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Abstract— The economic approaches of potential game the-
ory and bargaining theory are applied to the area of power
control in CDMA wireless networks. These perspectives help
identify suitable equilibrium points, and algorithms that can
be shown to converge to them. The bargaining approach also
suggests an iterative method for the simultaneous routing and
resource allocation problem.

I. INTRODUCTION

In recent years there has been an increasing trend to adopt
models of economic theory to study resource allocation
problems in communication networks. In particular, if units
in a network can elastically adapt their demand for a given
resource (e.g., bandwidth), it is natural to use the language
of utility functions to study the contention for the scarce
supply of this resource [1]. In the case of CDMA wireless
networks, transmission power is subject to contention in a
rather complex way, due to the effect of mutual interference.
This has led to recent work [2], [3], [4] applying game
theory to the power allocation problem.

Taking this as a starting point, the present paper delves
further into economic theory to find additional tools that
are relevant to the power control problem. In Section II, we
show that the theory of potential games can apply directly to
the setup of [3], [4]: for a similar class of utility functions,
we show existence and uniqueness of the Nash equilibrium
and decentralized algorithms that converge to it.

As is well known, Nash equilibria are often inefficient
in the sense that an improved utility for all players could
be achieved through collaboration. This “price of anarchy”
leads us to consider in Section III the problem from the
point of view of bargaining theory, seeking Pareto-optimal
allocations, and ways to select between these by assigning
bargaining powers to the users. These types of solutions
depart from the decentralized assumption of the previous
section, and the abovementioned literature. They are, how-
ever, quite natural in a wireless network in which one
often would like to alleviate mobiles from the computational
burden of a complex algorithm. Indeed, in the same flavor
some recent work [5] has attempted to allocated both power,
routing and rate through a global, centralized optimization
algorithm. Due to the non-convexities arising from the
power control in the CDMA case, [5] is forced to employ
an approximate analysis. The bargaining approach of this
paper suggests a procedure in which the power control could
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be studied exactly; some preliminary work in this direction
is reported.

Section IV gives conclusions and outlines directions of
future research.

II. POTENTIAL GAMES FOR WIRELESS POWER
CONTROL

In this section we analyze a scenario in power allocation
decisions in the wireless network which are based on the
selfish optimization of each unit’s utility function, possibly
with a penalty term introduced by the network. This ap-
proach has been introduced and studied in [2], [3], [4]. For
example, in the last two references, each user is assigned a
utility of the form

ui = a log2(1 + γi) − cipi

where a is a positive constant, and

γi =
W

B

hipi∑
j �=i hjpj + σ

is the signal-to-interference ratio (SIR) of user i in which
W and B are system bandwidth and signal unmodulated
bandwidth respectively, hi is user i’s channel gain, pi is his
transmission power, and σ is the noise power at receiver.
The motivation for this kind of utility is as follows: the first
term is proportional to the Gaussian channel capacity of a
channel with the given SIR, and can thus be interpreted
approximately as the transmission rate allowed by the
overall power allocation. The second term is a cost of power,
that can be viewed as representing the unit’s own battery
expenditure, or alternatively as a penalty assigned by the
base station for the received power (in that case ci would
be proportional to the channel gain hi, see [4]).

It has been shown in the above papers that with these
utility functions, the resulting game possesses a unique
Nash equilibrium, and selfish players synchronously updat-
ing their powers to the best response to the others’ moves,
will converge to the equilibrium.

In this section we will see that utilities of a similar nature
give rise to a so-called potential game, and thus the above
properties can be extended to this class. We first review
some definitions and results on potential games, that can be
found in [6].

A. Potential Games

We consider a game Γ(u1, u2, · · · , ul) where the set of
players is L = {1, 2, · · · , l}, and the strategy space is P =
P1×P2×· · ·×Pl. Each user i plays a strategy pi from the
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set Pi = [p
i
, pi], and receives a utility determined by the

payoff function ui : P �→ R. As is customary, the vector of
opponents’ strategies is represented by p−i, varying in the
space P−i .

