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Abstract: Modem flexible manufacturing systems (FMS) are 
highly automated and flexible in which raw parts of various types 
are processed concurrently. Deadlock issue arises easily in these 
systems due to shared equipment usage and high production 
flexibility. This paper presents a deadlock avoidance algorithm 
for FMS with free choices in part routing by calculation of 
effective free space of circuits of the digraph model. The 
algorithm is highly permissive since the effective free space 
calculation captures more parts flow dynamics, especially when 
there exist multiple knots in the digraph model. It runs in 
polynomial time once the set of circuits is computed offline. 
Simulation results are provided. 
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1. Introduction 
Modem flexible manufacturing systems (FMS) are highly 

automated and flexible in which raw parts of various types are 
processed concurrently. Deadlock issue arises easily in these 
systems due to shared equipment usage and high production 
flexibility. To increase equipment utilization and maximize 
productivity, it is crucial for a FMS to operate without deadlock. 
Research on deadlock detection, prevention and avoidance for 
flexible manufacturing systems has been rather active recently. 
Some of the significant works adopted Petri net (PN) models [ 1 ,  
2, 4, 6, 10, 12, and 161 as a formalism to describe the 
manufacturing system. Another formalism is to describe the 
manufacturing system using graphs [3, 5, 8-9, 11, 13-15]. In this 
approach the vertices represent resources and the arcs (edges) 
represent product part flows between resources. 

It is well known that it is difficult to detect impending 
deadlocks that are arbitrary steps away from primary deadlocks. 
Fanti [SI studied second level deadlock - the impending deadlock 
one step away from a primary deadlock. Barkaoui [2] used a one 
step look-ahead controller, which cannot avoid impending 
deadlocks that are more than one step away. Our previous work 
[14], in which no free choice is allowed in part routing, avoids 
deadlocks, especially impending deadlocks by dynamically 
evaluating the order of circuits. 

The major contribution of this paper is the development of a 
new deadlock avoidance algorithm which extends our previous 
results [ 141 on deadlock avoidance for FMS's withoutfree choice 
in part routing to systems with free choices in part routing. 
Because of choices introduced, part flow dynamics become much 
more complex, order evaluation method given by [I41 is no 
longer valid due to the added routing flexibility. The extension is 
made possible by the systematic circuit analysis presented in 
Zhang [ 151, where concepts such as broken circuit, basic circuit, 

suprema1 circuit, were presented. These concepts help to 
decrease number of necessary circuits for deadlock checking thus 
increasing efficiency and permissiveness of our deadlock 
avoidance algorithm. The presented algorithm is unique in that it 
avoids both primary deadlocks and impending deadlocks that are 
arbitrary steps away from primary deadlocks. It can be shown 
that the presented algorithm runs in polynomial time once the set 
of necessary circuits of the digraph is computed offline. 

2. The System Model and Deadlock 
We consider a flexible manufacturing system that consists 

of a set R of a finite number of resources (such as, NC machines, 
robots, buffers, etc.) and a set P of a finite number of part types 
that the system can produce. Each resource r e  R has a capacity, 
denoted as C,, which can be considered as a multiple of identical 
units. The capacity can be naturally extended to a set of 
resources, R1 c R, as CRl. Each part type p E P is assigned a 
process plan that defines a finite number of steps of operations 
need to be performed on parts of the type. We assume that each 
step be performed on exactly one resource. Thus a process plan 
p can be represented as a sequence of resourcesp=rl-r2- rm. In 
case of a choice step, the next resource can be chosen from more 
than one resource. A choice step is indicated by a pair of 
parentheses in the process plan. Inside the pair of parentheses 
are the possible next resources separated by commas. A choice 
step can recursively contain choice steps. An example plan with 
choices is given in the following, 

pl=rl- (r4-r6, rz- ( r l r  r 5 ) ,  r3-r5) -r4- ( r5 ,  r6)  

There are three choice steps in this plan. The first choice step is 
that after rl the part can go to any one of r4, r2 or r3, thus leading 
to 3 choice branches which merge at second r4. The second 
choice is that after r2 the part goes to either r, or r5. And the 
third choice is that after the second r, the part goes to either r5 or 
r6. The steps are sequentially numbered in the order they are 
listed. If a part is at step 7, then its next step is 8. If a part is at 
step 4, then its next step is 5 or 6. 

