
each step. Therefore, appropriate smooth control functions
shall be used, and at the same time the controller should
guarantee the boundedness of all the signals in the closed-
loop and s1 will still stay in certain domain of attraction.

IV. SMC DESIGN FOR NTH-ORDER SYSTEMS

The backstepping design of both the control laws and the
adaptive laws are based on the following change of coor-
dinates: s1 = x1 − yd, si = xi − αi−1, i = 2, ..., n, where
si is also the sliding surface in the sliding mode control
framework, and αi(t) is an intermediate control function.
It is noted that the extension is not straightforward and is
very much involved as the SMC scheme proposed in Section
III is discontinuous and does not satisfy the differentiable
condition required by the backstepping design. Thus, the
discontinuous control scheme shall be modified accordingly,
while the closed-loop stability should be guaranteed as well.

For ease of notation, the following sets are defined Ωsi
:=

{si ∈ R | |si| ≤ λai} , ΩI
si

:= {si ∈ R | λai < |si| <
λai + λbi}, and ΩO

si
:= {si ∈ R | |si| ≥ λai + λbi} with

λai, λai > being small design constants. Note that in each
design step, the stability analysis is carried out in the three
regions defined by these sets respectively.

Define the quadratic function Vsi
(t), the Lyapunov-

Krasovskii functional VUi
(t), and the Lyapunov function

candidate Vi(t) as

Vsi
(t) =

1
2gi

s2
i (t) (14)

VUi
(t) =

1
2gi

i∑
j=1

∫ t

t−τi

φ2
i (x̄i(τ))dτ (15)

Vi(t) = Vsi
(t) + VUi

(t) +
1
2
θ̃T

a,i(t)Γ
−1
i θ̃a,i(t)(16)

where θ̃a,i = θ̂a,i − θa,i is the parameter estimation error
of constant vector θa,i ∈ Rm̄i with m̄i =

∑i
j=1 mj + 2i,

which is defined by

θa,i := [
θT

i

gi
,

p∗
2

i

gi
,

gi−1

gi
,

gi−1

gi
θT

i−1]
T (17)

Let us consider the following adaptive sliding mode
control scheme

αi = qi(si)
[ − ki(t)si − θ̂T

a,iFa,i − sgn(si)εi

]
(18)

ki(t) = ki0 +
1
s2

i

i∑
j=1

∫ t

t−τmax

φ2
j (x̄j(τ))dτ (19)

˙̂
θa,i = qi(si)Γi(Fa,isi − σiθ̂a,i) (20)

where qi(·) is defined in (3), constants ki0, εi > 0 are design
parameters, constant matrix Γi = Γ−1

i > 0, σi > 0 is
a small constant to introduce the σ−modification for the
closed-loop system, and Fa,i ∈ Rm̄i is a known function
vector defined as

Fθi := [fT
i (x̄i),

1
2
si, −∂αi−1

∂xi−1
xi, −∂αi−1

∂xi−1
fT

i−1,

1
2
si(

∂αi−1

∂xi−1
)2, −∂αi−1

∂xi−2
xi−1, −∂αi−1

∂xi−2
fT

i−2,

1
2
si(

∂αi−1

∂xi−2
)2, · · · , −∂αi−1

∂x1
x2, −∂αi−1

∂x1
fT
1 ,

1
2
si(

∂αi−1

∂x1
)2,

1
2si

i∑
j=1

ψ2
j (x̄j) − ωi−1]T (21)

with ωi−1 = ∂αi−1
∂x̄di

˙̄xdi +
∑i−1

j=1
∂αi−1

∂θ̂a,j

˙̂
θa,j . In ad-

dition, let us define the positive constants ci :=
min{ 3

2gminki0, 2gmin, σi

λmax(Γ−1
i

)
} and λi := 1

2σi‖θa,i‖2.

