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Abstract. In this paper, the optimal filtering problem for
linear systems with state and observation delays is treated
proceeding from the general expression for the stochastic
Ito differential of the optimal estimate, error variance, and
various error covariances. As a result, the optimal estimate
equation similar to the traditional Kalman-Bucy one is
derived; however, it is impossible to obtain a system of the
filtering equations, that is closed with respect to the only
two variables, the optimal estimate and the error variance,
as in the Kalman-Bucy filter. The resulting system of
equations for determining the filter gain matrix consists, in
the general case, of an infinite set of equations. It is however
demonstrated that a finite set of the filtering equations,
whose number is specified by the ratio between the current
filtering horizon and the delay values, can be obtained in
the particular case of equal or commensurable (T = gh, g
is natural) delays in the observation and state equations. In
the example, performance of the designed optimal filter for
linear systems with state and observation delays is verified
against the best Kalman-Bucy filter available for linear
systems without delays.

I. INTRODUCTION

The optimal filtering problem for linear system states and
observations without delays was solved in 1960s [1], and
this closed form solution is known as the Kalman-Bucy
filter. However, the related optimal filtering problem for
linear states with delay has not been solved in a closed
form, regarding as a closed form solution a closed system
of a finite number of ordinary differential equations for any
finite filtering horizon. The optimal filtering problem for
time delay systems itself did not receive so much attention
as its control counterpart, and most of the research was
concentrated on the filtering problems with observation
delays (the papers [2], [3], [4] could be mentioned to make
a reference). A particular case, the optimal filtering problem
for linear systems with multiple observation delays, has
recently been solved in [5]. A review of the bibliography
on dual optimal control problems, as well as robust filtering
and control problems, for time delay systems can be found
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in [5], [6], [7]. Comprehensive reviews of general theory
and algorithms for time delay systems are given in [8], [9],
[10], [11], [12].

In this paper, the optimal filtering problem for linear
systems with state and observation delays is treated pro-
ceeding from the general expression for the stochastic Ito
differential of the optimal estimate, error variance, and
various error covariances [13]. As a result, the optimal
estimate equation similar to the traditional Kalman-Bucy
one is derived. However, it is impossible to obtain a system
of the filtering equations, that is closed with respect to
the only two variables, the optimal estimate and the error
variance, as in the Kalman-Bucy filter. Thus, the resulting
system of equations for determining the filter gain matrix
consists, in the general case, of an infinite set of equations.
It is however demonstrated that a finite set of the filtering
equations can be obtained in the particular case of equal or
commensurable (T = gh) delays in the observation and state
equations, where 7 is the observation delay, % is the state
one, and ¢ is a natural number. This finite number of the
filtering equations whose number is specified by the ratio
between the current filtering horizon and the delay values
and increases as the filtering horizon tends to infinity.

The paper is organized as follows. Section 2 and 3 present
the filtering problem statement for a linear system with
state and observation delays and its solution, respectively.
In Section 4, performance of the obtained optimal filter for
linear systems with state and observation delays is verified
in the illustrative example against the best filter available
for linear systems without delays. The simulation results
show asymptotic convergence of the estimate given by the
obtained optimal filter for linear systems with state and
observation delays to the real system state as time tends to
infinity, whereas the conventional Kalman-Bucy estimates
calculated without delay adjustment do not converge.

II. FILTERING PROBLEM FOR LINEAR SYSTEMS WITH
STATE AND OBSERVATION DELAYS

Let (Q,F,P) be a complete probability space with an
increasing right-continuous family of o-algebras F,,t >
0, and let (W,(r),F;,t > 0) and (W,(r),F,t > 0) be in-
dependent Wiener processes. The partially observed F;-
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measurable random process (x(¢),y(¢)) is described by a
delay differential equation for the system state

o) +al(t)x(t

with the initial condition x(s) = ¢(s), s € [t, — h,1,], and a
delay differential equation for the observation process:

ot) +A(1)x(r —

where x(¢) € R" is the state vector, y(t) € R™ is the obser-
vation process, ¢(s) is a mean square piecewise-continuous
Gaussian stochastic process (see [13] for definition) given
in the interval [1, —h,1,] such that ¢(s), W, (¢), and W, (r) are
independent. The system state x(¢) dynamics depends on a
delayed state x(r — ) and the observations y(¢) are collected
depending on another delayed state x(¢ — T), which actually
make the system state space infinite-dimensional (see, for
example, [10]). The vector-valued function a(r) describes
the effect of system inputs (controls and disturbances). It
is assumed that A(f) is a nonzero matrix and B(t)B' (¢)
is a positive definite matrix. All coefficients in (1)—(2) are
deterministic functions of appropriate dimensions.

