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Abstract— The present paper has two main contributions.
First, we report new sufficient conditions for practical stabiliz-
ability of switched systems. Such conditions are geometrically
more appealing and easier to check than conditions proposed
in our previous papers. The conditions are applicable to
practical stabilizability problems over infinite or finite time
intervals. Second, we study the practical reachability problems
in the light of our practical stabilization results. Sufficient
conditions for practical reachability are presented.

I. INTRODUCTION

Recently, it has been observed that, under appropriate
switching laws, switched systems whose subsystems have
no common equilibrium may still exhibit interesting behav-
ior similar to that of a conventional stable system near an
equilibrium. In [11], [12], [13], we define such behavior
as practical stability. Such practical stability notions are
extensions of the traditional concepts on practical and
finite time stability (see, e.g., [4], [5], [8], [9]), which are
concerned with bringing the system trajectory to be within
given bounds. They are quite different from the notions of
Lyapunov stability for hybrid systems (see, e.g., [2], [3], [6],
[7]) and can lead to interesting results in stability analysis,
tracking, and reachability problems.

In [12], we formally introduce the notions of ε-practical
stability and practical stabilizability. Sufficient conditions
are proven in [12] for the practical stabilizability of
switched systems consisting of time varying subsystems.
Moreover, in the proof, a valid switching law under which
the system is ε-practically stable is constructed. In this
paper, we report some new results on practical stabilizability
and practical reachability problems. There are two main
contributions. The first contribution is that we report new
sufficient conditions for practical stabilizability of switched
systems. Such conditions are geometrically more appealing
and easier to check than conditions in [12]. Moreover,
the conditions are applicable to practical stabilizability
problems over infinite or finite time intervals. Our second
contribution is that we formally propose the notion of prac-
tical reachability, which concerns the problem of driving
the system state from a neighborhood of one point to a
neighborhood of another point. We show that our practical
stabilization results can be applied to study such reachability
problems. In particular, we propose conditions for practical
reachability along some nominal guiding paths.

II. PRELIMINARIES

A. Switched Systems and Switching Laws

We consider switched systems consisting of subsystems

ẋ = fi(x, t), i ∈ I
�
= {1, 2, · · · , M}. (1)

In (1), every fi : R
n × R → R

n is a continuous vector
field. The active subsystem at each instant is orchestrated
by a switching law, which will be formally defined below.
Given any initial time t0 and state x(t0), the law generates a
switching sequence σ =

(
(t0, i0), (t1, i1), · · · , (tk, ik), · · ·

)
(t0 ≤ t1 ≤ · · · ≤ tk ≤ · · · , ik ∈ I) which indicates that
subsystem ik is active in [tk, tk+1). For a switched system
to be well-behaved, we only consider nonZeno sequences
which switch at most a finite number of times in any finite
time interval.

In studying the behavior of switched system (1), we
usually specify some time interval T in which a state
trajectory is generated. In the sequel, when we refer to T ,
we mean some infinite time interval T = [t0,∞) or finite
time interval T = [t0, tf ]. The following definition specifies
more clearly what we mean by a switching law.

Definition 1 (Switching Law over T ): Given a time in-
terval T (T = [t0,∞) or T = [t0, tf ]), a switch-
ing law S over T is defined to be a mapping S :
R

n → ΣT which specifies a nonZeno switching se-

quence σ ∈ ΣT for any initial state x(t0). Here ΣT
�
=

{switching sequence σ over T }. �
Remark 1: S over a given T is often determined by

some rules or algorithms, which describe how to generate
a switching sequence for a given x(t0), rather than mathe-
matical formulae. In this paper, we specify switching laws
using such descriptions. �

B. Review of Some Practical Stabilization Results

Now we review some notions and results from [12]. Due
to our interest in reachability problems which often concern
finite time intervals, we will slightly modify these notions
and results so as to include finite interval cases. In fact,
finite time stability problems for dynamical systems (see,
e.g., [10]) and hybrid systems (see, e.g., [14], [15]) deserve
attention not only in their own right but also in their close
connection to reachability problems. In the following, the
vector (and matrix) norm ‖ · ‖ denotes the 2-norm; and
B[x, r] denotes the closed ball {y ∈ R

n : ‖y − x‖ ≤ r}.
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Without loss of generality, we only discuss the practical
stability of the system around the origin.