Once the system is in operation, there will be a set Q of 
parts in the system at any given time. Each part q E Q belongs to 
a part type p E P, denoted as P,=p. Each part has a unique 
current step, denoted as S,, which can be considered as the state 
of the part. The state of the system, denoted as n, is defined as a 
vector of C, elements corresponding to all parts currently in the 
system. An element of n has value 0 for an empty resource unit. 
The state changes with parts flowing through the system, such as 
loading a new part, unloading a finished part or transporting a 
part from one resource to the next resource. A part q that has 
exited the system or is still waiting for being loaded has Sq = 0. 
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For deadlock avoidance purpose, a flexible manufacturing 
system can be modeled by a directed graph, G = (R ,  A )  , which is 
constructed from all process plans, where G consists of a set R 
of vertices and a set A of directed arcs. Each vertex represents a 
resource. A directed arc a is drawn from vertex rl to vertex r2, if 
r2 immediately follows rI (including choices) in at least one 
process plan, denoted as a= rp-2. So, a step has one or more arcs 
(called choice arcs), corresponding to the current resource 
(vertex), called tail, and one next resource for a non-choice step 
or more than one next resource for a choice step, called head(s). 

A subgraph GI = (R, ,  AI)  of G consists of a subset of the 
vertices and a subset of arcs of G such that all the arcs in A I  
connect vertices in R,. From graph theory, we know that apath 
is defined to be a sequence of vertices r0rIr2.. .rk, and a circuit is 
a path with ro = rk. A circuit is simple if it does not contain any 
other circuit. With choice introduced, we generalize a circuit as 
a sub-graph that is strongly connected. 

A part q is enabled in state n if any of its next resource(s) is 
free. If part q is currently being processed in resource rI and the 
next free resource is r2, then q enabled means that once rl 
finishes its operation on q, the part can be transported or moved 
from rI to r2. A system state n is live if a sequence of part moves 
exists such that the system can be emptied. Otherwise, the state 
is in deadlock. Deadlocks can be further categorized into two 
major types, primay deadlock and impending deadlock. A 
system state n is in primary deadlock if a circular wait situation 
exists [ 11. A primary deadlock can be understood as a circuit in 
the digraph model is filled with parts where no part is enabled. A 
system state n is in impending deadlock if parts exist in the 
system that can be moved; however, the system will inevitably 
enter a primary deadlock after a finite number of part moves. 

3. Summary of Circuits Analysis 
Given a system digraph, there are existing methods that find 

all simple circuits [7] [ll]. In the following, we assume all 
simple circuits are given as a set Cs and discuss how to find the 
set of circuits sufficient for deadlock avoidance+alled 
necessa y circuit set, denoted as C. 

Definition 3.1: If all choice arcs a,, a2, ..., ak of a choice 
step are on k different simple circuits, c,, c2, . . ., ck of Cs, then the 
union circuit c = c1uc2u. .  .Uck is called a choice circuit. 

So, each choice step has a corresponding choice circuit. A 
choice arc forms an escape path from a component circuit of the 
choice circuit for the part at the corresponding choice step. Such 
a circuit is called a broken circuit. 

Definition 3.2: A circuit is broken if there is a resource 
(vertex) on the circuit where a choice step using the resource as a 
tail has at least one choice arc that is not on the circuit. 

If a choice circuit has a choice arc (but not all) of another 
choice circuit, then it is broken. If the union circuit of the two (or 
more) choice circuits whose intersection has a choice arc from 
every choice circuit, then it is called a multi-choice circuit. A 
multi-choice circuit is non-broken if it contains all choice arcs 
from every component choice circuit. 

DeJnition 3.3: A basic circuit is defined as a non-broken 
circuit that does not contain any other non-broken circuit. 

Theorem 3.1: A broken circuit c that does not contain any 

ProoJ See [ 151. w 
basic circuit will not generate deadlock. 

Then basic circuits are the smallest deadlock units of a 
system graph. Let CB denote the set of all basic circuits of a 
system graph. All other circuits of the necessary circuit set C can 
then be formed by feasible unions of all basic circuits. 
Removing broken circuits and thus possible unions with them 
from the set C can reduce the size of C significantly. 