The estimation problem is to find the best estimate of the
system state x(¢) based on the observation process Y (t) =
{»(s),0 <s <t}, which minimizes the Euclidean 2-norm

J = E[(x(t) = £()" (x(1)  £(1)) | E¥]

at every time moment . Here, E[z(¢) | F¥] means the
conditional expectation of a stochastic process z(¢) = (x(z) —
#(t)T (x(t) — £(¢)) with respect to the o - algebra FY
generated by the observation process Y (¢) in the interval
[ty,]. As known [13], this optimal estimate is given by the

conditional expectation

dx(t) = (a —h))dt +b(t)dW,(r), (1)

dy(r) = (A 7))dt+B(t)dW,(t), (2)

E(x(t) | F")

of the system state x(#) with respect to the observation
process Y () in the interval [f,,t].
The matrix functions

m(t)" | K,
that is the estimation error variance, and

Pty ~1,) = E[(x(t) — m(0)) (x(t —1,) = m(t — 1)) | BV,
that is the covariance between the estimation error values
at different time moments, P(¢,#) = P(t), are used to obtain
a system of filtering equations.

The proposed solution to this optimal filtering problem
is based on the formulas for the Ito differentials of the con-
ditional expectation m(t) = E(x(t) | EY), the error variance
P(t), and other bilinear functions of x(r) —m(t) (see [13])
and given in the following section.

III. OPTIMAL FILTER FOR LINEAR SYSTEMS WITH
STATE AND OBSERVATION DELAYS

The optimal filtering equations can be obtained using the
formula for the Ito differential of the conditional expectation
m(r) =E(x(t) | F¥) ([13])

dm(t) = E(@(x) | F')di +E (x]@, (x) — E(p,

x (B(1)BT (1)) (dy(1) — E(

where ¢(x) is the drift term in the state equation equal to
¢(x) =ay(t)+a(t)x(t —h) and @, (x) is the drift term in the
observation equation equal to @, (x) =A,(t) +A(r)x(r — 7).
Note that the conditional expectation equahty E(x(t—h) |
FY)=E(x(t—h) | EY,) =m(t — h) is valid for any h > 0,
since, in view of a positive delay shift & > 0, the treated
problem (1),(2) is a filtering problem, not a smoothing one,
and, therefore, the formula (3) yields the optimal estimate
m(s) for any time s, #, < s <t, if the observations (2) are
obtained until the current moment ¢ (see [13], [S]). Upon
performing substitution of the expressions for ¢ and @,
into (3) and taking into account the conditional expectation
equality, the estimate equation takes the form

dm(t) = (ay() +a(t)m(t — h))d+ 4)

@) | FEOTIE)
(3)
L (x) | EV)ar),

E(x(n)[A()(x(t = 1) —m(t —1))]" | F')
(B(t)B" (1))~ (dy(t) — (A (£) +A(t)m(1 — T)dr) =
= (ag(t) +a(t)m(t — h))di+
E([x(t) =m(1)][x(t — ) = m(t = 7)]" | F)AT (1) x
(B(t)B" (1))~ (dy(t) — (A (1) +A(t)m(1 — 7)dr) =
(ay(t) +a(t)ym(t — h))dt + P(t,t — T)AT (1) x
(B(t)B" (1)) (dy(r) = (Aq(¢) + A(t)m(t — T)dr)

