
2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

FrA17.2

Deadlock Avoidance Algorithm for Flexible Manufacturing Systems
By Calculating Effective Free Space of Circuits

'Wenle Zhang and Robert P. Judd
School of Electrical Engineering and Computer Science

Ohio University
Athens, Ohio 45701

Abstract: Modem flexible manufacturing systems (FMS) are
highly automated and flexible in which raw parts of various types
are processed concurrently. Deadlock issue arises easily in these
systems due to shared equipment usage and high production
flexibility. This paper presents a deadlock avoidance algorithm
for FMS with free choices in part routing by calculation of
effective free space of circuits of the digraph model. The
algorithm is highly permissive since the effective free space
calculation captures more parts flow dynamics, especially when
there exist multiple knots in the digraph model. It runs in
polynomial time once the set of circuits is computed offline.
Simulation results are provided.

Keywords: flexible manufacturing system, choice, digraph,
circuit, deadlock avoidance.

1. Introduction
Modem flexible manufacturing systems (FMS) are highly

automated and flexible in which raw parts of various types are
processed concurrently. Deadlock issue arises easily in these
systems due to shared equipment usage and high production
flexibility. To increase equipment utilization and maximize
productivity, it is crucial for a FMS to operate without deadlock.
Research on deadlock detection, prevention and avoidance for
flexible manufacturing systems has been rather active recently.
Some of the significant works adopted Petri net (PN) models [1 ,
2, 4, 6, 10, 12, and 161 as a formalism to describe the
manufacturing system. Another formalism is to describe the
manufacturing system using graphs [3, 5, 8-9, 11, 13-15]. In this
approach the vertices represent resources and the arcs (edges)
represent product part flows between resources.

It is well known that it is difficult to detect impending
deadlocks that are arbitrary steps away from primary deadlocks.
Fanti [SI studied second level deadlock - the impending deadlock
one step away from a primary deadlock. Barkaoui [2] used a one
step look-ahead controller, which cannot avoid impending
deadlocks that are more than one step away. Our previous work
[14], in which no free choice is allowed in part routing, avoids
deadlocks, especially impending deadlocks by dynamically
evaluating the order of circuits.

The major contribution of this paper is the development of a
new deadlock avoidance algorithm which extends our previous
results [141 on deadlock avoidance for FMS's withoutfree choice
in part routing to systems with free choices in part routing.
Because of choices introduced, part flow dynamics become much
more complex, order evaluation method given by [I41 is no
longer valid due to the added routing flexibility. The extension is
made possible by the systematic circuit analysis presented in
Zhang [151, where concepts such as broken circuit, basic circuit,

suprema1 circuit, were presented. These concepts help to
decrease number of necessary circuits for deadlock checking thus
increasing efficiency and permissiveness of our deadlock
avoidance algorithm. The presented algorithm is unique in that it
avoids both primary deadlocks and impending deadlocks that are
arbitrary steps away from primary deadlocks. It can be shown
that the presented algorithm runs in polynomial time once the set
of necessary circuits of the digraph is computed offline.

2. The System Model and Deadlock
We consider a flexible manufacturing system that consists

of a set R of a finite number of resources (such as, NC machines,
robots, buffers, etc.) and a set P of a finite number of part types
that the system can produce. Each resource r e R has a capacity,
denoted as C,, which can be considered as a multiple of identical
units. The capacity can be naturally extended to a set of
resources, R1 c R, as CRl. Each part type p E P is assigned a
process plan that defines a finite number of steps of operations
need to be performed on parts of the type. We assume that each
step be performed on exactly one resource. Thus a process plan
p can be represented as a sequence of resourcesp=rl-r2- rm. In
case of a choice step, the next resource can be chosen from more
than one resource. A choice step is indicated by a pair of
parentheses in the process plan. Inside the pair of parentheses
are the possible next resources separated by commas. A choice
step can recursively contain choice steps. An example plan with
choices is given in the following,

pl=rl- (r4-r6, rz- (r l r r 5) , r3-r5) -r4- (r5 , r6)

There are three choice steps in this plan. The first choice step is
that after rl the part can go to any one of r4, r2 or r3, thus leading
to 3 choice branches which merge at second r4. The second
choice is that after r2 the part goes to either r, or r5. And the
third choice is that after the second r, the part goes to either r5 or
r6. The steps are sequentially numbered in the order they are
listed. If a part is at step 7, then its next step is 8. If a part is at
step 4, then its next step is 5 or 6.