We call a game a potential game if there exists a function
f : P �→ R with the following property:

ui(p1
i , p−i) − ui(p2

i , p−i) = f(p1
i , p−i) − f(p2

i , p−i)
(1)

for all i ∈ L and all p1
i , p

2
i ∈ Pi and p−i ∈ P−i. In this

case the function f is called the potential function of game
Γ.

To obtain strong results about potential games, we restrict
the attention to potential functions that satisfy the following
conditions:

• C1: Potential function f is continuously differentiable
on the space of strategies P .

• C2: Potential function f is a strictly concave function
of the strategies.

The first condition relates to the following useful char-
acterization of potential games from [6]:

Lemma 1: Let Γ be a game with all strategy sets in
the form of intervals of real numbers. If all the payoff
functions are continuously differentiable, then the function
f : P �→ R is a potential function for Γ if and only if f is
continuously differentiable and also

∂ui

∂pi
=

∂f

∂pi
for every i ∈ L. (2)

The above lemma captures the fact that any unilateral
change in strategy is reflected in both the deviator payoff
and the potential function in exactly the same way.

The second condition implies that the function f has a
unique maximum over the hypercube P ; it turns out, this
is the Nash equilibrium of the game:

Theorem 2: Given a potential game Γ with potential
function f satisfying C1 and C2, then there is a unique
Nash equilibrium p, which coincides with the unique max-
imizer p∗ of the function f over P .

Proof: If p∗ = argmaxx∈P f(x) then users cannot
increase f through a unilateral change of strategy; so, by
(1), they cannot increase their payoff and thus, by definition,
p is a Nash equilibrium of Γ. Conversely assume now that
p is a Nash equilibrium of the game. By definition, for each
i ∈ L we have:

pi = argmaxx∈Pi
f(x, p−i) (3)

Since f is concave, its restriction to a line is concave too.
Combining this with (3) yields [7]:

∂f

∂pi
(p) · (xi − pi) ≤ 0 ∀i ∈ L,∀xi ∈ Pi

Collecting all the inequalities for i ∈ L in vector form we
obtain: ∇fT (p) ·(x−p) ≤ 0,∀x ∈ P . Now using concavity
of f implies that p is the maximizer of f over P [7].

B. Convergence to Nash Equilibrium

Now that we know sufficient conditions for game Γ to
possess a unique Nash equilibrium, it remains to show that
myopic players playing in their own self-interest will reach
this point. More precisely, if each user updates pi to be the
payoff maximizing strategy under the assumption that p−i

is fixed, does this distributed algorithm converge to Nash
equilibrium? Since, as we saw in theorem 2, the equilibrium
is the unique maximizer of the potential function f , this
kind of iteration is in essence a distributed optimization
algorithm of the type studied in [10]. In particular, some
restrictions apply as to the sequencing of these distributed
updates to allow for a convergence result. Among other pos-
sibilities, we focus here for concreteness on the nonlinear
Gauss-Seidel algorithm [10], that works as follows:

At each turn only one player has the right to play, i.e.
update his strategy. Being at point p = (p1, p2, · · · , pl) ∈ P ,
player i, who has to play now, maximizes the objective
function f assuming that every body else’s strategy, p−i, is
fixed. This routine is repeated in a circular regime. Formally
the nonlinear Gauss-Seidel algorithm is defined by:

pi(t + 1) = argmaxpi∈Pi
f(p1(t + 1), · · · , pi−1(t + 1),

pi, pi+1(t), · · · , pl(t)) (4)

The following proposition gives the main convergence
results of the nonlinear Gauss-Seidel algorithm.

Proposition 3: Suppose that the set P = P1×P2×· · ·×
Pl is bounded where each Pi, i = 1, · · · , l is a nonempty
interval of real numbers. Also assume that the function f :
P �→ R satisfies conditions C1 and C2. Let {p(t)} be the
sequence generated by the nonlinear Gauss-Seidel algorithm
(4); then {p(t)} converges to p∗ = argmaxx∈P f(x).