Step 1: Let us firstly consider the s1-subsystem as

ṡ1(t) = g1[s2(t) + α1(t)] + θT
1 f1(x1(t)) + h1(x1(t − τ1))

−ẏd(t) (22)

Following the same procedure as in Section III and consid-
ering Vs1(t) and VU1 given in (14) and (15) respectively,
we obtain

V̇s1(t) + V̇U1(t) ≤ s1s2 + s1(α1 + θT
a,1Fa,1) (23)

where θa,1 and Fa,1(t) are defined in (9) and (10) respec-
tively.

As stated in Section III, to avoid the control singularity
problem, the control objective is now relaxed to show the
convergence of s1(t) to certain domain of attraction rather
than the origin. At the same time, the control functions
shall be smooth or at least differentiable to certain degree
required by the backstepping design.

Considering the Lyapunov function candidate V1(t) given
in (16) and the adaptive SMC scheme (18)-(20), the stability
analysis is carried out in the following three regions defined
by the compact sets Ωs1 , ΩI

s1
and ΩO

s1
respectively.
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(i) Region 1: s1 ∈ ΩO
s1

. As q1(s1) = 1 when s1 ∈ ΩO
s1

,
the time derivative of V1(t) along (23), (18)-(20) is

V̇1(t) ≤ s1s2 − k10s
2
1 −

∫ t

t−τmax

φ2
1(x1(τ))dτ

−|s1|ε1 − σ1θ̃
T
a,1θ̂a,1

Using the inequalities −1
4k10s

2
1 + s1s2 ≤ 1

k10
s2
2 and

−σ1θ̃
T
a,1θ̂a,1 ≤ − 1

2σ1‖θ̃a,1‖2 + 1
2σ1‖θa,1‖2, we have

V̇1(t) ≤ −3
4
k10s

2
1 −

∫ t

t−τmax

φ2
1(x1(τ))dτ +

1
k10

s2
2

−1
2
σ1‖θ̃a,1‖2 +

1
2
σ1‖θa,1‖2 (24)

Since τ1 ≤ τmax according to Assumption 3, it holds that∫ t

t−τ1
φ2

1(x1(τ))dτ ≤ ∫ t

t−τmax
φ2

1(x1(τ))dτ . Accordingly,
(24) becomes

V̇1(t) ≤ −c1V1(t) + λ1 +
1

k10
s2
2 (25)

where constants c1 > 0 and λ1 > 0 are defined before. In
this case, if s2 can be regulated as bounded, i.e., |s2| ≤
s2 max with s2 max being finite, we have

V̇1(t) ≤ −c1V1(t) + λ̄1

with λ̄1 = λ1 + 1
k10

s2
2 max, then s1, x1, and θ̂a,1 are

guaranteed to be bounded. The regulation of s2 will be
conducted in the next steps.

(ii) Region 2: s1 ∈ ΩI
s1

. As λa1 < |s1| < λa1 + λb1

in this region, s1 is bounded. Thus, x1 = s1 + yd is also
bounded. Considering the quadratic functions Vs1(t) and
VU1(t), we know that Vs1(t) and VU1(t) are bounded. Let
us define positive function Vθ1(t) := 1

2 θ̃T
a,1(t)Γ

−1
1 θ̃a,1(t).

Its time derivation along (20) is

V̇θ1(t) = q1(s1)θ̃T
a,1(Fa,1s1 − σ1θ̂a,1) (26)

Applying the inequalities q1(s1)θ̃T
a,1Fa,1s1 ≤

1
2kθ1

q1(s1)‖θ̃a,1‖2 + kθ1
2 q1(s1)FT

a1Fa1s
2
1, kθ1 > 0,

eq. (26) becomes

V̇θ1(t) ≤ −1
2
q1(s1)(σ1 − 1

kθ1
)‖θ̃a,1‖2

+
1
2
q1(s1)(σ1‖θa,1‖2 + kθ1F

T
a,1Fa,1s

2
1) (27)