Once the system is in operation, there will be a set Q of
parts in the system at any given time. Each part q E Q belongs to
a part type p E P, denoted as P,=p. Each part has a unique
current step, denoted as S,, which can be considered as the state
of the part. The state of the system, denoted as n, is defined as a
vector of C, elements corresponding to all parts currently in the
system. An element of n has value 0 for an empty resource unit.
The state changes with parts flowing through the system, such as
loading a new part, unloading a finished part or transporting a
part from one resource to the next resource. A part q that has
exited the system or is still waiting for being loaded has Sq = 0.

1 2 3 4 5 6 7 8 9 1011

Corresponding author. Phone: 740-597-148 I , Fax: 740-593-0007,
Email: zhangwO,bobcat.ent.ohiou.edu

0-7803-9098-9/05/$25.00 02005 AACC 3926

For deadlock avoidance purpose, a flexible manufacturing
system can be modeled by a directed graph, G = (R , A) , which is
constructed from all process plans, where G consists of a set R
of vertices and a set A of directed arcs. Each vertex represents a
resource. A directed arc a is drawn from vertex rl to vertex r2, if
r2 immediately follows rI (including choices) in at least one
process plan, denoted as a= rp-2. So, a step has one or more arcs
(called choice arcs), corresponding to the current resource
(vertex), called tail, and one next resource for a non-choice step
or more than one next resource for a choice step, called head(s).

A subgraph GI = (R, , AI) of G consists of a subset of the
vertices and a subset of arcs of G such that all the arcs in A I
connect vertices in R,. From graph theory, we know that apath
is defined to be a sequence of vertices r0rIr2.. .rk, and a circuit is
a path with ro = rk. A circuit is simple if it does not contain any
other circuit. With choice introduced, we generalize a circuit as
a sub-graph that is strongly connected.

A part q is enabled in state n if any of its next resource(s) is
free. If part q is currently being processed in resource rI and the
next free resource is r2, then q enabled means that once rl
finishes its operation on q, the part can be transported or moved
from rI to r2. A system state n is live if a sequence of part moves
exists such that the system can be emptied. Otherwise, the state
is in deadlock. Deadlocks can be further categorized into two
major types, primay deadlock and impending deadlock. A
system state n is in primary deadlock if a circular wait situation
exists [11. A primary deadlock can be understood as a circuit in
the digraph model is filled with parts where no part is enabled. A
system state n is in impending deadlock if parts exist in the
system that can be moved; however, the system will inevitably
enter a primary deadlock after a finite number of part moves.

3. Summary of Circuits Analysis
Given a system digraph, there are existing methods that find

all simple circuits [7] [ll]. In the following, we assume all
simple circuits are given as a set Cs and discuss how to find the
set of circuits sufficient for deadlock avoidance+alled
necessa y circuit set, denoted as C.

Definition 3.1: If all choice arcs a,, a2, ..., ak of a choice
step are on k different simple circuits, c,, c2, . . ., ck of Cs, then the
union circuit c = c1uc2u. . .Uck is called a choice circuit.

So, each choice step has a corresponding choice circuit. A
choice arc forms an escape path from a component circuit of the
choice circuit for the part at the corresponding choice step. Such
a circuit is called a broken circuit.

Definition 3.2: A circuit is broken if there is a resource
(vertex) on the circuit where a choice step using the resource as a
tail has at least one choice arc that is not on the circuit.

If a choice circuit has a choice arc (but not all) of another
choice circuit, then it is broken. If the union circuit of the two (or
more) choice circuits whose intersection has a choice arc from
every choice circuit, then it is called a multi-choice circuit. A
multi-choice circuit is non-broken if it contains all choice arcs
from every component choice circuit.

DeJnition 3.3: A basic circuit is defined as a non-broken
circuit that does not contain any other non-broken circuit.

Theorem 3.1: A broken circuit c that does not contain any

ProoJ See [151. w
basic circuit will not generate deadlock.