Definition 2 (ε-Practical Stability over T ): Assume that
a time interval T (T = [t0,∞) or T = [t0, tf ]) is given.
Also assume that a switching law S over T is given for
switched system (1). Given an ε > 0, the system is said to
be ε-practically stable over T under S if ∃δ > 0 (δ depends
on ε and the interval T ) such that x(t) ∈ B[0, ε], ∀t ∈ T ,
whenever x(t0) ∈ B[0, δ]. �

Remark 2: Unlike the classical stability concept, we do
not assume fi(0, t) = 0, ∀i ∈ I , i.e., the origin doesn’t have
to be a common equilibrium for system (1). Moreover, un-
like the classical definition which is based on the existence
of δ for any ε, here the ε is given and hence does not vary
(this is why we term it ε-practical stability). �

Definition 3 (ε-Practical Stabilizability over T ):
Assume that a time interval T (T = [t0,∞) or
T = [t0, tf ]) is given. Given an ε > 0, system (1)
is said to be ε-practically stabilizable over T if there exists
a switching law S over T (S depends on ε) such that the
system is ε-practically stable over T under S. �

Definition 4 (Practical Stabilizability over T ): Assume
a time interval T (T = [t0,∞) or T = [t0, tf ]) is given.
System (1) is said to be practically stabilizable over T if
it is ε-practically stabilizable over T for any ε > 0. �

Remark 3: In Definition 4, ε can be chosen to be any
positive value as opposed to the fixed ε in Definition 2.
Hence a practically stabilizable system over T has the
property that, for any given B[0, ε], a valid switching law
can be found that keeps the system trajectories, whose initial
states are in B[0, δ], in B[0, ε]. �

The following lemma from [12] provides us with some
sufficient conditions for practical stabilizability.

Lemma 1 ([12]): Given a time interval T (T = [t0,∞)
or T = [t0, tf ]), switched system (1) is practically stabiliz-
able over T if it satisfies the following conditions:
(a). There exists a G1 > 0 such that for any t ∈ T , every

x ∈ B[0, 1] can be expressed as

x =
M∑
i=1

γi(t)fi(0, t) (2)

where the γi(t)’s satisfy γi(t) ≤ 0, i ∈ I and
M∑
i=1

|γi(t)| ≤ G1. (3)

(b). There exists a G2 > 0 such that ‖fi(0, t)‖ ≤ G2,
∀t ∈ T , ∀i ∈ I .

(c). fi(x, t)’s satisfy the Lipschitz condition in x around
the origin, i.e., ∃L1 > 0 such that

‖fi(x1, t) − fi(x2, t)‖ ≤ L1‖x1 − x2‖ (4)

∀x1, x2 in some ball B[0, r] and ∀t ∈ T , ∀i ∈ I .
(d). fi(0, t)’s as functions of t satisfy the Lipschitz con-

dition in t, i.e., ∃L2 > 0 such that

‖fi(0, t1) − fi(0, t2)‖ ≤ L2|t1 − t2| (5)

∀t1, t2 ∈ T and ∀i ∈ I . �
In the proof of Lemma 1 in [12], we obtain the δ as

in Definition 2 for any given ε as follows. We choose
δ = ε1

2G where G = 1 + G1G2 and ε1 satisfies 0 <
ε1≤min{ε, 1

(L1+L2
G1
2G )G1

, r}. Moreover, an ε-practically

stabilizing switching law over T is constructed as:

Switching Law (for system (1) with x(t0) ∈ B[0, δ])

(1). Assume that the system trajectory starts from x(t0) ∈
B[0, δ]. Set k = 0, Tk = t0 and the current state
x(Tk) = x(t0).