For s1 ∈ ΩI
s1

, we know that q1(s1) ∈ (0, 1), and Fa,1

is smooth and bounded. Choosing kθ1 such that σ∗
1 :=

σ1 − 1
kθ1

> 0, and letting λθ1 := sups1∈ΩI
s1
{σ1‖θa,1‖2 +

kθ1F
T
a,1Fa,1s

2
1}, we have

V̇θ1(t) ≤ −1
2
q1(s1)σ∗

1‖θ̃a,1‖2 +
1
2
q1(s1)λθ1

≤ −q1(s1)
σ∗

1

λmax(Γ−1
1 )

Vθ1(t) +
1
2
q1(s1)λθ1 (28)

Letting cq
θ1 := q1(s1)

σ∗
1

λmax(Γ−1
1 )

, λq
θ1 := 1

2q1(s1)λθ1, and

ρq
θ1 := λq

θ1/cq
θ1 =

1
2
λθ1λmax(Γ−1

1 )/σ∗
1 (29)

it follows from (28) that

0 ≤ Vθ1(t) ≤ [Vθ1(0) − ρq
θ1]e

−cq
θ1t + ρq

θ1 ≤ Vθ1(0) + ρq
θ1

from which, we can conclude that Vθ1(t) is bounded, and
hence θ̃a,1 is bounded. Consider the Lyapunov function
candidate V1(t) defined in (16). As it has been already
shown that Vs1(t), VU1(t), and θ̃a,1 are bounded, we can
conclude that V1(t) is bounded for s1 ∈ ΩI

s1
.

Remark 1: In this region, it is noted that though the func-
tion q1(s1) is not of fixed value, the ultimate boundedness
of the closed-loop signals is independent of q1(s1) as can
be seen from the definition of Vθ1(0) and ρq

θ1.
(iii) Region 3: s1 ∈ Ωs1 . In this region, s1 is already

bounded as |s1| ≤ λa1. For s1 ∈ Ωs1 , we know that

q1(s1) = 0, and ˙̂
θa,1 = 0. Hence, x1 = s1 + yd is bounded,

and θ̂a,1 is kept unchanged in bounded values. As Vs1(t)
and VU1(t) are smooth functions, we know that for bounded
x1 and s1, Vs1(t) and VU1(t) are bounded, and V1(t) is
bounded.

From the stability analysis in the three regions, we can
conclude that (i) the boundedness of the closed-loop signals
in Region 2 (s1 ∈ ΩI

s1
) and Region 3 (s1 ∈ Ωs1) is

guaranteed and independent of the signal s2; (ii) the bound-
edness of the closed-loop signals in Region 1 (s1 ∈ ΩO

s1
)

is dependent on the boundedness of the signal s2, who will
be regulated in the next steps.

Remark 2: According to Lemma 1 and Corollary 1, it is
noted that both the intermediate control function (18) and
the updating laws (20) are differentiable to certain degree,
which makes it possible to carry out the backstepping design
in the next steps.

Step i (2 ≤ i ≤ n− 1): Similar procedures are taken for
each steps when i = 2, · · · , n − 1 as in Step 1. The time
derivative of si(t) is given by

ṡi(t) = gi[si+1(t) + αi(t)] + θT
i fi(x̄i(t)) + hi(x̄i(t − τi))

−
i−1∑
j=1

∂αi−1

∂xj

[
gjxj+1 + θT

j fj(x̄j) + hj(x̄j(t − τj))
]

−ωi−1(t)

Consider the sliding surface as si(t), the quadratic function
Vsi

(t) given in (14), and the Lyapunov-Krasovskii func-
tional VUi

(t) given in (15). Applying Assumption 2 and
using Young’s Inequality, we have

V̇si
+ V̇Ui

≤ sisi+1 + si(αi + θT
a,iFa,i) (30)

where θa,i and Fa,i are defined in (17) and (21) respectively.
Similarly, the adaptive sliding mode control law (18)-(20)

is proposed. Considering the Lyapunov function candidate
Vi given in (16), similar as in Steps 1 and 2, the stability
analysis is carried out in the three regions defined by
the compact sets Ωsi