To compose a system of the filtering equations, the equation
for the conditional expectation E([x(z) — m()][(x(t — T) —
m(t—1))]7 | F¥) should be obtained. This can be done using
the equation (1) for the state x(¢), the equation (4) for the
estimate m(f), and the formula for the Ito differential of a
product of two processes satisfying Ito differential equations

([13):

d(ZlZg) :Zleg + (szle)T + (1/2)[)’1")’; "‘szle]dt( )
5

Here, the stochastic process z; satisfies the equation
dz; = xdt +y,dw,

the stochastic process z, satisfies the equation
dz, = x,dt +y,dw,,

and v is the covariance intensity matrix of the Wiener vector
pwy w,]"

Let us obtain the formula for the Ito differential of the
general expression P(t,r —1,) = E([x(t) —m(t)][x(t —1,) —
m(t —t,)]" | F¥), where 7, > 0 is an arbitrary delay, not
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necessarily equal to 7. Upon representing P(t,t —1,) as
P(t,i—1,) = E([x(t) (x(t—1,))"] | EY )~ m(t)m(t ~1,). using
first x(t) as z; and x(t —t,) as z, and then m(t) as z,
and m(r —1t,) as z, in the formula (5), taking into account
independence of the Wiener processes W, and W, in the
equations (1) and (2), and finally subtracting the second
derived equation from the first one, the following formula
is obtained

dP(t,t —t,)/dt = a(t)P(t —h,t —1,)+ (6)
P(t,t —t, —h)a' (t—t,)+

(1/2)[b(0)b (1 —1,) +b(t —1,)b" (1))~

(1/2)[P(t,1 = T)AT (1) (B(1)B" (1)) ™' B(r)
B (1 —1,)(B(t —1,)B (1 —1,)) ' x
At —t))PT(t—t,,t —1,—1)—
P(t—t,,t—t,—T)AT (t—1,)(B(t—1,)BT (t—1,)) "' B(t —1,) x
BT (1)(B(1)B" (1)) ' A(1)P" (1,1 = 7)].

Analysis of the formula (6) in the case 7, = 7 implies that
the equation for P(z,7 — T) includes variables P(t,r — T —h),
P(t —h,t — 1) and the same P(¢,t — T) in its right-hand side.
Taking into account that P(r — h,t — T) is represented as
P(t,t — T+ h) with the arguments delayed by h, the new
variables involved in the equations for P(¢,¢ — T) are P(t,t —
T—h) and P(t,t — T+ h). This structure is repeated in the
equations for P(t,t —t—h), P(t,t —t+h), etc.

Hence, the system of the optimal filtering equations
for the state (1), whose proper dynamics is delayed by
h, over the delayed by 7 observations (2) is the infinite-
dimensional system composed by the equation (4) for the
optimal estimate and the equations (6) for the covariances
P(t,t —T+kh), where k=...,—2,—1,0,1,2,... is an arbi-
trary integer number.

Using the notation P, (1)
(4) can be rewritten as

dm(t) = (ag(t) +a(t)m(r —h))dt + Py(AT (1)x  (7)
(B(t)B" (1))~ (dy(r) = (Ag(r) +A(t)m(t — T)dr),
and the system (6) can be represented in the following form
P(t)/dt =a(t)P,_,(t—h)+ P, (t)a’ (t—T—kh)+ (8)
(1/2)[b(t)b" (t — T — kh) +b(t — T — kh)b” ()] —
(1/2)[Ry (AT (1) (B(1)B (1)~ B(1)B" (t — T — kh) x
(B(t—t—kh)BT (t —t—kh)) 'A(t — T — kh)PL (t — T — kh)—
Py(t—1—kh)AT (t —T—kh)(B(t —T—kh)B" (t — T —kh)) ™"
B(r—©—kh)B" (1)(B(1)B (1)) ' A(1)Fy (1)).

= P(t,t — T — kh), the equation

Thus, the preceding conclusion can be formulated in the
final form: the system of the optimal filtering equations
for the state (1), whose proper dynamics is delayed by #,

over the delayed by 7 observations (2) is the infinite system
composed by the equation (7) for the optimal estimate and
the equations (8) for the covariances P (t) = P(t,t — T —
kh), where k=...,—2,—1,0,1,2,... is an arbitrary integer
number.