The size of C can be further reduced. Given N (>I) different 
circuits all with the same set of vertices, c1 = (RI, A I ) ,  c2 = (RI, 

c Ak, ..., AN c Ak, then ck is said to be the supremal circuit 
among the N circuits. Then ck covers every other circuit. so, if 
given two circuits c,, c2 and c2 covers c,, then c I  and c2 have the 
same set of resources and c2 has all arcs of c1 and at least one 
more arc that c1 does not have. 

Theorem3.2: Given two circuits, c,  and c2, if c2 covers cl, 
then cI  can be removed from the set C, that is, it does not need to 
be checked for deadlock avoidance. 

A2), ..., a n d C ~ = ( R 1 , A ~ ) , i f A l C A k , A z c A k ,  ..., Ak.lCAk,Ak+l 

Proof See [15]. w 

The set of basic circuits CB should then be updated by 
replacing a basic circuit (removed from CB) with its supremal 
circuit if there is one. 

Then, the set C of circuits should include all updated basic 
circuits in CB and union circuits of basic circuits not covered by 
other circuit of C. And a circuit in C is either a basic circuit or a 
union circuit of two or more basic circuits. 

Example 3.1: A manufacturing system has a digraph as 
shown in figure 3.1. The system makes two types of parts. The 
first type of parts has a process plan p I  = rI-(r2, r5)-r3-rq. The 
second type of parts has a process plan p 2  = r4-r3-r2-r1. It is easy 
to identify that the system graph consists of 4 simple circuits: 

C I  = (h, r d ,  {a] ,  a d ) ,  cz = ({r2, r3), h a 4 J )  

c3 = (h, ~ 4 1 ,  {as, a6}), c4 = ( {r l ,  r2, r3, ~ 5 1 ,  (02 ,  a4,a7, a d )  

So, CS = {c,, c2, c3, c4}. Arcs a1 and a7 are choice 
arcs of the choice step o fp l .  Simple circuits c1 and c4 are 
both broken because of choice arcs al  and a7, c2 and c3 are 
non-broken. The only choice circuit c5 = c1uc4 is non- 
broken. So, C, = {cz, c3, c j } .  Possible unions are: C ~ U C ~ ,  

c2uc5, c3uc5, c2uc3vc5; but c2uc5 covers c5 and c2uc3uc5 
covers c3uc5. So, the updated CB = { c2, c3, c2uc5} and C 
= {cz, c3, c2uc3, C ~ U C ~ ,  c 2 u c 3 u c ~ } .  If without removing 
the broken circuits and covered circuits, then C would 
contain 14 circuits. 

4. Space Calculation of Circuits and Deadlock 
Avoidance Algorithm 

In this section, we will first discuss calculation of effective 
free space of circuits and then presents the deadlock avoidance 
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algorithm and property analysis. 

4.1. Space Calculation of Circuits 
With choice introduced, commitment can no longer be 

calculated based on arcs as in [13-141 because of existence of 
choice arcs. Instead, they will be calculated with respect to a 
circuit. If part q is at a choice step, then potentially q can move 
along any one of the choice arcs. However, q will move along 
only one of the choice arcs. 

A unit of resource rI that is processing a part q is said to be 
committed to circuit c if q’s next resource is r2 and arc a = rI-r2 
is on c, or if q is at a choice step, then all choice arcs are on c. 
We also say that q commits to circuit c. Let M,,c,n denote the 
number of units of resource r that are committed to circuit c 
when the system is in state n. 

Note that an empty unit is not committed and the total 
number of units of a resource committed can be less than the 
number of busy units. This happens when a busy unit is 
processing a part at its last step. This unit is also not committed. 
A unit of a resource that is on circuit c is free with respect to c if 
it is not committed to c. 

The commitment can then be extended to the circuit c = (R1, 

Mc,n = E LI~,,~,~, for all r E R I  

Given the system in state n, the slack of a circuit c = (RI, 

A I )  as follows, 

AI), denoted as Kc,,, is defined as 

The slack can be understood as the number of available free 
resource units to allow for parts flow on the circuit. 

Kc,n = CRI - M c , n  

Definition 4.1; Let clr c2, ..., c,, m > 1, be m component 
basic circuits of a circuit c of C. If clnc2n.. .nc, contains only a 
single capacity resource, then the resource is called a knot of c. 