Then basic circuits are the smallest deadlock units of a
system graph. Let CB denote the set of all basic circuits of a
system graph. All other circuits of the necessary circuit set C can
then be formed by feasible unions of all basic circuits.
Removing broken circuits and thus possible unions with them
from the set C can reduce the size of C significantly.

The size of C can be further reduced. Given N (>I) different
circuits all with the same set of vertices, c1 = (RI, A I) , c2 = (RI,

c Ak, ..., AN c Ak, then ck is said to be the supremal circuit
among the N circuits. Then ck covers every other circuit. so, if
given two circuits c,, c2 and c2 covers c,, then c I and c2 have the
same set of resources and c2 has all arcs of c1 and at least one
more arc that c1 does not have.

Theorem3.2: Given two circuits, c, and c2, if c2 covers cl,
then cI can be removed from the set C, that is, it does not need to
be checked for deadlock avoidance.

A2), ..., a n d C ~ = (R 1 , A ~) , i f A l C A k , A z c A k , ..., Ak.lCAk,Ak+l

Proof See [15]. w

The set of basic circuits CB should then be updated by
replacing a basic circuit (removed from CB) with its supremal
circuit if there is one.

Then, the set C of circuits should include all updated basic
circuits in CB and union circuits of basic circuits not covered by
other circuit of C. And a circuit in C is either a basic circuit or a
union circuit of two or more basic circuits.

Example 3.1: A manufacturing system has a digraph as
shown in figure 3.1. The system makes two types of parts. The
first type of parts has a process plan p I = rI-(r2, r5)-r3-rq. The
second type of parts has a process plan p 2 = r4-r3-r2-r1. It is easy
to identify that the system graph consists of 4 simple circuits:

C I = (h, r d , {a] , a d) , cz = ({r2, r3), h a 4 J)

c3 = (h, ~ 4 1 , {as, a6}), c4 = ({r l , r2, r3, ~ 5 1 , (02 , a4,a7, a d)

So, CS = {c,, c2, c3, c4}. Arcs a1 and a7 are choice
arcs of the choice step o fp l . Simple circuits c1 and c4 are
both broken because of choice arcs al and a7, c2 and c3 are
non-broken. The only choice circuit c5 = c1uc4 is non-
broken. So, C, = {cz, c3, c j } . Possible unions are: C ~ U C ~ ,

c2uc5, c3uc5, c2uc3vc5; but c2uc5 covers c5 and c2uc3uc5
covers c3uc5. So, the updated CB = { c2, c3, c2uc5} and C
= {cz, c3, c2uc3, C ~ U C ~ , c 2 u c 3 u c ~ } . If without removing
the broken circuits and covered circuits, then C would
contain 14 circuits.

4. Space Calculation of Circuits and Deadlock
Avoidance Algorithm

In this section, we will first discuss calculation of effective
free space of circuits and then presents the deadlock avoidance

3927

a1

a2

a3

a4

a5

a6

a7 a8

Figure 3.1 Basic circuits example

c1 c2 c3

c4

algorithm and property analysis.

4.1. Space Calculation of Circuits
With choice introduced, commitment can no longer be

calculated based on arcs as in [13-141 because of existence of
choice arcs. Instead, they will be calculated with respect to a
circuit. If part q is at a choice step, then potentially q can move
along any one of the choice arcs. However, q will move along
only one of the choice arcs.

A unit of resource rI that is processing a part q is said to be
committed to circuit c if q’s next resource is r2 and arc a = rI-r2
is on c, or if q is at a choice step, then all choice arcs are on c.
We also say that q commits to circuit c. Let M,,c,n denote the
number of units of resource r that are committed to circuit c
when the system is in state n.

Note that an empty unit is not committed and the total
number of units of a resource committed can be less than the
number of busy units. This happens when a busy unit is
processing a part at its last step. This unit is also not committed.
A unit of a resource that is on circuit c is free with respect to c if
it is not committed to c.

The commitment can then be extended to the circuit c = (R1,

Mc,n = E LI~,,~,~, for all r E R I

Given the system in state n, the slack of a circuit c = (RI,

A I) as follows,

AI), denoted as Kc,,, is defined as

The slack can be understood as the number of available free
resource units to allow for parts flow on the circuit.