The last step is to establish the initial conditions for the
system of equations (7),(8). The initial conditions for (7)
are stated as

m(s) =E(¢(s)), s € [ty—h,t,) and

m(ty) =E(9(t) | Fy) ), s =1, 9)
The initial conditions for matrices P (1) = E((x(t) —
m(t))(x(t — T —kh))T | FY) should be stated as functions
in the intervals [max{t, — h,ty+ T+ (k — 1)h},max{t, +
T+ kh,t,}], since the equations (8) corresponding to non-
negative k depend on coefficients with arguments delayed
by T+ kh, which are not defined for ¢ < £,. Thus, the initial
conditions for the matrices P, (¢) are stated as

P (s) = E((x(s) —m(s))(x(s — T — kh)—
m(s —1—kh))T | FY),
1)h}, max{t,+ T+ kh,t,}].

(10)

s € [max{ty—h,ty+ 71+ (k—

Unfortunately, the system (7),(8) cannot be reduced to a
finite system for any fixed filtering horizon ¢, as it can be
done in the case of only state delay in the equations (1),(2)
(see [14]), since the infinite number of the equations (8) for
P, (t) with negative k are always needed to compose a closed
system for any time ¢. However, this reduction is possible
for some particular cases, for example, in the case of equal,
T = h, (or commensurable, T = gh, ¢ is natural) delays in
the equations (1),(2), which is considered in details in the
next subsection.

A. Optimal Filter for Linear Systems with Commensurable
State and Observation Delays

An important and frequently encountered in practical
applications particular case of commensurable delays in
state and observation equations is recovered assuming T =

gh, ¢ =1,2,... is a natural number. In doing so, the state
and observation equations (1),(2) take the form
dx(t) = (ay(t) +a(t)x(t — h))dt +b(t)dW, (), (11)
with the initial condition x(s) = ¢(s), s € [t, — h,1,],
dy(t) = (Ay(t) +A(t)x(t — qh))dt + B(t)dW,(t).  (12)

Accordingly, the optimal filtering equation (7) for the
optimal estimate m(¢) turns to

dm(t) = (ay(t) +a(t)m(t — h))dt + Py(t)A” ()
(B(0)B" (1)) (dy(1) — (Ay(1) +A(t)m(t — gh)d1),
and the system (8) is given by
de(t)/dt :a(t)Pk 1( —h)+ k+1( )a

(13)

Tt —(q+k)h)+
(14)
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(1/2)[b(0)b" (1 — (g +Kk)h) +b(t — (g +Kk)h)b" (1)}~
(1/2)[Py()AT (1)(B(1)B (¢))~'B(1)B" (1 — (g +k)h) x
(B(t — (¢ +k)n)B" (t — (g +k)h)) !
At —(q+Kk)h)Fy (t— (g +k)h)—
Py(t — (q+k)W)AT (t — (q+k)h) x
(B(t — (q+k)n)B" (t — (q+K)h)) "' x
B(t —(q+k)h)B" (1) (B(1)B" (1)) ' A(1)Fy (1))
Using the equality
P(t—ht—(—q—1)h—gh—h) =
:qu+1(f),

in (14) can be rewritten as

P—q—l(t_h) =

P(t—h,t) =P (t,t —h)

the equation for P_,
dP_,(1)/dt = a(t)PL,((t) + Py (Na (1) +

b(t)b" (1) = PFy(AT (1)(B(1)B (1) "' A(1) 5 (1).

Note that P_,(t) = E((x(¢) —m(t))(x(t))T | EY) is the esti-
mation error variance.

Ifg=1,2,..., the right-hand side of (15) does not include
variables P, corresponding to negative k < —q. Hence, a
closed system of the filtering equations is formed by the
equations (13),(15) and the equations (14) with k > —q only.
This enables one to obtain a finite system of the filtering
equations for any fixed filtering horizon ¢, as follows.