This proof is essentially from [10]: there it is shown,
under slightly weaker assumptions on the concavity of f ,
that every limit point of the sequence {p(t)} must be a
maximizer of f over P . Under the strict concavity stipulated
in C2, there is a unique maximizer, therefore only one limit
point and the sequence must converge to it.

To interpret this result in terms of the game, we rewrite
the distributed optimization algorithm in the following
equivalent way:

pi(t + 1) = argmaxpi∈Pi
ui(p1(t + 1), · · · , pi−1(t + 1),

pi, pi+1(t), · · · , pl(t)) (5)

In other words, players update their strategy taking turns
in a round-robin fashion, and play the best response to the
other players’ strategies. The equivalence of the equations
5 and 4 is apparent by definition of potential function. The
following theorem follows immediately.

Theorem 4: Assume in game Γ, the strategy sets Pi, i =
1, · · · , l are bounded nonempty intervals of real numbers.
Also assume that Γ is a potential game with a potential
function f : P �→ R which satisfies conditions C1 and C2.
Then the circular Gauss-Seidel scheme 5 converges to the
unique Nash equilibrium of the game.
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Remark: We have focused on the Gauss-Seidel scheme,
which imposes a certain order in the game. However there
are more general iterations that share the convergence
property. The main requirements are: (i) two players should
not be allowed to update strategies at exactly the same time;
(ii) each must continue to update infinitely often.

The first requirement implies that the sequence of values
of f is monotonic, hence by boundedness it must converge
to a limit. The second requirement implies that at this limit,
no player can improve utilities unilaterally. But then this
limit must be the unique Nash equilibrium of the game.

C. Application to CDMA networks

We now return to applying these results to CDMA
networks.

Example 1: Assume that user i’s utility is defined as:

ui(p) = log(1 +
hipi∑

j �=i hjpj + σ
) − aipi, (6)

where all parameters are as defined before, and the positive
real number ai is the per-unit penalty for using power by
user i charged by the central authority. This is of the form
considered in [4]. Assume also that the strategy space of
user i is the closed interval [0, pi] where pi > 0. It is easily
seen by (2) that the function f(p) = log(

∑
i∈L hipi +σ)−∑

i∈L aipi is a potential function for the game above where
p is the strategy profile. Since f satisfies C1 and C2, as
a result of theorem 4, users will converge to the unique
Nash equilibrium of the game p∗ which is also the unique
maximizer of f on P if they play selfishly and circular as
in (5).

Example 2: Assume that the set-up is identical to last
example but we allow the penalty term to be an arbitrary
convex function of power. Namely,

ui(p) = log(1 +
hipi∑

j �=i hjpj + σ
) − bici(pi) (7)

where ci(pi) is a convex penalty function of user i and
bi is a nonnegative constant. It is not hard to check that
f(p) = log(

∑
i∈L hipi + σ) − ∑

i∈L bici(pi) is a potential
function for the game. Since f satisfies C1 and C2, the
update scheme 5 will result in the convergence of p to the
unique Nash equilibrium of the game which maximizes f
on P .

As we observed in the two examples above, this way we
can analyze a range of utility and price functions as long
as C1 and C2 are satisfied.

III. A CENTRALIZED BARGAINING APPROACH

In the last section we established existence and unique-
ness of the Nash equilibrium, and an algorithm that guaran-
tees convergence to it. The natural question is how efficient
the Nash equilibrium is from a social perspective. As is
well known (see e.g. [8], [9]), there is often a “price of
anarchy” in games of this nature, meaning there may be

operating points which are better for all players but are not
found through selfish interactions.

More precisely, the Nash equilibrium of the game need
not be Pareto optimal. If one wants to operate at these
more desirable Pareto optimal points, a more centralized
approach to power allocation is required. Note that while
decentralized implementations have appeal, in the wireless
network context it is also true that one would like to
minimize the computational burden on the mobiles; having
a centralized solution in which a base station performs the
computation and acts as central authority may be more
suitable. In this section, we explore this possibility by
invoking tools from bargaining theory.