Kc,n = CRI - M c , n

Definition 4.1; Let clr c2, ..., c,, m > 1, be m component
basic circuits of a circuit c of C. If clnc2n.. .nc, contains only a
single capacity resource, then the resource is called a knot of c.

Definition 4.2: Given two component basic circuits c , and
c2 of a circuit c of C, with k = q n c , being a knot. If in state n,
there exists a part in the system that will have to move through an
arc of cI ending at k and will commit to an arc of c2 starting at k,
then cI is said to be connected to c2 with respect to c, denote as
c1+c2. If cl-+c2 and cz+cI, then cI and c2 are called cross-
connected, denoted as cl+w2. If c has m component basic
circuits clr c2, . . ., c,, with k = clnc2n.. .nc, being a knot, then
c I , c2,. . ., c, are cyclically connected if c1+c2, C,+C~, . . ., c,+c,.

Definition 4.3: Given a circuit c of C with knot k. The
order of knot k with respect to the circuit c in state n, denoted as
Ok,c,n, is defined as

1, if two or more basic circuits intersecting at k
are cyclically connected. { 0, otherwise.

o k , c 3 n =

Based on this definition, if cI and c,, c2 3 c,, are tw~ circuits
of C and K= {all knots of cl}. Then,

Ok.cZ,n= Ok,cl,n, kE K.
The order definition can be extended to a circuit. Let c be a

circuit that contains rn knots, k l , kz, _. ., k,,,. Then, the order of c
is given by

m

oc3 n = ok, c, n
1=1

The order of a basic circuit is zero. Since a basic circuit
either does not contain any other component basic circuits or has
the intersection of the component basic circuits more than a

vertex, so it has no knot. This is not the case in [14].

effective free space of c, denoted as Fc,nr is given by,
Definition 4.4: Let c be a circuit of C in state n. The

Fc, n = Kc, n - 0 , n

Theorem 4.1: Let G be the digraph of a flexible
manufacturing system and C be the necessary circuit set of G.
Then G is live in state n if F,, > 0, VCE C.

ProoJ This can be similarly proved as the corresponding
theorem on systems without choice in [131. w

This theorem provides us with a sufficient condition for a
system state to be live. Thus it can be used as the basis for
developing our deadlock avoidance algorithm. It can be shown
that connectedness of two circuits of C intersecting at a knot can
be simplified to the connectedness of the two basic circuits
intersecting at the knot.

Theorem 4.2: Let G be the digraph of a flexible
manufacturing system and C be the necessary circuit set of G.
Let cI , c2 be two circuits of C, and c Inc2 = k is a knot. Assume
c2 has m component basic circuits, Clb, C2br ..., c,,, c c2, m > 0,
intersecting with cI at knot k. Then cI+c2 if and only if there
exist i such that cI+c,b, 1 5 i I m.

Proof: If c1+c2, then there exists a part in the system that
needs to enter c2 through an arc of c1 ending at k, since Clb,
C2b ,..., c,b are the m basic circuits intersecting with cI at knot k,
so the part has to enter one of them first, that is, cI+c,b. In the

The significance of theorem 4.2 is that connectedness needs
only be established among all basic circuits intersecting at a knot
in order to calculate the order of the knot.

Example 4.1 : Consider the system state given in figure 3.1,
where all parts A are of typepl and all parts B are of typep,. The
only knot is resource r3 and it is contained by the last three
circuits of C. The connectedness among the three basic circuits
can be determined as given in Table 4.1. Notice that c2 is not
connected to c3, because part A does not have to move through c2
into c3; but czuc5 is connected to c3. If two circuits do not
intersect at a knot, table is labeled as N/A.

contrary, cI+cjb implies cI+c2 since c,b L c2.

The commitment, order and space calculation for all
circuits of C of the system graph is shown in the table 4.2.

Table 4.1 Connectedness table for examule 4.1

Table 4.2 Commitment, order and s ace for example 4.1
c2uc5 c2uc3uc5

F

According to theorem 4.1, the given system state is in
deadlock since the last circuit has effective free space 0. And as
a matter of fact, the state is actually an impending deadlock or
second level deadlock.