, ΩI
si

and ΩO
si

respectively and we
can conclude that: (i) For si ∈ ΩO

si
, we have V̇i(t) ≤

−ciVi(t) + λi + 1
ki0

s2
i+1 with ci and λi defined before,

from which it can be seen that the stability of si-subsystem
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in this case is dependent on si+1, which will be dealt with
in the next steps. (ii) For si ∈ ΩI

si
, si is bounded, from

which, it can be derived backwards that si−1, ..., si are all
bounded so that the boundedness of xi, xi−1, .., x1 can be
guaranteed as well. The boundedness of θ̂a,i can be obtained
from the similar analysis carried out in Region 1 of Step
1. (iii) For si ∈ Ωsi

, the boundedness of si, xi and θ̂a,i

directly follows.
Step n: This is the final step, since the actual control u

appears in the derivative of sn(t) as given in

ṡn(t) = gnu(t) + θT
n fn(x(t) + hn(x(t − τn))

−
n−1∑
j=1

∂αn−1

∂xj

[
gjxj+1 + θT

j fj(x̄j) + hj(x̄j(t − τj))
]

−ωn−1(t) (31)

Consider the quadratic function Vsn
(t) (14) and the

Lyapunov-Krasovskii functional VUn
(t) (15). Applying As-

sumption 2 and using Young’s Inequality, it has

V̇sn
+ V̇Un

≤ sn(u + θT
a,nFa,n) (32)

where θa,n and Fa,n are defined in (17) and (21) respec-
tively.

Similarly, the adaptive sliding mode control law (18)-(20)
is proposed. Considering the following Lyapunov function
candidate Vn(t) (16), similar as in the previous steps, the
stability analysis is carried out in the three regions defined
by the compact sets Ωsn

, ΩI
sn

and ΩI
sn

respectively as
follows: (i) For sn ∈ ΩO

sn
, qn(sn) = 1, the final control u(t)

is invoked and the time derivative of Vn(t) along (32) and
(18)-(20) is V̇n(t) ≤ −cnVn(t)+λn with positive constants
cn and λn defined before, from which we can conclude that
Vn(t) is bounded, hence sn, θ̂a,n are bounded. (ii) For sn ∈
ΩI

sn
, sn is already bounded. It can be derived backwards

that all the previous sith-subsystem, i = 1, ..., n − 1, are
stable, i.e., si, θ̂a,i, i = 1, ..., n−1, are all bounded. As xi =
si +αi−1, i = 2, ..., n, x1 = s1 +yd and αi, i = 1, ..., n−1
are smooth functions, we know that αi are bounded, and
hence xi, i = 1, ..., n are bounded. The boundedness of
θ̂a,n can be obtained from the similar analysis carried out
in Region 1 of Step 1. (iii) For sn ∈ Ωsn

, sn is bounded.
Hence, si, xi and θ̂a,i, i = 1, ..., n − 1 are bounded. As

qn(sn) = 0, ˙̂
θa,n = 0, θ̂a,n is kept fixed in a bounded

value.
Theorem 1: Consider the closed-loop system consisting

of the plant (1) under Assumptions 1-3. If we apply
the controller (18)-(20), we can guarantee the following
properties under bounded initial conditions: (i) si, θ̂a,i

and xi, i = 1, ..., n, are bounded; (ii) the signal s(t) =
[s1, ..., sn]T ∈ Rn converges to the compact set defined by

Ωs :=
{

s
∣∣∣ ‖s‖ ≤ µ

}

where µ = max{√2gmax

∑n
i=1 ρi,

√∑n
j=1(λai + λbi)2}

with ρn = λn/cn, ρi = (λi+
2gi+1ρi+1

ki0
)/ci, i = 1, ..., n−1,

and the compact set Ωs can be made as small as desired by
an appropriate choice of the design parameters.

Proof: Consider the following Lyapunov function
candidate

V (t) =
n∑

i=1

[Vsi
(t) + VUi

(t) +
1
2
θ̃T

a,i(t)Γ
−1
i θ̃a,i(t)] (33)

where Vsi
(t), VUi

(t), i = 1, · · · , n, and θ̃a,i are defined
before. The following three cases are considered.