(2). Express x(Tk)
δ =

∑M
i=1 γi(Tk)fi(0, Tk) (in this

case, x(Tk)
δ ∈ B[0, 1], hence condition (a)

of Lemma 1 applies). So the current state
x(Tk) =

∑M
i=1 δγi(Tk)fi(0, Tk). First switch

to subsystem 1 and stay for time δ|γ1(Tk)|,
then switch to subsystem 2 and stay for time
δ|γ2(Tk)| and so on, i.e., we obtain a switch-
ing sequence

(
(Tk, 1), (Tk + δ|γ1(Tk)|, 2), (Tk +

δ|γ1(Tk)|+δ|γ2(Tk)|, 3), · · · , (Tk +δ|γ1(Tk)|+ · · ·+
δ|γM−1(Tk)|, M)

)
from time Tk to T̃k

�
= Tk +∑M

i=1 δ|γi(Tk)|.
(3). From time T̃k on, let subsystem M be active until the

state trajectory intersects the δ-sphere.
(4). When the state intersects the δ-sphere, set k = k + 1

and denote Tk to be the time instant of intersection
(hence, if intersection takes place, then x(Tk) is the
intersecting point). Go back to step (2). �

III. NEW SUFFICIENT CONDITIONS FOR PRACTICAL

STABILIZABILITY

Conditions (b), (c), and (d) in Lemma 1 are straightfor-
ward to check. However, checking condition (a) presents
some difficulty. In this section, we will present new condi-
tions that are equivalent to condition (a) and are geometri-
cally more appealing. In the following, we use conv(A) to
denote the convex hull of a finite subset A = {a1, · · · , aM}
of R

n, i.e., conv(A) = {
∑M

i=1 λiai : λ1 ≥ 0, · · · , λM ≥
0,

∑M
i=1 λi = 1}. We denote the interior of a set C as

Int(C) and the boundary of C as ∂C.
The following theorem presents a condition which is

equivalent to condition (a) in Lemma 1.
Theorem 1: Condition (a) in Lemma 1 is satisfied if and

only if 0 ∈ Int
(⋂

t∈T C(t)
)

where C(t) is the convex hull
C(t) = conv

(
{fi(0, t) : i ∈ I}

)
.

Proof: “If” part: if 0 ∈ Int
( ⋂

t∈T C(t)
)
, then ∃r1 > 0 s.t.

B[0, r1] ⊆
⋂

t∈T C(t). So for any t ∈ T , B[0, r1] ⊆ C(t).
Note that any x ∈ B[0, 1] can always be represented as
x = y

r1
where y ∈ B[0, r1]. For this y, we have −y ∈

B[0, r1] ⊆ C(t) and hence −y can be represented as a
convex combination −y =

∑M
i=1 λi(t)fi(0, t) with λi(t) ≥

0, i ∈ I and
∑M

i=1 λi(t) = 1 at any t ∈ T . This leads to x =
y
r1

=
∑M

i=1

(
− λi(t)

r1

)
fi(0, t), ∀t ∈ T . Such an expression

of x satisfies condition (a) in Lemma 1 since we can let
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γi(t) = −λi(t)
r1

. Also note that since
∑M

i=1 |γi(t)| = 1
r1

,
∀t ∈ T , we can choose G1 = 1

r1
in condition (a).

“Only if” part: we only need to note that condition (a)
in Lemma 1 implies that B[0, 1] ⊆ {

∑M
i=1 λi(t)fi(0, t) :

λi(t) ≥ 0, ∀i ∈ I and
∑M

i=1 λi(t) = G1}. Hence
B[0, 1

G1
] ⊆ C(t), ∀t ∈ T . �

Unlike condition (a) in Lemma 1 which is algebraic in
nature, the condition proposed in Theorem 1 has direct
geometric relevance. In particular, in the case of finite
interval, the above condition can be further reduced to
conditions more amenable to be checked.

Theorem 2: For a finite time interval T = [t0, tf ], 0 ∈
Int

( ⋂
t∈T C(t)

)
if and only if 0 ∈ Int

(
C(t)

)
for any t ∈ T .

Proof: “Only if” part: it is clear that 0 ∈ Int
( ⋂

t∈T C(t)
)

directly leads to 0 ∈ Int
(
C(t)

)
, ∀t ∈ T .