Based on the sufficient conditions established above, a suite
of algorithms, collectively called the deadlock avoidance

3928

algorithm, is developed for process control of actual
manufacturing systems to detect and avoid deadlocks.

4.2. Calculation of Connectedness
First, the following presents a simple algorithm that

determines the connectedness of two basic circuit cI and c2
intersecting at knot k.

Algorithm 4.1: Connected(cl, c2, k)
Input: two basic circuit el, c2 and knot k
Output: T - cI is connected to c2, F - otherwise
Find R , on cI such that Q r,ER1, arc r lk i s on c1
Find R2 on c2 such that Q r 2 ~ R2, arc k r2 is on c2
for each part q in Q does

for each rl in Rldo
for each r2 in R2 do

if P, has arc rlkr2 then
if rl is after S, in P, then return T

end for
end for

end for
return F

Lemma 4.1 : The complexity of algorithm 4.1 is in the order
of O(C?jP,I), where IP,1 is the length of process plan P,.

ProoJ The algorithm first establishes arc rlkyz by searching
through circuit c1 and c2. Since cI and c2 are basic, their length is
limited by CR, so this search can be done in linear time with
order O(CR). Then the algorithm searches each part q in the
system and the number of parts is again limited by the system
capacity CR. If part q's process plan P, contains arc rlkr2 and if
the arc is positioned after the part's current step S, in its process
plan, then according to definition 4.2 cI is connected to c2.
Searching arc rlb2 in process plan P, can be done with order
O(lp,l), but it needs to search through both RI and R2, that is at
most C," (usually much smaller) times. The algorithm is smart
in that once a part is found to have arc qkr2 in its process plan
after S,, it returns true immediately. However, the worst case
expense is still in the order of O(C?lpqI).

If there are m basic circuits in C, then the total number of
pairs of basic circuits among m circuits is 1+2+. . .+(m-1) = m(m-
1)/2. Connectedness for each pair needs to be established in
order to apply theorem 4.1. If the connectedness among all pairs
is updated before each part move, then it will be overly
expensive. In order to improve the efficiency of our method, the
incremental connectedness update will be considered. The idea
is to first initialize the connectedness among all pairs to false,
then updating only in two cases, i) upon loading a part into the
system and ii) upon a part is moved into a knot k.

According to definition 4.2, case i) is the only way for two
basic circuits to become connected. Case ii) is the only way for
two basic circuits intersecting at k to become disconnected,
assume no other part maintaining the connectedness.

The incremental update also needs a connectedness status
table T that maintains status among all pairs of basic circuits.
Note that each circuit might be connected to more than one other
circuit. Presented in the following is the update algorithm.

Algorithm 4.2: UpdateConnected(K, q)
Input: K - set of knots of G, IKK(5 C,

q - the part being loaded or moved into a knot
Output: updated status table T
for each knot k in K do

let c k be the set of basic circuits intersecting at k
if Pq contains k then

for each pair (c , , c2) in ck do
find R , on c1 such that VJrl€RI, arc r lkis on c1
find R2 on c2 such that Vr26 R2, arc k rz is on c2
for each rI in Rldo

for each r2 in R2 do

end for
if Pq contains arc rlkr2 then T(cl, c2) = T

end for
end for

end for

Lemma 4.2: The complexity of algorithm 4.2 is in the order
of O(m*C<IP,l), where m is the number of basic circuits in C.

Proof: The outer for loop needs to repeat at most CR times.
The first inner for loop needs to repeat at most m(m - 1)/2.
According lemma 4.1, the cost for the two inner most for loops is
in the order of O(C21P,I). So, algorithm 4.2 is in the order of
o(m2C<1pqI). m

4.3. Calculation of Effective Free Space
Order of a knot k with respect to a non-basic circuit c can be

calculated by first determining the cyclic connectedness among
basic circuits of c intersecting at k. Let ck be the set of basic
circuits intersecting at k. Then, with the connectedness status
table T, cyclic connectedness among circuits of ck can be
checked as described in the following:

Let C,,, = (clr c2, ..,, c,} be a subset of connected circuits
of ck, that is cI+c2+ ... +c,, n > 1. If c, is not connected to any
circuit of ck, then circuits in C,,, are not cyclically connected
and should be removed from ck. If c,+c,+I E ck, C,+I E c,,,
and c,+~ # c,, then at least two circuits around k are cyclically
connected; if cn+cn+l E ck, but C,+I e C,,,, then add c,+l to c,,,.
Repeat this process with the remaining circuits in ck or the
updated C,,, until cyclic connectedness is found or ck becomes
empty. In the later case, no circuit is cyclically connected.