A. Review of Bargaining Theory

Some of the definitions and results of this subsection can
be found in [11]. An l-person bargaining problem is defined
as a pair (S, d) where S is a non-empty compact subset of
R

l and d ∈ S which is called the disagreement point. The
set S is the utility possibility set and the disagreement point
d is a point where the bargaining procedure settles at, in case
the bargaining among agents fails. A bargaining solution F
is a mapping from each pair (S, d) to S. There are some
well-known bargaining solutions in the literature such as
Nash bargaining solution, egalitarian bargaining solution,
Kalai-Smorodinsky solution, etc. Each of those solutions
are characterized by a set of desirable properties that one
expects from a bargaining solution. Some of these properties
together with other necessary definitions are defined below:

• A set S ∈ R
l is d-comprehensive if y ∈ S and d ≤

x ≤ y imply x ∈ S.
• The ideal point of a problem (S, d) is defined as:

a(S, d) =
(

max
x∈S,x≥d

x1, max
x∈S,x≥d

x2, · · · , max
x∈S,x≥d

xl

)

• A bargaining solution F is scale invariant if ∀λ ∈
Λl, F (λ(S), λ(d)) = λ(F (S, d)) where λ is a linear
transformation λ : R

l → R
l of the form λ(x) = Bx

for some diagonal positive matrix B ∈ R
l×l
++ and Λl is

the set of all such transformations.
• A bargaining solution F is called restricted monotone

if it meets the following condition: If S ⊂ S′, d = d′,
and a(S, d) = a(S′, d′)then F (S′, d′) ≥ F (S, d).

• A bargaining solution F is weak Pareto optimal if
F (S, d) ∈ WP (S) where WP (S) = {x ∈ S|y 	
x implies y /∈ S} and is called the weak Pareto surface
of the set S.

Out of the many solutions in the literature, we review here
the extended Kalai-Smorodinsky bargaining solution [11],
which is most suited to our problem.

KS(S, d) = max
x∈S

x ∈ aff(d, a(S, d)).

This solution forms the line connecting d and the ideal point
a(S, d) and offers the best point on that line which also lies
in the feasible set, as the solution to the bargaining problem.
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We will find it useful to further generalize the above
solution to allow for users to have different bargaining
powers; we thus define the generalized Kalai-Smorodinsky
bargaining solution by

KS(S, d) = max
x∈S

x ∈ aff(d,Ca(S, d))

where Cl×l is the diagonal matrix of whose Cii element
is the bargaining power of user i and satisfies Cii ≥ 0
with at least one Cii positive. Fig. 1 depicts an example to
compute KS(S, 0). We see that this version adjusts the ideal
point prior to forming the line in which to seek bargaining
solution.

To state some properties of KS(S, d) we need some
assumptions:

1) S is compact.
2) S is d-comprehensive. As we will see this is a crucial

assumption which replaces the convexity condition in
the conventional bargaining theory.

3) There is a point x ∈ S such that x 	 0. This
way each participating player has a motivation for
diverting from the disagreement point.

From this point on we assume d = 0. There are three
important properties that KS satisfies. We bring all here
and omit the proofs for reader’s convenience:

property 1: KS is weak Pareto optimal.
property 2: KS is scale invariant.
property 3: KS is restricted monotone.
Before applying this to networks in the next subsection,

it is insightful to analyze the above properties of KS in
more detail. The first property satisfies our desire to reach
the Pareto surface, something the non-cooperative approach
cannot do. Scale invariance means that the bargaining solu-
tion is not sensitive to units. Should the utilities get scaled
by some positive numbers, the scaled version of the same
solution results. Restricted monotonicity is a weaker version
of the so-called independence of irrelevant alternatives in
economics. Very simply stated, it means as long as the ideal
point is fixed, one can not improve any utility in KS by
eliminating utility possibilities.

The other useful feature of KS is the bargaining power
matrix C. Among all uses of bargaining power we can
mention the following: Suppose that the willingness-to-
pay of different users of the network is different. In such
a situation, the different functionalities that users expect
from the network could be reflected in their bargaining
powers in a clear quantitative way; For example the diagonal
elements of C could be chosen directly proportional to
the willingness-to-pays of all users. Another interesting
application is discussed in III-C.