“If” part: for any convex hull C(t), we define the distance
between the origin and the boundary of the set C(t) to
be d(t) = miny∈∂C(t) ‖y‖. Due to our assumption that
every fi(x, t) is continuous and hence fi(0, t) is continuous
in t, we conclude the boundary ∂C(t) also evolves in a
continuous fashion. Therefore d(t) is a continuous function
of t over T . Since T = [t0, tf ] is compact, d(t) reaches
its minimum at some point t∗ ∈ T , which in turn is a
positive minimum d(t∗) > 0 by assumption. Consequently
we have d(t) ≥ d(t∗), ∀t ∈ T , which leads to B[0, d(t∗)] ⊆
C(t), ∀t ∈ T . �

Theorem 2 provides us with an easy way of verifying
condition (a) in Lemma 1 if a finite time interval is
considered. In particular, it avoids the burden of calculating⋂

t∈T C(t). In this case, we only need to check if 0 is
in the interior of every C(t). Such a task can usually
be accomplished by geometric observations or appropriate
computational methods.

Example 1: Consider a switched system (1) in R
2 which

consists of 4 subsystems with f1(x, t) = [x1 + t, x2 +2t]T ,
f2(x, t) = [−x1−2t, x2 + t]T , f3(x, t) = [x1−2t, −x2−
3t]T , f4(x, t) = [2x1 + t, x2 − 3t]T . Given any finite time
interval T = [t0, tf ] in which 0 < t0 < tf , we can show
that the system is practically stabilizable over T as follows.

First consider f1(0, t) = [t, 2t]T , f2(0, t) = [−2t, t]T ,
f3(0, t) = [−2t, −3t]T , f4(0, t) = [t, −3t]T . For any
t ∈ T (hence t > 0) we observe that fi(0, t) is inside the
i-th quadrant (i = 1, 2, 3, 4). Therefore C(t) includes 0 as
an interior point. Consequently, the condition of Theorem
2 is satisfied. This then establishes condition (a) in Lemma
1.

Since T is bounded, fi(0, t)’s are bounded for any t ∈ T
and any i ∈ {1, 2, 3, 4}. Hence condition (b) in Lemma 1
is satisfied. Also note that since every fi is linear in x and
linear in t, conditions (c) and (d) in Lemma 1 are also
satisfied. �

Remark 4: Given a t ∈ T , mathematical programming
methods can also be used to determine whether the origin is
outside or on the boundary of or inside C(t). To do this, we
can solve the following mathematical programming problem

in a ∈ R and d = [d1, · · · , dn]T ∈ R
n

min a (6)

s.t.

⎧⎨
⎩

dT fi(0, t) ≤ a, i = 1, 2, · · · , M
a ≤ 0,
|d1| + · · · + |dn| = 1

(7)

If amin < 0, then ∃d s.t. the angles between d and all
fi(0, t)’s are greater than π

2 . So there exists a hyperplane
strictly separating C(t) and the origin. Similar argument
leads to the conclusion that if amin = 0, then 0 is on ∂C(t);
if there is no feasible solution, then 0 ∈ Int

(
C(t)

)
. The

above optimization problem can be easily decomposed into
several linear programming problems (only need to rewrite
|d1|+· · ·+|dn| = 1 into different possible linear equalities).

To check whether 0 ∈ Int
(
C(t)

)
, ∀t ∈ T = [t0, tf ], we

can partition T into small intervals and only check whether
0 ∈ Int

(
C(t)

)
at the grid points. This lets us solve only

a finite number of problems (6)-(7). Based on continuity,
when the intervals are sufficiently small, such a method
can determine whether 0 ∈ Int

(
C(t)

)
, ∀t ∈ T . �

IV. PRACTICAL REACHABILITY

In this section, we apply our practical stabilization results
to practical reachability problems, which are concerned with
driving the state from a neighborhood of a given initial point
x0 to a neighborhood of a given target point xf .