According to definition 4.3, the order of k with respect to
circuit c is one if circuits of ck are found cychcally connected,
zero if no circuit is cyclically connected. The following
algorithm implements the cyclic connectedness check and
calculates the order.

Algorithm 4.3: KnotOrder(k, ck, T)
Input: k - knot

c k - set of basic circuits intersecting at k
T - the connectedness table

Output: 1 -two or more circuits of ck are cyclically connected,
0 -no circuit is cyclically connected

G o , = {I
while C, is not empty do

if C,,, is empty then C,,, = {first element of ck}
co = last element of C,,,
connected = F
for each c in ck do

if T(co, c) equals T then
connected = T, co = c
if c is in C,,, then return 1

else add c to C,,
end for
if connected equals F then

remove C,,, from ck, C,,, = { }
end while
return 0

With order calculated for a knot, the order calculation for a
circuit is simple, which is presented as algorithm 4.4 as follows.

Algorithm 4.4: CircuitOrder(c, 7)
Input: c - the circuit

Output: 0 - order of circuit c
Let K be the set of knots of c, KI
o=o
for each knot k in K do

T - the connectedness table

CR

let C, be the set of basic circuits intersecting at k
0 = 0 + KnotOrder(k, ck, r)

end for

Lemma 4.3: The complexity of algorithm 4.4 is in the order

Prooj If there are m basic circuits in C, then the number of
basic circuits of ck is limited by m. So the cost of algorithm 4.3
is in the order of 0(m2) and thus that of algorithm 4.4 is in the

Finally, the effective free space of a circuit can be easily
calculated by definition 4.4. First, the slack of a circuit still
needs to be calculated. To calculate the slack of a circuit c, it
needs to go through the list of resources of the circuit, for each
resource, set the slack to the resource capacity and subtract the
commitment from the slack. The commitment of each resource r
can be determined by checking each part q contained in r to see if
all of part q’s next step resources are on c or not.

of o(m2CR).

order of O(m2CR). rn

Algorithm 4.5: CircuitEFSpace(c, r)
Input: c - the circuit whose space to be calculated

T - the connectedness table
Output: F,- effective free space of circuit c
K, = 0
for each resource r in R, do

K, = K, + C,
for each part q in r do

/I - slack of circuit c

I/ C, - capacity of r

let R, be the set of q’s next step resources
ifR, R, then

K, = K, - 1 /I q commits to an arc on c
end for

end for
F, = K, - CircuitOrder(c, 7)

Lemma 4.4: The complexity of algorithm 4.5 is in the order

Proof: The first part of algorithm 4.5 calculates the slack of
the circuit, which goes through each resource of the circuit and
the number is limited by CR. Within the for loop, each part is
checked for whether its next resources are all on the circuit,
which is also limited by CR. Since algorithm 4.4 is in the order of
O(m2CR) by lemma 4.3, this algorithm is in the order of
o(m2CRfC$).

of O(m2CR+C$).

4.4. Deadlock Avoidance Algorithm
The algorithm first determines whether it needs to update the

connectedness table or not. From above analysis, connectedness
of circuits needs to be updated only if a part is loaded or moved
into a knot. Then, based on theorem 4.1, the algorithm goes
through each circuit of C to calculate the effective free space
before each part is physically moved or loaded. As long as one
circuit is found to have zero free space, the part move should be
rejected, so the algorithm returns F, it returns T otherwise.