Case 1): All si ∈ ΩO
si

, i = 1, ..., n. In this case, qi(si) =
1, as all the control effort including αi(t), i = 1, ..., n − 1
and u(t) are invoked, from the previous analysis, we have

V̇i(t) ≤ −ciVi(t) + λi +
1

ki0
s2

i+1, i = 1, ..., n − 1(34)

V̇n(t) ≤ −cnVn(t) + λn (35)

where ci, λi, i = 1, ..., n have been defined before. Let
ρn := λn/cn, it follows from (35) that

0 ≤ Vn(t) ≤ [Vn(0) − ρn]e−cnt + ρn ≤ Vn(0) + ρn (36)

from which we know that Vn(t) is bounded, so are sn and
θ̂a,n by noting the definition of Vn(t). In addition, it directly
follows from (36) that

s2
n(t) ≤ 2gn[Vn(0) − ρn]e−cnt + 2gnρn (37)

lim
t→∞ |sn(t)| ≤

√
2gnρn (38)

As sn is bounded, using (34) backwards from n − 1 to 1,
we can conclude that si and θ̂a,i, i = 1, ..., n − 1 are all
bounded.

Substituting (37) into (34) for i = n − 1 yields

V̇n−1(t) ≤ −cn−1Vn−1(t) + λn−1

+
1

kn−1,0

{
2gn[Vn(0) − ρn]e−cnt + 2gnρn

}

If cn−1 �= cn, we have

Vn−1(t) ≤ Vn−1(0)e−cn−1t +
λn−1+

2gnρn
kn−1,0

cn−1
(1 − e−cn−1t)

+ 2gn

kn−1,0(cn−1−cn) [Vn(0) − ρn](e−cnt − e−cn−1t) (39)

Otherwise, if cn−1 = cn, we have

Vn−1(t) ≤ Vn−1(0)e−cn−1t

+
λn−1+

2gnρn
kn−1,0

cn−1
(1 − e−cn−1t) (40)

Both (39) and (40) can lead to limt→∞ |sn−1(t)| ≤√
2gn−1ρn−1 with ρn−1

�
= (λn−1 + 2gnρn

kn−1,0
)/cn−1.

Similarly, we have limt→∞ |si(t)| ≤
√

2giρi with ρi
�
=

(λi + 2gi+1ρi+1
ki0

)/ci, i = 1, ..., n − 1. Thus, limt→∞ ‖s‖ =√
2gmax

∑n
i=1 ρi. Since the above analysis is carried out

for all si ∈ ΩO
si

, i.e., |si| ≥ λai + λbi, i = 1, ..., n, we have
that

lim
t→∞ ‖s‖ = max {√2gmax

∑n
i=1 ρi,

√∑n
i=1(λai + λbi)2}
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Case 2): All si ∈ ΩI
si

, i = 1, ..., n. In this case, si’s
are already bounded in [±λai

,±(λai
+ λbi

)], i.e., ‖s‖ ≤√∑n
j=1(λai + λbi)2. Since s1 and yd are bounded, and

x1 = s1 + yd, we know that x1 is also bounded. From the
analysis for Region 2 in Step 1, we have that

‖θ̃a,1‖2 ≤ 2[Vθ1(0) + ρq
θ1]

λmin(Γ−1
1 )

with Vθ1(0) = 1
2 θ̃T

a,1(0)Γ−1
1 θ̃a,1(0) and ρq

θ1 being defined in
(29), from which we know that θ̂a,1 is bounded. As α1(t) is
a smooth function of x1, yd, ẏd, and θ̂a,1, α1 is guaranteed
as bounded. From x2 = s2 + α1, x2 is obviously bounded.
Following the same analysis for Region 2 in Step 1, we can
show that θ̂a,2 is bounded. Similarly, the boundedness of
all the other closed-loop signals x3, ..., xn and θ̂a,3, ..., θ̂a,n

can be shown iteratively.
Case 3): All si ∈ Ωsi

, i = 1, ..., n. In this case, as
|si| < λai, all si’s are bounded in [−λai, λai], i.e., ‖s‖ ≤√∑n

j=1 λ2
ai. In addition, as qi(si) = 0, ˙̂

θa,i = 0, αi(t) = 0

and u(t) = 0, it is known that θ̂a,i are kept unchanged in
bounded values, and xi = si + αi−1, i = 2, ..., n, and
x1 = s1 + yd are all bounded.