Definition 5 (ε-Practical Reachability): Consider
switched system (1). Given t0 and x0, a target point
xf ∈ R

n is said to be ε-practically reachable from x0 at t0
if a switching law S over some finite interval T = [t0, tf ],
and a δ > 0 (δ depends on ε, x0, xf , and t0) exist, such
that x(tf ) ∈ B[xf , ε] whenever x(t0) ∈ B[x0, δ]. �

Remark 5: The ε-practical reachability concerns the
problem of driving the state from the δ-neighborhood of
x0 to the ε-neighborhood of xf within finite time. Such
neighborhood to neighborhood reachability is often desired
in practice (see [10]), e.g., in sending a rocket from point
A to point B over some nominal trajectory. �

Definition 6 (Practical Reachability): Consider
switched system (1). Given t0 and x0, a target point
xf ∈ R

n is said to be practically reachable from x0 at t0
if it is ε-practically reachable from x0 at t0 for any ε > 0.
�

Remark 6: In Definition 6, ε can be chosen to be any
positive value as opposed to the fixed ε in Definition 5. So if
xf is practically reachable from x0, we can find appropriate
switching laws to achieve any desired accuracy specified by
ε. However, for different accuracy requirements, the time
intervals for reachability need not be the same. �

A. Practical Reachability along Guiding Paths

If a nominal guiding path from x0 to xf is specified,
then we can study whether xf is practically reachable from
x0 along it. Such guided reachability is in the sense that a
switching law can be designed to keep the state within a
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neighborhood of the guiding path and eventually lead the
state into a neighborhood of xf .

Consider switched system (1). Given t0, x0, and xf , we
want to study whether xf is practically reachable from x0

at t0 along some specified guiding path y(t) that connects
x0 and xf . We assume that y(t) is continuous and has
piecewise continuous derivative g(t), i.e.,

ẏ = g(t) (8)

over a finite time interval T = [t0, tf ] (note tf will be
clearly specified later; at present tf may simply be regarded
as a prespecified constant) and y(t0) = x0, y(tf ) = xf .

The practical reachability problem along the given guid-
ing path requires us to find an appropriate switching law
over some finite time interval T = [t0, tf ] so that x(t) is
guided by y(t) in the sense that ‖x(t)− y(t)‖ ≤ ε, ∀t ∈ T
(here ε is a given tolerance level). Such a problem can be
converted to a practical stabilization problem by subtracting

(8) from (1) and defining z(t)
�
= x(t) − y(t). By doing

so, we obtain the following switched system whose state
variable is z ∈ R

n.

ż = fi(x, t) − g(t) = fi

(
z + y(t), t

)
− g(t), i ∈ I (9)

In (9), we can regard y(t) as a function of t (since it is the
prespecified guiding path) and then define

hi(z, t)
�
= fi

(
z + y(t), t

)
− g(t). (10)

Using (10), we can rewrite (9) as

ż = hi(z, t), i ∈ I. (11)

It can now be seen that the practical reachability problem
along the guiding path for switched system (1) is equivalent
to the practical stabilizability problem for switched system
(11) over T . Hence, the results in Sections II and III for
practical stabilizability can be applied to system (11).

If every fi in (1) is time invariant, i.e.,

ẋ = fi(x, t) = fi(x), i ∈ I (12)

then hi(z, t) = fi

(
z + y(t)

)
− g

(
y(t)

)
. In such a case, t0 is

no longer important, we can simply choose it as 0. Below
we consider such time invariant subsystems and consider a
particularly important type of guiding path connecting x 0

and xf — the line segment connecting them. Such a line
segment can be generated by

ẏ = g(t) = a (13)

where a ∈ R
n is a nonzero constant vector in the direction

of xf −x0 (or, equivalently, a = 1
tf

(xf −x0) for some tf >

0). By choosing an appropriate tf , we have T = [0, tf ], and
y(t) = x0 + at for t ∈ T , and z(t) satisfies

ż = hi(z, t) = fi

(
z + y(t)

)
− a, i ∈ I. (14)

In particular, we have

hi(0, t) = fi

(
y(t)

)
− a, i ∈ I. (15)

If such an a exists so that the switched system (14) is
practically stabilizable over T , then for switched system
(12), xf is practically reachable from x0 along the line
segment connecting them. The following theorem provides
us with sufficient conditions for this to be true.

Theorem 3: Consider switched system (12). Given x0

and xf , xf is practically reachable from x0 along the line
segment connecting them if the following conditions hold
(a). All fi(x)’s are locally Lipschitz continuous.
(b). 0 ∈ Int

(
C(y)

)
for any y on the line segment connect-

ing x0 and xf . Here C(y) = conv
(
{fi(y) : i ∈ I}

)
.