Algorithm 4.6: DAA(C, q, r)
Input: C - set of necessary circuits in digraph G of the system

q - part to be movedloaded
r - q’s next step resource (the requested move)

Output: T - accept movelload, F - reject
Let K be the set of knots of G
Let S, be q’s next step
if S, equals 1 then I/ LOAD

if r is in K then I / MOVE

for each circuit c in C do

end for
return T

T = UpdateConnected(K, q)

T(cl, c2) = Connected(cl, c2, r)

if CircuitEFSpace(c, r) equals zero then return F

/I update table T

//update table T

Theorem 4.3: The deadlock avoidance algorithm 4.6 has a
polynomial complexity.

Prooj If there are m basic circuits in C, then the cost of
algorithm 4.6 is mainly in the effective free space calculation
part. Calculating the effective free space of each circuit is in the
order of U(C$ + CRm2) given by lemma 4.4. But that needs to
be done for every circuit of C, so overall it is in the order of
O(lCl(C2 + CRm2)). The Updateconnected (algorithm 4.2) is
executed only when a part is first loaded or moved into a knot,
which has a cost 0 (m 2 C ~ ~ , I) from lemma 4.2. The call to
Connected (algorithm 4.1) can be omitted. Still, the worst case
complexity has an order of 0(lcl(cR2 + cRm2)) + o (~ ~ c , ~ ~ P , J) , D

In order to avoid deadlock in the operation of a flexible
manufacturing system, the above deadlock avoidance algorithm
should be executed every time a new part is loaded or an existing
part is moved. If the algorithm returns a true, the part load or
move request can be granted, otherwise it should be denied.

5. Application Simulation
In order to show the effectiveness of the proposed deadlock

avoidance algorithm, simulation has been run to calculate the
state space allowed by the deadlock avoidance method on several
examples. Simulation results show that the deadlock avoidance
method is indeed correct.

Example 5.1: Consider the manufacturing cell shown in
figure 5.1 (A case study in [4]). The cell is composed of three
robots (RI, R2 and R3; each one can hold one product at a time)
and four machines (Ml, M2, M3 and M4; each one can process
two products at a time). There are three loading buffers (named
11, I2 and 13) and three unloading buffers (named 0 1 , 0 2 and
0 3) for loading and unloading the cell. The action area for robot
R1 is I1 ,03 , M1, M3); for robot R2 is 12, 0 2 , M1, M2, M3, M4;
and for robot R3 is 13,01, M2, M4.

3930

Figure 5.1 The manufacturing cell for example 5.1
The cell manufactures three types of products P1, P2 and

P3, with routing given in figure 5.1. The directed graph is shown
is figure 5.2, where the simple circuits identified are labeled.

Figure 5.2 Digraph for example 5.1
Due to the choice step at R1, both simple circuit c1 and c6

are broken. The choice circuit is cI c6 which is covered by c8 =

cI ‘26 c2. so the set of basic circuits is cB = {c2, c3, c4, c5, c7,
C g } . Basic circuit c7 is covered by its supremal circuit
c3 c4 c5 c7. After removing circuits covered by their
corresponding supremal circuits, the circuits set C is found to be,
C = { ~ 2 , ~ 3 . ~ 4 , C S , CS, c2 ~ 3 , c2 CS, c3 c4, c3 ~ 5 , cg c3, cn ~ 5 ,

C2 C3 C4, C2 C3 Csr C s C3 C4, Cn C3 C s r C3 C4 C5 c7,

c2 c3 c4 c5 C l . c3 c4 c5 c7 csl .

Simulation with the deadlock avoidance algorithm applied
shows that 20801 live states are allowed out of total 22019 live
states. That corresponds to a permissiveness as high as
20801/22019 = 94.5%.

7. Conclusions
A highly permissive, correct and polynomial complexity

deadlock avoidance algorithm for flexible manufacturing systems
with choices in part routing, which avoids both primary
deadlocks and impending deadlocks that are arbitrary steps away
from primary deadlocks, is presented. The algorithm achieves
high permissiveness based on the dynamic effective free space
calculation of circuits in the digraph model, which captures more
parts flow dynamics and therefore avoids impending deadlocks -
a type of deadlock more difficult to detect. As shown in the
simulation section, the average percentage permissiveness is
consistently above 90% among all the tested examples.
However, the algorithm is based on the sufficient condition for a
state to be live; the necessary condition has not yet been
established that may contribute to even higher permissiveness.
Developing the necessary condition will be one of our hhire
research topics.