Namely, for every fixed 7, the number of equations
corresponding to k > —q in (14), that should be taken
into account to obtain a closed system of the filtering
equations, is not equal to infinity, since the matrices a(z),
b(t), A(t), and B(t) are not defined for ¢ < ¢,. Therefore, if
the current time moment ¢ belongs to the semi-open interval
(tg+ (k+q)h,ty+ (k4 g+ 1)h], where h is the delay value
in the equations (1),(2), the number of equations in (14) is
equal to k+gq.

The last step is to establish the initial conditions for the
system of equations (13),(15),(14). The initial conditions for
(13) and (15) are stated as

m(s) =E(¢(s)), s € [t,—7.1,) and

(15)

m(ty) = E(0(1g) | Fy) ), s =1q, (16)

and
P(ty) = E[(x(ty) —mf(ty) (x(t5) —m(t))" |F%/] (17)
The initial conditions for matrices P, (1) = E((x(t) —

m(t))(x(t — (g+k)h))T | EY) should be stated as functions in
the intervals [t, + (k+qg — 1)h,t,+ (k+ q)h], since the kth of
the equations (14) depends on functions with the arguments
delayed by (k-+¢)h and the definition of P, (¢) itself assumes
dependence on x(r — (k+ g)h). Thus, the initial conditions
for the matrices P, () in (14) are stated as

1 (5) = E((x(s) —m(s)) (x(s — (¢ +k)h)—

m(s —(q+K)h)" | F), (18)

s € [ty + (g +k—1)h,ty+(q+k)h].
The obtained system of the filtering equations
(13),(15),(14) with the initial conditions (16)-(18)

presents the optimal solution to the filtering problem for
the linear state with delay (11) over the linear observations
(12). A considerable advantage of the designed filter is
a finite number of the filtering equations for any fixed
filtering horizon, although the state space of the delayed
system (11) is infinite-dimensional.

Remark. The convergence properties of the obtained
optimal estimate (7) are given by the standard convergence
theorem (see, for example, [15]): if in the system (1),(2)
the pair (a(r)¥(¢t — h,t),b(t)) is uniformly completely con-
trollable and the pair (a(t)¥(r — h,t), A(t)¥(t — 7,t) is
uniformly completely observable, where (7, T) is the state
transition matrix for the equation (1) (see [10] for defini-
tion of matrix ), then the error of the obtained optimal
filter (7),(8) is uniformly asymptotically stable. As usual,
the uniform complete controllability condition is required
for assuring non-negativeness of the error variance matrix
P_,(t) and may be omitted, if the matrix P_,(¢) is non-
negative in view of its intrinsic properties. The uniform
complete controllability and observability conditions for a
linear system with delay (1) and observations (2) can be
found in [10].

IV. EXAMPLE

This section presents an example of designing the optimal
filter for linear systems with state and observation delays
and comparing it to the best filter available for linear
systems without delay, that is the Kalman-Bucy filter [1].

Let the unobserved state x(¢) with delay be given by

x(t)=x(—-5), x(s)=¢(s), s€[-5,0], (19)

where ¢(s) =N(0,1) for s <0, and N(0,1) is a Gaussian
random variable with zero mean and unit variance. The
observation process is given by

() = x(t =35)+ y(0),

where y/(r) is a white Gaussian noise, which is the weak
mean square derivative of a standard Wiener process (see
[13]). The equations (12) and (13) present the conventional
form for the equations (1) and (2), which is actually used
in practice [16]. Since the observation delay is equal to the
state one, the system (19),(20) satisfies the conditions of
Subsection 3.1 with g = 1.

The filtering problem is to find the optimal estimate for
the linear state with delay (19), using the linear observations
with delay (20) confused with independent and identically
distributed disturbances modeled as white Gaussian noises.
Let us set the filtering horizon time to 7 = 80. Since 80 €
(15 % 5,16 x 5], where 5 is the delay value in the equations

(20)
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(19),(20), the first 15 of the equations (14), along with the
equations (13) and (15), should be employed.

