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Abstract— We address the problem of tracking references
generated by an exosystem when the plant is described by a
Takagi-Sugeno (TS) fuzzy model. In recent years, some authors
have tried to solve this problem by constructing the desired
fuzzy regulator based on the design of linear local controllers,
unfortunately the regulation carried out in this way does not
zero the tracking error in general. Therefore, we propose the
inclusion of a discontinuous term into the control law. We
demonstrate, that under certain conditions, the behavior of
the controller is improved. LMI techniques are employed to
make the design process more practical.

Keywords: Fuzzy control, TS fuzzy models, Regulation
theory, Discontinuous control, LMI techniques.

I. INTRODUCTION

The tracking of reference signals, at least asymptotically,
is a very important area in system theory. In literature, we
can find diverse approaches to perform this task. However,
regulation theory provides an elegant frame of work to
accomplish both, the stability of the closed-loop system
if there is no external signals present, and the tracking
of references as well. Basically, the regulator problem for
a system affected by perturbation and reference signals,
both generated by a known dynamical system named the
exosystem, consists in finding a state or error feedback
controller such that the equilibrium point of the closed-loop
system with no external signals is asymptotically stable, and
the tracking error goes to zero when the system is under the
influence of the exosystem. In [4], the design of the linear
regulator was given in terms of certain matrix equations
(Francis equation), whose solution, describing steady state
mappings, depens on the property of the exosystem signals
to be observable for the system output. For the nonlinear
regulator, Isidori and Byrnes have shown that the problem
is solvable by means of some partial differential equations,
named henceforth, Francis-Isidori-Byrnes (FIB) equations
[6]. A relative drawback of this approach could be the task
of solving these partial differential equations.

Another additional problem is that a rigorous mathe-
matical model may not be available, but only some local
behavior could be obtained. For this situation, Takagi and
Sugeno proposed a fuzzy model which describes the dynam-
ics of complex systems under the suitable selection of linear
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subsystems for some predefined conditions of the original
system. Many authors have applied these ideas and have
extended well-known stability results from linear systems to
the nonlinear field. In some works, the stability properties
of the TS fuzzy model depend on the existence of a com-
mon definite positive matrix [15], [13]. Other papers relax
this condition by searching piece-wise quadratic Lyapunov
functions (see e.g. [8]) or designing fuzzy observers-based
control laws [7].

Recently in [16], an approach to design the fuzzy regu-
lator based on local controllers was given. Nevertheless, as
is mentioned in [10] and [3], this technique only works in
very particular cases.

In our work, we suggest a way to overcome this problem.
Mainly, the addition of a discontinuous term to the overall
fuzzy regulator is proposed. Under certain conditions, it is
shown that this scheme guarantees the convergence of the
output tracking error to zero.

The paper is organized as follows. In section 2 we review
the basic results on output regulation. In section 3 the main
result is presented while in section 4 some numerical sim-
ulations are carried out. Finally, some concluding remarks
are given in section 5.

II. BASIC RESULTS ON REGULATION THEORY

Considering the dynamical system

ẋ = f(x, u,w) (1)
ẇ = s(w) (2)
e = h(x,w); (3)

with x ∈ R
n, w ∈ R

p, u ∈ R
m, and e ∈ R

q as the state of
the system, the state of exosystem, the input signal and
the error signal, respectively; the State Feedback Output
Regulation Problem (SORP) is defined as the problem
of maintaining the closed-loop stability when the plant is
not affected by the exosystem, and ensuring the reference
tracking when the system is under the influence of the
exosystem. More precisely, the SORP, consists in finding
a controller

u(t) = α(x,w) (4)

such that, the following conditions hold:
RS) The equilibrium point x = 0 of the system

ẋ = f(x, α(x, 0), 0)

is asymptotically stable.
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RR) The closed-loop system (1), (2) and (4) satisfies

lim
t→∞ e(t) = 0.

On the other hand, the linear approximation for the
system (1)-(3) around the equilibrium point (x,w, u) =
(0, 0, 0) is

ẋ = Ax + Bu + Pw (5)
ẇ = Sw (6)
e = Cx + Qw (7)

with

A = ∂f(x,w,u)
∂x |(0,0,0), B = ∂f(x,w,u)

∂u |(0,0,0),

P = ∂f(x,w,u)
∂w |(0,0,0) C = ∂h(x,w)

∂x |(0,0),

S = ∂s(w)
∂w |(0), Q = ∂h(x,w)

∂w |(0,0) .