8. References
[l] Banaszak, Z. and B. Krogh, ”Deadlock Avoidance in

Flexible Manufacturing Systems with Concurrently
Competing Process Flows,” IEEE Trans. on Rob. and
Auto., vol. 6, no. 6, 1990, pp. 724-733.

[2] Barkaoui, K., and I. B. Abdallah, “Deadlock Avoidance in
FMS Based on Structural Theory of Petri Nets,” IEEE
Symposium On Emerging Technologies and Factory
Automation, V. 2, pp. 499-510, 1995.

[3] Cho, H., T.K. Kumaran, and R. Wysk, “Graph-Theoretic
Deadlock Detection and Resolution for Flexible
Manufacturing Systems,“ IEEE Trans. on Rob. and Auto.,
vol. 11, no. 3, pp. 550-527.

[4] Ezpeleta, J., J. M. Colom, and J. Martinez, “A Petri Net
Based Deadlock Prevention Policy for Flexible
Manufacturing Systems,” IEEE Trans. on Rob. and Auto.,
V. 11,N. 2,pp. 173-184, April 1995.

[5] Fanti, M.P., Maione, B., Mascolo S., and Turchiano, B.,
“Event-Based Feedback Control for Deadlock Avoidance in
Flexible Production Systems”, IEEE Trans. on Rob. and
Auto., Vol. 13, no. 6, 1997, pp. 347-363.

[6] Hsieh, F. and S. Chang, “Dispatching-driven deadlock
avoidance controller synthesis for flexible manufacturing
systems,” IEEE Trans. Rob. and Auto., vol. 10, no. 2, 1994,

[7] Johnson, D. B., “Finding All The Elementary Circuits Of A
Directed Graph”, SIAM J. of Computing, Vol. 4, No. 1 ,

[8] Judd, R. P. and T. Faiz, “Deadlock Detection and Avoidance
for a Class of Manufacturing Systems,“ Proceedings of the
1995 American Control Conference, pp. 3637-3641.

[9] Lawley, M. A,, “Deadlock Avoidance for Production
Systems with Flexible Routing”, IEEE Trans. on Rob. and

[IO] Viswanadham, N., Y. Narahari, and T. Johnson, ”Deadlock
Prevention and Deadlock Avoidance in Flexible
Manufacturing Systems Using Petri Net Models,” IEEE
Trans. on Rob. andAuto., vol. 6, no. 6, 1990, pp. 713-723.

[l I] Wysk, R., N. Yang and S. Joshi, “Detection of Deadlocks in
Flexible Manufacturing Cells”, IEEE Trans. on Rob. and
Auto., Vol.7, No.6, 1991, pp.853-859.

[12] Xing, K., B. Hu and H. Chen, “Deadlock avoidance policy
for Petri-net modeling of flexible manufacturing systems
with shared resources,“ IEEE Trans. on Automatic Control.,
vol. 41, no. 2, 1996, pp. 289-295.
Zhang, W, R. P. Judd and P. Deering, “Necessary And
Sufficient Conditions For Deadlocks In Flexible
Manufacturing Systems Based On A Digraph Model”, Asian
Journal of Control, Vol. 6, No. 2,2004.
Zhang, W., R. P. Judd and P. Paul, “Evaluating Order Of
Circuits For Deadlock Avoidance In A Flexible

pp. 196-209.

1975, pp. 77-84.

Auto., V O ~ . 15, NO. 3, 1999, pp. 497-509.

Manufacturing System”, Proceedings of the 2003 American
Control Conference, pp. 3679-3683, June 2003, Denver.

151 Zhang, W. and R. P. Judd, “Deadlock Avoidance For
Flexible Manufacturing Systems With Choices Based On
Digraph Circuit Analysis”, Proceedings of the 2004
American Control Conference, pp. 3333-3338, Jun 29-Jul 2,
2004, Boston.

161 Zhou, M. and F. DiCesare, “Parallel and Sequential Mutual
Exclusion for Petri Net Modeling of Manufacturing Systems
with Shared Resources,“ IEEE Trans. on Rob and Auto.,
vol. I , no. 4, 1992, pp. 550-527.

3931

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