Definition 4.2: Given two component basic circuits c ,  and 
c2 of a circuit c of C, with k = q n c ,  being a knot. If in state n, 
there exists a part in the system that will have to move through an 
arc of cI ending at k and will commit to an arc of c2 starting at k, 
then cI is said to be connected to c2 with respect to c, denote as 
c1+c2. If cl-+c2 and cz+cI, then cI and c2 are called cross- 
connected, denoted as cl+w2. If c has m component basic 
circuits clr c2, . . ., c,, with k = clnc2n.. .nc, being a knot, then 
c I ,  c2,. . ., c, are cyclically connected if c1+c2, C,+C~, . . ., c,+c,. 

Definition 4.3: Given a circuit c of C with knot k. The 
order of knot k with respect to the circuit c in state n, denoted as 
Ok,c,n, is defined as 

1, if two or more basic circuits intersecting at k 
are cyclically connected. { 0, otherwise. 

o k , c 3 n  = 

Based on this definition, if cI and c,, c2 3 c,, are tw~ circuits 
of C and K= {all knots of cl}. Then, 

Ok.cZ,n= Ok,cl,n, kE K. 
The order definition can be extended to a circuit. Let c be a 

circuit that contains rn knots, k l ,  kz, _.  ., k,,,. Then, the order of c 
is given by 

m 

oc3 n = ok, c, n 
1=1 

The order of a basic circuit is zero. Since a basic circuit 
either does not contain any other component basic circuits or has 
the intersection of the component basic circuits more than a 

vertex, so it has no knot. This is not the case in [14]. 

effective free space of c, denoted as Fc,nr is given by, 
Definition 4.4: Let c be a circuit of C in state n.  The 

Fc, n = Kc, n - 0 ,  n 

Theorem 4.1: Let G be the digraph of a flexible 
manufacturing system and C be the necessary circuit set of G. 
Then G is live in state n if F,, > 0, VCE C. 

ProoJ This can be similarly proved as the corresponding 
theorem on systems without choice in [ 131. w 

This theorem provides us with a sufficient condition for a 
system state to be live. Thus it can be used as the basis for 
developing our deadlock avoidance algorithm. It can be shown 
that connectedness of two circuits of C intersecting at a knot can 
be simplified to the connectedness of the two basic circuits 
intersecting at the knot. 

Theorem 4.2: Let G be the digraph of a flexible 
manufacturing system and C be the necessary circuit set of G. 
Let cI ,  c2 be two circuits of C, and c Inc2  = k is a knot. Assume 
c2 has m component basic circuits, Clb, C2br ..., c,,, c c2, m > 0, 
intersecting with cI at knot k. Then cI+c2 if and only if there 
exist i such that cI+c,b, 1 5 i I m. 

Proof: If c1+c2, then there exists a part in the system that 
needs to enter c2 through an arc of c1 ending at k, since Clb, 
C2b ,..., c,b are the m basic circuits intersecting with cI at knot k, 
so the part has to enter one of them first, that is, cI+c,b. In the 

The significance of theorem 4.2 is that connectedness needs 
only be established among all basic circuits intersecting at a knot 
in order to calculate the order of the knot. 

Example 4.1 : Consider the system state given in figure 3.1, 
where all parts A are of typepl and all parts B are of typep,.  The 
only knot is resource r3 and it is contained by the last three 
circuits of C. The connectedness among the three basic circuits 
can be determined as given in Table 4.1. Notice that c2 is not 
connected to c3, because part A does not have to move through c2 
into c3; but czuc5 is connected to c3. If two circuits do not 
intersect at a knot, table is labeled as N/A. 

contrary, cI+cjb implies cI+c2 since c,b L c2. 

The commitment, order and space calculation for all 
circuits of C of the system graph is shown in the table 4.2. 

Table 4.1 Connectedness table for examule 4.1 

Table 4.2 Commitment, order and s ace for example 4.1 
c2uc5 c2uc3uc5 

F 

According to theorem 4.1, the given system state is in 
deadlock since the last circuit has effective free space 0. And as 
a matter of fact, the state is actually an impending deadlock or 
second level deadlock. 

Based on the sufficient conditions established above, a suite 
of algorithms, collectively called the deadlock avoidance 
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algorithm, is developed for process control of actual 
manufacturing systems to detect and avoid deadlocks. 

4.2. Calculation of Connectedness 
First, the following presents a simple algorithm that 

determines the connectedness of two basic circuit cI and c2 
intersecting at knot k. 