B. Centralized Power Control Algorithm

Now that we have studied the necessary results from
bargaining theory, we apply them to a centralized power
control scheme for the wireless network.

Assume that the network under consideration is com-
prised of l users together with a base station which is the
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Fig. 1. KS for a sample set S with C11 = 0.5, C22 = 0.8

ruling authority and performs all the computations. The
utility of player i is defined as:

ui = B log2(1 +
W

B

hipi∑
j �=i hjpj + σ

)

where all parameters are defined as above. In fact ui is
the capacity of channel from user i to base station. The
strategy space for player i is the interval Pi = [0, pi] where
pi > 0,∀i ∈ L = {1, · · · , l}. The overall strategy space is
P = P1 × · · · × Pl. The utility possibility set is therefore

S = {(u1(p), · · · , ul(p))|p ∈ P}.
One crucial observation is that S is not in general a convex
set. A typical possibility set is shown in Fig. 1.

Now the problem is to assign each user with a power
level so that the resulting operating point of the network is
efficient. The generalized Kalai-Smorodinsky solution (KS)
above uses comprehensiveness of S in place of its convexity
which holds in our problem because given a feasible set of
link capacities, every underestimate of those link capacities
is feasible as well. Besides, compactness of P together with
continuity of ui(p), i ∈ L (assuming σ > 0) implies that
S is compact. In addition all players have positive power
limits. So the three assumptions of last subsection are met
by S. We also note that each user can transmit at zero power
to pull out of the bargaining. Hence the disagreement point
is d = 0. As a result we have proven the following result:

In network set-up above, the generalized Kalai-
Smorodinsky solution is scale invariant, weak Pareto op-
timal, and restricted monotone.

As mentioned in the last subsection, in addition to the
above properties, KS incorporates the bargaining power
feature, which supports all cases from absolute fairness
(C = I) to ignoring some user completely (Cii = 0).

Now it remains to show how to implement KS. The
procedure is in fact not more than a line search. To find
aff(0, Ca(S, 0)), we need to know a(S, 0) for which we
have:

ai(S, 0) = B log2(1 +
W

B

hipi

σ
).

So the base station needs to know the path gains of all
users, which could be done by dividing the received power
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of each user at base station by the transmission power of
the same user which has been commanded by base station
in the last iteration. Alternatively, if there is any uncertainty
about whether or not each user has been able to transmit at
the ordered power and also for the very first iteration of the
power control, each user can send his transmission power
level to the base station.

The bargaining power matrix C is also a parameter
known by base station. After finding Ca(S, 0), finding KS
could be done by a line search. In each iteration of the
line search, a feasibility check is needed to test whether the
point is in the utility possibility set. This amounts to solving
the system of linear equations in transmission powers p. For
this purpose define γi = 2

ui
B −1 as the signal to interference

ratio of user i at receiver as a function of corresponding rate.
Then p must satisfy Λp = v where Λ ∈ R

l×l is defined
by: Λii = −Whi, Λij = Bγihj and v ∈ R

l is defined
as vi = −Bγiσ. If a solution p ∈ P to the above linear
equations exists then u is feasible, and otherwise not.

It is worth mentioning that with this method we can
directly trade off some fraction of the total network capacity
against a huge save in the total power usage in the network.
In fact instead of forcing all users to transmit at a power
corresponding to KS we can alternatively retract from
the Pareto surface inwards by a few percents, gaining a
significant power saving. Explicitly, assume that the result
of the line search above is the utility vector u. If we instead
use αu where α ∈ [0, 1] we are in fact giving up a fraction
of the total capacity which is exactly (1 − α)

∑
ui. For

each α we can also compute the vector of powers resulting
in αu. Fig. 2 shows a typical situation where the sum of
the powers and the maximum power in the network are
depicted. By giving up 5% of the whole capacity the total
power consumption has decreased by a factor of 0.25. Using
KS gives designer the ability to explicitly buy huge power
savings for a determined percentage of total capacity.
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Fig. 2. A typical maximum and total power consumption vs. α