Thus, if the pair (A,B) is stabilizable, the solution for
the SORP depends on the existence of nonlinear mappings
xss = π(w) and uss = γ(w) satisfying the FIB equations
[2], [5]

∂π(w)
∂w

s(w) = f(π(w), α(π(w), w), w) (8)

0 = h(π(w), w). (9)

Mappings xss = π(w) and uss = γ(w) represent the
steady state zero output submanifold and the steady state
input which ensures the invariance of π(w), respectively.
This turns out in the following controller

u = Kx + γ(w) − Kπ(w).

with K such that (A + BK) is Hurwitz.
For the linear case, equations (8)–(9) become [5], [9]

ΠS =
0 =

AΠ + BΓ + P
CΠ + Q

(10)

and the controller is u = Kx + (Γ − KΠ)w.

III. THE FUZZY OUTPUT REGULATOR PROBLEM

As was described above, the problem of output regulation
is to find, if possible, a controller performing two tasks: 1) it
must stabilize the closed-loop system, and 2) it must provide
the steady state input or internal model, such that the system
tracks the reference signal. In this section, we propose an
approach to construct an output regulator for a TS fuzzy
model, which includes a discontinuous term. Under certain
conditions, this controller allows us to reduce the steady
state error obtained by the method proposed in [16].

Let us consider the TS fuzzy model described by r rules
of the form

Plant rule i:
IF z(t) is M1i and ..... and zv is Mvi

THEN
∑

i :




ẋ = Aix + Biu + Piw
ẇ = Siw
ei = Cix + Qiw, i = 1, ..., r

where Mji are the fuzzy sets, z1, ..., zv are the correspond-
ing premise variables which may coincide with x or w, or
even with a combination of these state vectors. And the
linear subsystems can be obtained from some knowledge
of the process dynamics [13].

In order to simplify this analysis, we assume that the
measurable variables include the whole information of both,
the plant and the exosystem, avoiding the use of observers.

So, the aggregate fuzzy system, obtained from singleton
fuzzifier, product inference and center average defuzzifier
[12], [13], [15], is

ẋ =
r∑

i=1

µiAix +
r∑

i=1

µiBiu +
r∑

i=1

µiPiw, (11)

ẇ =
r∑

i=1

µiSiw, (12)

e =
r∑

i=1

µi [Cix + Qiw] , (13)

with µi as the normalized weight for each rule calculated
from the membership functions of zj in Mji satisfying

µi = µi(z) ≥ 0
r∑

i=1

µi = 1, z = [z1, ..., zv]T .

Now, we may attempt to construct the fuzzy controller
by designing local regulators, i. e., by solving the following
equations [16]

ΠiSi =
0 =

AiΠi + BiΓi + Pi

CiΠi + Qi
(14)

for all i = 1, . . . , r. In this case, local controllers take the
form

u = Kix + Liw,

with

Li = Γi − Ki


 r∑

j=1

µjΠj


 ,

and the overall nonlinear fuzzy controller would be

u =

(
r∑

i=1

µiKi

)
x +

(
r∑

i=1

µiLi

)
w. (15)

Unfortunately, this regulator does not guarantee the
asymptotical convergence of the error, in general [10], [3].
In fact, if we substitute

π̂(w) =

(
r∑

i=1

µiΠi

)
w,

γ̂(w) =

(
r∑

i=1

µiΓi

)
w.
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into equations (8)–(9), we obtain[(
r∑

i=1

µ̇iΠi

)
+

(
r∑

i=1

µiΠi

)(
r∑

i=1

µiSi

)]
w =


 r∑

i=1

r∑
j=1

µiµj (AiΠj + BiΓj + Pi)


 w

and

0 =


 r∑

i=1

r∑
j=1

µiµj (CiΠj + Qi)


 w.

From the previous equations, it turns out that π̂(w) and
γ̂(w) solve the fuzzy regulation problem, if and only if the
following equations hold

0 =
r∑

i=1

µ̇iΠi +
r−1∑
i=1

r∑
j=i+1

µiµj (ΠiSj + ΠjSi)

−
r−1∑
i=1

r∑
j=i+1

µiµj (AiΠj + BiΓj + Pi

+ AjΠi + BjΓi + Pj) (16)

0 =
r−1∑
i=1

r∑
j=i+1

µiµj (CiΠj + Qi + CjΠi + Qj) .(17)

Nevertheless, in general, mappings π̂(w), γ̂(w) are not
the exact solution of the FIB equations (8)–(9).