Algorithm 4.1: Connected(cl, c2, k) 
Input: two basic circuit el, c2 and knot k 
Output: T - cI is connected to c2, F - otherwise 
Find R ,  on cI such that Q r,ER1, arc r lk i s  on c1 
Find R2 on c2 such that Q r 2 ~  R2, arc k r2 is on c2 
for each part q in Q does 

for each rl in Rldo 
for each r2 in R2 do 

if P, has arc rlkr2 then 
if rl is after S, in P, then return T 

end for 
end for 

end for 
return F 

Lemma 4.1 : The complexity of algorithm 4.1 is in the order 
of O(C?jP,I), where IP,1 is the length of process plan P,. 

ProoJ The algorithm first establishes arc rlkyz by searching 
through circuit c1 and c2. Since cI and c2 are basic, their length is 
limited by CR, so this search can be done in linear time with 
order O(CR). Then the algorithm searches each part q in the 
system and the number of parts is again limited by the system 
capacity CR. If part q's process plan P, contains arc rlkr2 and if 
the arc is positioned after the part's current step S, in its process 
plan, then according to definition 4.2 cI is connected to c2. 
Searching arc rlb2 in process plan P, can be done with order 
O(lp,l), but it needs to search through both RI and R2, that is at 
most C," (usually much smaller) times. The algorithm is smart 
in that once a part is found to have arc qkr2 in its process plan 
after S,, it returns true immediately. However, the worst case 
expense is still in the order of O(C?lpqI). 

If there are m basic circuits in C, then the total number of 
pairs of basic circuits among m circuits is 1+2+. . .+(m-1) = m(m- 
1)/2. Connectedness for each pair needs to be established in 
order to apply theorem 4.1. If the connectedness among all pairs 
is updated before each part move, then it will be overly 
expensive. In order to improve the efficiency of our method, the 
incremental connectedness update will be considered. The idea 
is to first initialize the connectedness among all pairs to false, 
then updating only in two cases, i) upon loading a part into the 
system and ii) upon a part is moved into a knot k. 

According to definition 4.2, case i) is the only way for two 
basic circuits to become connected. Case ii) is the only way for 
two basic circuits intersecting at k to become disconnected, 
assume no other part maintaining the connectedness. 

The incremental update also needs a connectedness status 
table T that maintains status among all pairs of basic circuits. 
Note that each circuit might be connected to more than one other 
circuit. Presented in the following is the update algorithm. 

Algorithm 4.2: UpdateConnected(K, q)  
Input: K - set of knots of G, IKK( 5 C, 

q - the part being loaded or moved into a knot 
Output: updated status table T 
for each knot k in K do 

let c k  be the set of basic circuits intersecting at k 
if Pq contains k then 

for each pair (c , ,  c2) in ck do 
find R ,  on c1 such that VJrl€RI, arc r lkis  on c1 
find R2 on c2 such that Vr26 R2, arc k rz is on c2 
for each rI in Rldo 

for each r2 in R2 do 

end for 
if Pq contains arc rlkr2 then T(cl, c2) = T 

end for 
end for 

end for 

Lemma 4.2: The complexity of algorithm 4.2 is in the order 
of O(m*C<IP,l), where m is the number of basic circuits in C. 

Proof: The outer for loop needs to repeat at most CR times. 
The first inner for loop needs to repeat at most m(m - 1)/2. 
According lemma 4.1, the cost for the two inner most for loops is 
in the order of O(C21P,I). So, algorithm 4.2 is in the order of 
o(m2C<1pqI). m 

4.3. Calculation of Effective Free Space 
Order of a knot k with respect to a non-basic circuit c can be 

calculated by first determining the cyclic connectedness among 
basic circuits of c intersecting at k. Let ck be the set of basic 
circuits intersecting at k. Then, with the connectedness status 
table T, cyclic connectedness among circuits of ck can be 
checked as described in the following: 

Let C,,, = (clr c2, ..,, c,}  be a subset of connected circuits 
of ck, that is cI+c2+ ... +c,, n > 1. If c, is not connected to any 
circuit of ck, then circuits in C,,, are not cyclically connected 
and should be removed from ck. If c,+c,+I E ck, C,+I E c,,, 
and c,+~ # c,, then at least two circuits around k are cyclically 
connected; if cn+cn+l E ck, but C,+I e C,,,, then add c,+l to c,,,. 
Repeat this process with the remaining circuits in ck or the 
updated C,,, until cyclic connectedness is found or ck becomes 
empty. In the later case, no circuit is cyclically connected. 