C. A Heuristic Approach to Simultaneous Routing and
Resource Allocation

In this subsection we study a heuristic application of
the central bargaining method which has been applied to
the simultaneous routing and resource allocation (SRRA)
problem in a wireless CDMA network. Assume that there
is a wireless CDMA network with n nodes and l links.
Define vector x as the flow variables including the flows
destined for each destination originated from each source
and also the flows for each destination carried by each link
in the network. Also define vector t as the vector of total
flows on links, p as the vector of powers of transmitters, and
p as the vector of maximum powers feasible to transmitters.

There is a path gain corresponding to each link as in our
previous model. The main difference between this model
and previous models of this paper is that different agents can
directly transmit data between themselves and as a result
routing comes into the scene for the first time in this paper.
The objective is to maximize the overall throughput of the
network. An example of such a network is depicted in Fig.
3 where n = 6, l = 20, and the objective is to maximize the
total throughput from node 6 to 1 plus 5 to 2. This network
model is completely introduced in [5] in which the whole
model is cast as an optimization program of the form

max h(x, t)
s.t. h1(x, t) ≤ 0

0 ≤ p ≤ p

t ≤ c(p) (8)

where h(x, t) is a concave function of x, t that captures
total throughput from sources to destinations in the network
and h1(x, t) is a convex function of x and t capturing the
conservation of flow and also non-negativity of flows; while
c(p) gives the vector of link capacities as a function of all
powers. This last constraint (8) makes the problem non-
convex; [5] proposes a convex approximation to solve it.

Here we model each link as an agent in the bargaining
procedure. The whole bargaining procedure among the links
is performed with initial bargaining powers. Based on the
result of the bargaining each link is assigned a capacity.
We call the vector of capacities after ith iteration ci.
These capacities will appear as constants in the routing
optimization program which is convex and is of the form:

max h(x, t)
s.t. h1(x, t) ≤ 0

t ≤ ci (9)

When the program is solved, at the optimal solution some
links are congested and some are not in general. Now we
return to the bargaining procedure and redo it; However
this time with updated bargaining powers. Intuitively we
should increase the power of congested links compared to
those that are not congested. Mathematically put, it means
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Fig. 3. An example of network studied for SRRA

that we adjust all bargaining powers at iteration i, shown by
BP i, according to Lagrange dual multipliers corresponding
to (9): BP i+1 = F (BP i, λi). We then close the loop
and repeat the bargaining-optimization sequence until some
termination condition is met. A simulated example of this
iterative bargaining power update is shown in Fig. 4 where
for the network of Fig. 3, bargaining powers are updated
as: BP i+1 = BP i + 0.5λi. The observation through
simulations was that over the first few iterations, there is
usually a significant improvement in the total flow while
after that, this improvement slows down and in some cases
starts making slight fluctuations.

IV. CONCLUSION AND FUTURE WORK

In this paper we considered two economic approaches to
the resource allocation problem in wireless CDMA commu-
nication networks. The first set-up emphasizes decentralized
decision making by the mobiles, and the problem was
modeled as a potential game. Sufficient conditions on the
potential functions were found that give a unique Nash
equilibrium point, and a decentralized algorithm that con-
verges to it. In the second set-up, a fully-centralized scheme
based on bargaining theory was applied and results from the
bargaining problems without convexity were exploited. We
also included bargaining powers, and showed a heuristic
procedure that uses them to study the combined power and
rate control problem.

The price of decentralized implementations is that one
must sacrifice Pareto optimality; on the other hand, a fully
centralized scheme requires the base station to know all
details including the users’ utility, which may be excessive.
Thus, one could think of a middle ground in which power
updates are done by users, and the network uses price
incentive to coax users to a Pareto optimal point. We are
currently studying alternatives to achieve this, combining
ideas from these two extreme approaches. Other future
directions for this work involve the problem of simultaneous
routing and resource allocation; we gave some initial ideas
and simulation results, mathematical results will be sought
in the future.
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Fig. 4. Simulation result for SRRA
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