As we may observe,
r∑

i=1

µ̇iΠi �= 0 in most of the cases,

therefore control law (15) is not able to take the tracking
error to zero. For the interested reader, the particular cases
that are solved by means of π̂(w), γ̂(w) are analyzed in [3].

The previous analysis is our motivation to formulate the
fuzzy output regulation problem in terms of finding a sliding
mode controller which reduces the tracking error for the
overall fuzzy system while the stability property is achieved.
The rationale behind this is that we may suppose the
existence of some nominal model for which the aggregate
control (15) is exactly the equivalent control [14], in this
sense, we consider the TS fuzzy system as the disturbed
version of such nominal model. The sliding mode technique
is then introduced to obtain the desired performance. The
suggested switching function is

e(t) =
r∑

i=1

µiCix(t) +
r∑

i=1

µiQiw(t).

The rules for the fuzzy regulator have the form
Controller rule i:

IF z1(t) is M1i and ..... and zp(t) is Mpi

THEN
u(t) = Ki(x(t) − Πiw(t)) + Γiw(t),

and the final controller is

u = ueq + v(e) (18)

where

ueq =

(
r∑

i=1

µiKi

)
x +


 r∑

i=1

µiΓi −
r∑

i,j=1

µiµjKiΠj


w

is the controller proposed in [16], and

v(e) = Gsign(e)

is the additional discontinuous term.
Thus, the Fuzzy Output Regulator Problem with Sliding

Modes (FORPSM) can be defined as the problem of finding
a set of triplets (Ki, Πi, Γi) for i = 1, .., r and G such that
the following conditions hold:

FRS) The equilibrium point (x,w) = (0, 0) of the
system

ẋ =
r∑

i=1

µiAix(t) +
r∑

i=1

r∑
j=1

µiµjBiKjx(t)

+ Gsign(e)

is asymptotically stable.
FRR) The solution of the closed-loop system (11)–(12)–

(18) satisfies
lim

t→∞ e(t) = 0.

A. Mathematical analysis

The following result states the conditions for the exis-
tence of such a controller.

Theorem 1: If matrices Si are neutrally stable for all i =
1, . . . , r and

FH1) the pairs (Ai, Bi) are stabilizable for all i =
1, . . . , r,

FH2) there exist matrices Πi and Γi solving

ΠiSi = AiΠi + BiΓi + Pi (19)
0 = CiΠi + Qi (20)

for all i = 1, . . . , r,
FH3) there exists matrices Ki and P such that

NT
ii P + PNii < 0

for i = 1, ..., r and(
Nij + Nji

2

)T

P + P
(

Nij + Nji

2

)
< 0

for all i, j = 1, . . . , r satisfying µiµj �= 0 with

Nij = (Ai + BiKj) , (21)

FH4) there exist four real numbers α1 > 0, α2 > 0,
α3 > 0 and G such that −α1 < G < 0 and
G < −α2

α3

then the FORPSM is solvable. Moreover, the controller has
the form (18).

Proof: The neutral stability of Si guarantees that the
reference signal neither decays to zero nor tends to infinity.
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For the stability of the overall fuzzy system, we make
w = 0, i. e.

e =
r∑

i=1

µiCix,

and we rewrite the closed-loop system (11), (18) as

ẋ(t) =
r∑

i,j=1

µiµjNijx +
r∑

i=1

µiBiGsign(e). (22)

Now, considering the Lyapunov function

V = xT Px

we have

V̇ = xT Qx + 2xT P

r∑
i=1

µiBiGsign(e)

≤ xT Qx + xT P

r∑
i=1

µiBi

r∑
i=1

µiB
T
i Px

+ G2sign(e)T sign(e),

with

Q =


 r∑

i,j=1

µiµjN
T
ijP + P

r∑
i,j=1

µiµjNij


 .

By FH3) we know xT Qx < 0, thus V̇ < 0 when
‖Q‖ − ‖P‖2

(
r∑

i=1

‖Bi‖
)2


 ‖x‖2 − G2q > 0

where q is the dimension of the output signal.
We observe that the equilibrium point (x,w) = (0, 0) is

asymptotically stable if

|G| < α1

where α1 ≡
√

‖Q‖−‖P‖2( r
i=1 ‖Bi‖)2 ‖x‖2

q > 0.
If the latter square-root has no real solution the recalcu-

lation of matrices Ki and P would be needed.
For the regulation condition we consider the steady state

error given by
x̃ = x − π(w)

so that, the tracking error (13) becomes into

e =
r∑

i=1

µiCix̃ +
r∑

i=1

µiCiπ(w) + Qw.