According to definition 4.3, the order of k with respect to 
circuit c is one if circuits of ck are found cychcally connected, 
zero if no circuit is cyclically connected. The following 
algorithm implements the cyclic connectedness check and 
calculates the order. 

Algorithm 4.3: KnotOrder(k, ck, T )  
Input: k - knot 

c k  - set of basic circuits intersecting at k 
T -  the connectedness table 

Output: 1 -two or more circuits of ck are cyclically connected, 
0 -no circuit is cyclically connected 

G o ,  = {I 
while C, is not empty do 

if C,,, is empty then C,,, = {first element of ck} 
co = last element of C,,, 
connected = F 
for each c in ck do 

if T(co, c)  equals T then 
connected = T, co = c 
if c is in C,,, then return 1 



else add c to C,, 
end for 
if connected equals F then 

remove C,,, from ck, C,,, = { }  
end while 
return 0 

With order calculated for a knot, the order calculation for a 
circuit is simple, which is presented as algorithm 4.4 as follows. 

Algorithm 4.4: CircuitOrder(c, 7) 
Input: c - the circuit 

Output: 0 - order of circuit c 
Let K be the set of knots of c, KI 
o=o 
for each knot k in  K do 

T - the connectedness table 

CR 

let C, be the set of basic circuits intersecting at k 
0 = 0 + KnotOrder(k, ck, r )  

end for 

Lemma 4.3: The complexity of algorithm 4.4 is in the order 

Prooj If there are m basic circuits in C, then the number of 
basic circuits of ck is limited by m. So the cost of algorithm 4.3 
is in the order of 0(m2)  and thus that of algorithm 4.4 is in the 

Finally, the effective free space of a circuit can be easily 
calculated by definition 4.4. First, the slack of a circuit still 
needs to be calculated. To calculate the slack of a circuit c, it 
needs to go through the list of resources of the circuit, for each 
resource, set the slack to the resource capacity and subtract the 
commitment from the slack. The commitment of each resource r 
can be determined by checking each part q contained in r to see if 
all of part q’s next step resources are on c or not. 

of o(m2CR). 

order of O(m2CR). rn 

Algorithm 4.5: CircuitEFSpace(c, r )  
Input: c - the circuit whose space to be calculated 

T -  the connectedness table 
Output: F,- effective free space of circuit c 
K, = 0 
for each resource r in R, do 

K, = K, + C, 
for each part q in r do 

/I - slack of circuit c 

I/ C, - capacity of r 

let R, be the set of q’s next step resources 
ifR, R, then 

K, = K, - 1 /I q commits to an arc on c 
end for 

end for 
F, = K, - CircuitOrder(c, 7) 

Lemma 4.4: The complexity of algorithm 4.5 is in the order 

Proof: The first part of algorithm 4.5 calculates the slack of 
the circuit, which goes through each resource of the circuit and 
the number is limited by CR. Within the for loop, each part is 
checked for whether its next resources are all on the circuit, 
which is also limited by CR. Since algorithm 4.4 is in the order of 
O(m2CR) by lemma 4.3, this algorithm is in the order of 
o( m2CRfC$). 

of O(m2CR+C$). 

4.4. Deadlock Avoidance Algorithm 
The algorithm first determines whether it needs to update the 

connectedness table or not. From above analysis, connectedness 
of circuits needs to be updated only if a part is loaded or moved 
into a knot. Then, based on theorem 4.1, the algorithm goes 
through each circuit of C to calculate the effective free space 
before each part is physically moved or loaded. As long as one 
circuit is found to have zero free space, the part move should be 
rejected, so the algorithm returns F, it returns T otherwise. 

Algorithm 4.6: DAA(C, q, r )  
Input: C - set of necessary circuits in digraph G of the system 

q - part to be movedloaded 
r - q’s next step resource (the requested move) 

Output: T - accept movelload, F - reject 
Let K be the set of knots of G 
Let S, be q’s next step 
if S, equals 1 then I/ LOAD 

if r is in K then I /  MOVE 

for each circuit c in C do 

end for 
return T 

T = UpdateConnected(K, q) 

T(cl, c2) = Connected(cl, c2, r)  

if CircuitEFSpace(c, r )  equals zero then return F 

/I update table T 

//update table T 

Theorem 4.3: The deadlock avoidance algorithm 4.6 has a 
polynomial complexity. 