Proof: We only need to prove that an a ∈ R
n exists such

that the switched system (14) is practically stabilizable over
T = [0, tf ] where tf = ‖xf−x0‖

‖a‖ . So we only need to show
that an a exists so that all the conditions of Lemma 1 can
be satisfied for system (14).

First we show that condition (a) in Lemma 1 can be
satisfied. Assume some a ∈ R

n is chosen (we will show
how to choose it below). Then for each y on the line
segment, there is a corresponding t ∈ T (here T = [0, tf ]
is finite) such that y = y(t). Hence C(y) = C(t) =
conv

(
{fi

(
y(t)

)
: i ∈ I}

)
. Due to condition (b) in Theorem

3, we have 0 ∈ Int
(
C(t)

)
= Int

(
C(y)

)
. From Theorem 2,

we have 0 ∈ Int
( ⋂

t∈T C(t)
)
. Hence there exists a r1 > 0

such that B[0, r1] ⊆
⋂

t∈T C(t). This consequently leads
to B[0, r1] ⊆ C(t), ∀t ∈ T , i.e., B[0, r1] ⊆ C(y) for any
y on the line segment (in fact, r1 needs not depend on the
abovementioned T ). In such a case, we can choose a ∈ R

n

which is parallel to xf − x0 and satisfies ‖a‖ = r1
2 . Then

we have B[a, ‖a‖] ⊆ B[0, r1]. Next consider the convex
hull Ch(t) generated by the hi(0, t)’s. Note that Ch(t) =
conv{hi(0, t) : i ∈ I} = {

∑M
i=1 λi

(
fi

(
y(t)

)
− a

)
: λi ≥

0,
∑M

i=1 λi = 1} = {
(∑M

i=1 λifi

(
y(t)

))
− a : λi ≥

0,
∑M

i=1 λi = 1} = C
(
y(t)

)
− a, where we use C

(
y
)
− a

to denote the set {z : z = y − a, y ∈ C(y)}. Because
B[0, ‖a‖] = B[a, ‖a‖] − a ⊆ B[0, r1] − a ⊆ C(y) − a for
any y on the line segment, we conclude that

B[0, ‖a‖] ⊆ Ch(t), ∀t ∈ T . (16)

(16) satisfies the conditions in Theorems 2 and 1. Hence
with the above choice of a, condition (a) in Lemma 1 is
satisfied for system (14).

Condition (b) in Lemma 1 is satisfied since fi’s are con-
tinuous and T is finite (hence compact), which consequently
leads to the boundedness of hi(0, t), ∀t ∈ T , ∀i ∈ I .

Now let us show that condition (c) in Lemma 1 is
satisfied. Since a locally Lipschitz continuous function f i

is Lipschitz on any compact subset of R
n, there exists a

constant L1 > 0 so that all fi(x)’s are Lipschitz with
constant L1 on a compact set which includes the line
segment between x0 and xf in its interior. We then have

‖hi(z1, t) − hi(z2, t)‖ = ‖fi

(
z1 + y(t)

)
− fi

(
z2 + y(t)

)
‖

≤ L1‖z1 − z2‖
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for any z1, z2 in some neighborhood B[0, r] (which is inside
the abovementioned compact set) and ∀t ∈ T , ∀i ∈ I .

Lastly, we show that condition (d) in Lemma 1 is
satisfied. To see this, we have

‖hi(0, t1) − hi(0, t2)‖ = ‖fi

(
y(t1)

)
− fi

(
y(t2)

)
‖

≤ L1‖y(t1)− y(t2)‖ = L1‖a(t1 − t2)‖ = L1‖a‖ · |t1 − t2|

for any t1, t2 ∈ T and ∀i ∈ I . �

B. Guidable Regions

Now we further explore the practical reachability problem
for switched systems (12) in the light of Theorem 3. We
will assume that condition (a) is satisfied for system (12).
We will pay special attention to condition (b). Due to it, we
only need to check if 0 ∈ Int

(
C(y)

)
for any point y on the

line segment between x0 and xf . Taking another viewpoint,
if we define a subset R of R

n to be the collection of all
such point y satisfying 0 ∈ Int

(
C(y)

)
, i.e.,

R
�
= {y ∈ R

n : 0 ∈ Int
(
C(y)

)
}, (17)

then condition (b) is equivalent to the following condition:

(c). The line segment between x0 and xf lies in R.