The filtering equations (13),(15), and the first 15 of the
equations (14) take the following particular form for the
system (19),(20)

m(t) =m(t —

with the initial condition m(s)

5)+FROb@)—mi=5),  (21)
=E(¢(s)) =0, s € [-5,0)

and m(0) = E(¢(0) | y(0)) = my, s =0;

Bi(t) = P_y(t=5)+ Py (t) = By(t)Ry(r = 5(i+ 1)), (22)
with the initial condltlonP(O) =E((x(s)—m(s))(x(s—5@+
1) —m(s=5(i+1))) | FY), s€[5i,5(+1)],i=0,...,14;
and

Py (1) ~F3 (1),

with the initial condition P_ (0) = E((x(s) — m(s))* |
y(0)) = R,; note that P_,(t) is the error variance. The
particular forms of the equations (19) and (21) and the initial
condition for x(r) imply that P(s) =R,, i =0,...,15, for
s€[5,5(i+1))].

The estimates obtained upon solving the equations (21)—
(23) are compared to the conventional Kalman-Bucy es-
timates satisfying the following filtering equations for the
linear state with delay (19) over linear observations with
delay (20), where the variance equation is a Riccati one
and the equation for matrix P,(f) is not employed:

= 2F(1) (23)

mig (1) = my (1 =5) + P (1) [y(1) —me (e =5)), (24)
with the initial condition m(s) = E(¢(s)) =0, s € [-5,0)
and my (0) = E(¢(0) | y(0)) =m,, s=0;

Pe(t) = 2P (1) — P3(0), (25)

with the initial condition Py (0) = E((x(0) —m(0))? | y(0)) =
R,.

Numerical simulation results are obtained solving the
systems of filtering equations (21)—(23) and (24)—(25). The
obtained values of the estimates m(t) and m(t) satisfying
(21) and (24) respectively are compared to the real values
of the state variable x(z) in (19).

For each of the two filters (21)—(23) and (24)—(25) and the
reference system (19) involved in simulation, the following
initial values are assigned: x, = 1, m; = 10, R, = 100.
Gaussian disturbance y/(r) in (20) is realized using the built-
in MatLab white noise function.

The following graphs are obtained: graphs of the refer-
ence state variable x(¢) for the system (19); graphs of the
Kalman-Bucy filter estimate m () satisfying the equations
(24)—(25); graphs of the optimal filter estimate for linear
systems with state and observation delays m(¢) satisfying
the equations (21)—(23). The graphs of all those variables
are shown on the entire simulation interval from 7 = 0
to T =80 (Fig. 1), and around the reference time points:
T =40 (Fig. 2), T =60 (Fig. 3), and T = 80 (Fig. 4). It
can also be noted that the error variance P(¢) converges to

zero, since the optimal estimate (21) converges to the real
state (19).

The following values of the reference state variable x(r)
and the estimates m(r) and my(r) are obtained at the refer-
ence time points: for T =40, x(40) = 12.55, m(40) = 12.62,
my (40) = 12.75; for T = 60, x(60) = 51.56, m(60) = 51.50,
mg(60) = 52.12; for T = 80, x(80) = 211.92, m(80) =
211.96, my(80) = 214.08.

Thus, it can be concluded that the obtained optimal filter
for a linear systems with state delay and over linear obser-
vations with delay (21)—(23) yield better estimates than the
conventional Kalman-Bucy filter. Subsequent discussion of
the obtained simulation results can be found in Conclusions.

V. CONCLUSIONS

The simulation results show that the values of the esti-
mate calculated by using the obtained optimal filter for a
linear state with delay over linear observations with delay
are noticeably closer to the real values of the reference
variable than the values of the Kalman-Bucy estimates.
Moreover, it can be seen that the estimate produced by
the optimal filter for a linear state with delay over linear
observations asymptotically converges to the real values of
the reference variable as time tends to infinity, although the
reference system (19) itself is unstable. On the contrary,
the conventionally designed (non-optimal) Kalman-Bucy
estimates do not converge to the real values. This significant
improvement in the estimate behavior is obtained due to the
more careful selection of the filter gain matrix using the
multi-equational system (21)—(23), which compensates for
unstable dynamics of the reference system, as it should be
in the optimal filter. Although this conclusion follows from
the developed theory, the numerical simulation serves as a
convincing illustration.
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