Prooj If there are m basic circuits in C, then the cost of 
algorithm 4.6 is mainly in the effective free space calculation 
part. Calculating the effective free space of each circuit is in the 
order of U(C$ + CRm2) given by lemma 4.4. But that needs to 
be done for every circuit of C, so overall it is in the order of 
O(lCl(C2 + CRm2)). The Updateconnected (algorithm 4.2) is 
executed only when a part is first loaded or moved into a knot, 
which has a cost 0 ( m 2 C ~ ~ , I )  from lemma 4.2. The call to 
Connected (algorithm 4.1) can be omitted. Still, the worst case 
complexity has an order of 0(lcl(cR2 + cRm2)) + o ( ~ ~ c , ~ ~ P , J ) ,  D 

In order to avoid deadlock in the operation of a flexible 
manufacturing system, the above deadlock avoidance algorithm 
should be executed every time a new part is loaded or an existing 
part is moved. If the algorithm returns a true, the part load or 
move request can be granted, otherwise it should be denied. 

5. Application Simulation 
In order to show the effectiveness of the proposed deadlock 

avoidance algorithm, simulation has been run to calculate the 
state space allowed by the deadlock avoidance method on several 
examples. Simulation results show that the deadlock avoidance 
method is indeed correct. 

Example 5.1: Consider the manufacturing cell shown in 
figure 5.1 (A case study in [4]). The cell is composed of three 
robots (RI, R2 and R3; each one can hold one product at a time) 
and four machines (Ml,  M2, M3 and M4; each one can process 
two products at a time). There are three loading buffers (named 
11, I2 and 13) and three unloading buffers (named 0 1 ,  0 2  and 
0 3 )  for loading and unloading the cell. The action area for robot 
R1 is I1 ,03 ,  M1, M3); for robot R2 is 12, 0 2 ,  M1, M2, M3, M4; 
and for robot R3 is 13,01, M2, M4. 
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Figure 5.1 The manufacturing cell for example 5.1 
The cell manufactures three types of products P1, P2 and 

P3, with routing given in figure 5.1. The directed graph is shown 
is figure 5.2, where the simple circuits identified are labeled. 

Figure 5.2 Digraph for example 5.1 
Due to the choice step at R1, both simple circuit c1 and c6 

are broken. The choice circuit is cI  c6 which is covered by c8 = 

cI  ‘26 c2. so the set of basic circuits is cB = {c2,  c3, c4, c5,  c7, 
C g } .  Basic circuit c7 is covered by its supremal circuit 
c3 c4 c5 c7. After removing circuits covered by their 
corresponding supremal circuits, the circuits set C is found to be, 
C = { ~ 2 ,  ~ 3 .  ~ 4 ,  C S ,  CS, c2 ~ 3 ,  c2 CS, c3 c4, c3 ~ 5 ,  cg c3, cn ~ 5 ,  

C2 C3 C4,  C2 C3 Csr C s  C3 C4,  Cn C3 C s r  C3 C4 C5 c7, 

c2 c3 c4 c5 C l .  c3 c4 c5 c7 csl .  

Simulation with the deadlock avoidance algorithm applied 
shows that 20801 live states are allowed out of total 22019 live 
states. That corresponds to a permissiveness as high as 
20801/22019 = 94.5%. 

7. Conclusions 
A highly permissive, correct and polynomial complexity 

deadlock avoidance algorithm for flexible manufacturing systems 
with choices in part routing, which avoids both primary 
deadlocks and impending deadlocks that are arbitrary steps away 
from primary deadlocks, is presented. The algorithm achieves 
high permissiveness based on the dynamic effective free space 
calculation of circuits in the digraph model, which captures more 
parts flow dynamics and therefore avoids impending deadlocks - 
a type of deadlock more difficult to detect. As shown in the 
simulation section, the average percentage permissiveness is 
consistently above 90% among all the tested examples. 
However, the algorithm is based on the sufficient condition for a 
state to be live; the necessary condition has not yet been 
established that may contribute to even higher permissiveness. 
Developing the necessary condition will be one of our hhire 
research topics. 
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