On the other hand, from regulation theory we know that
the problem has a solution if and only if

∂π

∂w
s(w) =

r∑
i=1

µiAiπ(w) +
r∑

i=1

µiBiγ(w) +
r∑

i=1

µiPiw

(23)

0 =
r∑

i=1

µiCiπ(w) + Qw, (24)

thus we got

e =
r∑

i=1

µiCix̃

whose derivative is

ė =
r∑

i=1

µ̇iCix̃ +
r∑

i=1

µiCi
˙̃x

=
r∑

i=1

µ̇iCix̃ +
r∑

i=1

µiCi


 r∑

j=1

µjAjx +
r∑

j=1

µjBju

+
r∑

j=1

µjPjw − ∂π

∂w
s(w)


 .

Adding and subtracting γ(w) in (18) and by (23) we
obtain

ė =
r∑

i=1

µiCi


 r∑

j=1

µjAj +
r∑

j=1

µjBj

r∑
k=1

µkKk


 x̃

+
r∑

i=1

µiCi




r∑
j=1

µjBj

[
r∑

k=1

µkKkπ(w)

−
r∑

k=1

µkKk

(
r∑

�=1

µ�Π�

)
w +

r∑
k=1

µkΓkw

− γ(w) + v(e)]} +
r∑

i=1

µ̇iCix̃.

Now, to show that the tracking error is asymptotically
stable we consider the Lyapunov function V = 1

2eT e and
its derivative:

V̇ = eT ė

= eT
r∑

i=1

µ̇iCix̃ + eT
r∑

i=1

µiCi


 r∑

j=1

µjAj

+
r∑

j,k=1

µjµkBjKk


 x̃ + eT

r∑
i=1

µiCi




r∑
j=1

µjBj

×
[

r∑
k=1

µkKkπ(w) −
r∑

k=1

µkKk

(
r∑

�=1

µ�Π�

)
w

+
r∑

k=1

µkΓkw − γ(w) + Gsign(e)

]}

≤ ‖e‖‖M1‖ + ‖e‖‖M2‖ + ‖e‖‖M3‖ + ‖e‖‖M4‖G,
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with

M1 =
r∑

i=1

µ̇iCix̃

M2 =
r∑

i=1

µiCi


 r∑

j=1

µjAj +
r∑

j,k=1

µjµkBjKk


 x̃

M3 =
r∑

i=1

µiCi




r∑
j=1

µjBj

[
r∑

k=1

µkKkπ(w)

−
r∑

k=1

µkKk

(
r∑

�=1

µ�Π�

)
w +

r∑
k=1

µkΓkw

− γ(w)]}

M4 =
r∑

i,j=1

µiµjCiBj

So, in order to ensure the asymptotical stability of the
error, we need to satisfy

G < −α2

α3

where α2 ≡ (‖M1‖ + ‖M2‖ + ‖M3‖) > 0 and α3 ≡
‖M4‖ > 0.

Finally, we can conclude that the fuzzy regulation prob-
lem is solvable by means of a discontinuous term if

−α1 < G < 0 (25)

and
G < −α2

α3
(26)

are satisfied.
Notice that the previous analysis agrees with Isidori’s

result given in [5] since we are assuming the existence of
the exact solution for (23)–(24), i. e., π(w), and γ(w).

B. LMI formulation

The more significative drawback of the latter result is
the recalculation of matrices Ki and P in order to satisfy
(25) and (26). Therefore, LMI design is included to provide
a numerical way to minimize the tracking error while the
stability property is kept.

Next, we introduce suitable LMIs to substitute conditions
FH1) and FH3) in Theorem 1. For more details about LMIs,
the reader is referred to [1], where a complete analysis of
LMIs in control theory is presented.