Case 4): Some si’s are satisfying si ∈ ΩO
si

, while some
sj’s are satisfying sj ∈ ΩI

sj
or sj ∈ Ωsj

. For those si ∈ ΩO
si

,
qi(si) = 1, the corresponding control effort αi(t) or u(t)
and the parameter adaptation law for θ̂a,i are invoked and
from the previous analysis, we have that

V̇i(t) ≤ −ciVi(t) + λi +
1

ki0
s2

i+1 (41)

Let us define VI(t) =
∑

i Vi(t), and positive constants
where CI

1 = mini{ci}, we have that

V̇I(t) ≤ −CI
1VI(t) +

∑
i

λi +
∑

i

1
ki0

s2
i+1

If si+1 ∈ Ωsi
, the problem becomes a subset of Case 1). If

si+1 ∈ ΩI
sj

or si+1 ∈ Ωsj
, then these si is bounded as si+1

is already bounded. For those sj ∈ ΩI
sj

or sj ∈ Ωsj
, as sj is

already bounded, it guarantees that the closed-loop signals
in the previous steps, i.e., sk, xk, θ̂a,k, k = 1, ..., j − 1,
are bounded, and the stability of the corresponding sj th-
subsystems is independent of the signals in future steps. As
αj−1 is a smooth function of xk, θ̂a,k, k = 1, ..., j − 1,
αj−1 is bounded, hence xj = sj + αj−1 is bounded. The
boundedness of θ̂a,j can be readily obtained following the
similar analysis in Region 2 of Step 1. Or more optimal, for

sj ∈ Ωsj
, ˙̂
θa,j = 0, θ̂a,j is kept unchanged in a bounded

value.
Therefore, we can conclude from Cases 1), 2), 3), and 4)

that all the closed-loop signals are bounded and there exists
a compact set Ωs such that s will eventually converge to.
This completes the proof.

Remark 3: Theorem 1 shows that the system tracking er-
ror converges to a domain of attraction defined by compact
set Ωs rather than the origin. This is due to the introduction

of the practical control and the σ-modification for the pa-
rameter adaptation. Even though the size of the compact set
is unknown due to the unknown parameters gmin, gmax, and
θa,i i = 1, ..., n, it is possible to make it as small as possible
by appropriately choosing the design parameters. However,
parameters such as λai or λbi cannot be made zero to void
possibly control singularity and computational singularity.
Therefore, in practical applications, the design parameters
should be adjusted carefully for achieving suitable transient
performance and control action.

Remark 4: The continuous function qi(·) introduced in
Lemma 1 is used to generate a sufficient smooth approxi-
mation of the practical control functions so that the back-
stepping design can be carried out. However, with the order
of the system increasing, the good control performance may
be obtained at the price of control effort in large magnitude.

V. CONCLUSION

An adaptive sliding mode control has been addressed for
a class of parametric-strict-feedback nonlinear systems with
unknown time delays. The uncertainty from unknown time
delays has been compensated through the use of appropriate
Lyapunov-Krasovskii functionals. The controller has made
to be delay-independent and free from singularity problem
by employing practical sliding mode control. Backstepping
design has been carried out by using differentiable ap-
proximation. The proposed systematic backstepping design
method has been proved to be able to guarantee global
uniformly ultimately boundedness of closed-loop signals.
In addition, the output of the system has been proven to
converge to an arbitrarily small neighborhood of the origin.
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