It can be proved that assumption FH1) is satisfied and at
the same time the existence of α1 > 0 ∈ R is guaranteed
when the following LMIs are feasible

0 > Q1A
T
i + XT

i BT
i + AiQ1 + BiXi + (λ2 + β)I (27)

for i = 1 . . . r, where Q1 and Xi are the unknowns with

λ =
r∑

i=1

‖Bi‖, Xi = KiQ1 and Q1 > 0. The real number

β ≥ 0 is a parameter that may be changed during the design

process in order to obtain different values for α1. These
equations ensure the stability for each subsystem, however
according with the PDC structure presented in [13], we must
also guarantee the stability in the interpolation regions, i.
e., we need to satisfy FH3). This can be done by means of

0 > Q1A
T
i + XT

j BT
i + Q1A

T
j + XT

i BT
j (28)

+ AiQ1 + BiXj + AjQ1 + BjXi + 2(λ2 + β)I

for i = 1 . . . r − 1 and i < j ≤ r. As before, the existence
of α1 > 0 ∈ R is guaranteed, Q1 and Xi are the unknowns
with Xi = KiQ1 and Q1 > 0, and the common matrix P
is Q−1

1 [13].
At this point, from (27) and (28), we can easily observe

that there exist some G that does not affect the stability
property. Besides, in order to allow G′s with bigger norm,
we only need to increase the value of β.

IV. AN ILLUSTRATIVE EXAMPLE

Let us consider the fuzzy system (11)-(12)-(13) of two
rules presented in [16] with

Ai =
(

0 1
ai 0

)
, Bi =

(
0
bi

)
, C =

(
0 1

)
,

Si =
(

0 1
−1 0

)
, Q =

(
1 0

)
,

where a1 = − Mgl
Ml2+I , a2 = 2

π a1 b1 = 1
Ml2+I , b2 = αB1,

g = 9.81m/s2, M = 20kg, l = 0.5m, I = 0.8kg − m2,
α = 2.5 and membership functions

µ1 [x1(t)] =
[
1 − 1

1 + e−7(x1−π/4)

] [
1

1 + e−7(x1+π/4)

]
,

µ2 [x1(t)] = 1 − µ1 [x1(t)] .

The fuzzy mappings are

π̂(w) =
(

0 −1
1 0

)(
w1

w2

)
, (29)

γ̂(w) =
(

0 ηw2

)
. (30)

with
η = µ1(w2)

1 + a

b
+ µ2(w2)

1 + 2a/π

αb
.

We can notice π̂(w) and γ̂(w) do not solve the fuzzy
regulation problem since they do not coincide with the exact
solution

π(w) =
(

0 −1
1 0

)(
w1

w2

)
,

γ(w) =
(

0 1+aµ1(w2)+2aµ2(w2)/π
µ1b+µ2αb w2

)
,

which are clearly different from (29)–(30) when α �= 1.
However, discontinuous control will compensate this dif-
ference.

Using Matlab LMI toolbox we obtain
K1 =

( −2.43 −5.19
)

and K2 =
( −15 −2.33

)
.

The simulation results are given in figures 1 and 2. Figure
1 shows the behavior of the plant under the action of the
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Fig. 1. Reference vs. output without discontinuous term.
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Fig. 2. Reference vs. output with discontinuous term.

fuzzy controller without discontinuous control. Although
the tracking error in this case is bounded, it does not decays
to zero. Figure 2 shows the results when discontinuous
control is included in the regulator, in this case the value
for G is −20. As may be observed, the performance of the
proposed scheme suggests its validity.

Remark 2: Of course, we can solve the tracking prob-
lem using discontinuous control only. However to achieve
similar results to those obtained in this example, we need
to increase dramatically the absolute value of the sliding
mode gain (G = −40). A controller of this type demands
more effort from the actuator. This could be an inconve-
nience for some practical cases. On the other hand, when
we combine the regulation theory with sliding modes the
resulting control signal is smoother.

V. CONCLUSIONS

In this paper we have presented a regulation scheme for
nonlinear systems using a combination of regulation theory,
Takagi-Sugeno fuzzy models and discontinuous control.
Based on the existence of local regulators, the overall
tracking error is reduced or even taken to zero by means of
a discontinuous term. Under certain conditions, this scheme
performs asymptotical tracking for the TS fuzzy model
and a bounded-error output tracking when it is applied to
the original system, the magnitude of this bound depends
on the approximation of the fuzzy model with respect to
the original nonlinear system. In that sense, this approach
can be viewed as an alternative to the classical nonlinear
regulator.

Also, conditions for the existence of the fuzzy regulator
are given in a numerical form, which allow us to obtain the
controller in a practical way.
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