It can be shown that R is open. This is because for any
y satisfying 0 ∈ Int

(
C(y)

)
, a neighborhood ball around y

can be found such that for any point y1 in it, we have 0 ∈
Int

(
C(y1)

)
(due to the continuous evolvement of ∂C(y)

with respect to y). From mathematical analysis, we know
that R can then be expressed in one and only one way as a
finite or countable disjoint union of open connected subsets
in R

n (see page 89 in [1]), i.e.,

R =
⋃
i

Ri, Ri open connected, Ri1 ∩ Ri2 = ∅, i1 �= i2.

Hence, in order to satisfy condition (c), the line segment
between x0 and xf must be within one of the open
connected subsets. Such a requirement is sometimes overly
restrictive. For example, it is possible that both x0 and xf lie
in the same open connected subset Ri, but not every point
on the line segment between them is in Ri. In this case,
condition (c) cannot be applied. However, we can show that
xf is practically reachable from x0 as follows.

Since an open connected subset Ri in R
n is also polygo-

nally connected, i.e., every pair of points in R i can be joined
by a finite number of connected line segments (see page 89
in [1]), there exists a path in Ri from x0 to xf consisting
of connected line segments with connection nodes in the
order of x0, y1, y2, · · · , yK , xf (such a path is also called
a polygonal path). In this case, because the line segment
between yK and xf is in Ri, we can apply Theorem 3 to
conclude that xf is practically reachable from yK along the
line segment between them. Similarly, we can conclude that
yk is practically reachable from yk−1 along the line segment
between them for any 1 < k ≤ K , and y1 is practically
reachable from x0 along the line segment between them. In
view of these and Definition 6, it is not difficult to show

that xf is practically reachable from x0 along this polygonal
path. Fig. 1 illustrates such a case. In fact, the discussion
here shows that any point in the open connected subset R i

is practically reachable from any other point in R i along
some guiding polygonal path. Because of this, R i is also
called a guidable region.

x0

xf

y2

y1

R i

Fig. 1. xf is not practically reachable from x0 along the line segment
between them, however, it is practically reachable from x0 along a
polygonal path.

In general, the computation of guidable regions are chal-
lenging and still under our research. However, for switched
systems consisting of linear time invariant (LTI) subsystems

ẋ = Aix, i ∈ I, (18)

every guidable region is an open connected cone emitting
from 0 and can be easily computed. This is because 0 ∈
Int

(
C(αy)

)
, ∀α > 0, whenever 0 ∈ Int

(
C(y)

)
. In view of

this, we only need to find the portion of guidable regions on
the unit sphere in order to characterize all guidable regions.

Example 2: Consider a LTI switched system (18) in R
2

which consists of 3 subsystems:

subsystem 1: ẋ = f1(x) =
[

0.4 0.2
−0.2 0.4

]
x,

subsystem 2: ẋ = f2(x) =
[

−0.2 −0.2
0.2 −0.2

]
x,

subsystem 3: ẋ = f3(x) =
[

0.2 0
0 −0.2

]
x.

We can compute the guidable regions by observing the
patterns of vector fields f1, f2, and f3 on the unit circle in
R

2 (see Fig. 2). There exist 2 lines l1 and l2 which divide R
2

into 4 closed conic regions Ω1, Ω2, Ω3, and Ω4 as shown in
Fig. 2. In this case, we observe that there are two guidable
regions. They are R1 = Int(Ω1) and R2 = Int(Ω3).

The equation of l1 is obtained as follows. Note that f1 =
cf3 for some c < 0 on l1. From this, we can obtain that the
slope of l1 is k = x2

x1
= c − 2 = 1

c+2 , which can be solved
to obtain c = −

√
5 and k = −

√
5 − 2. Consequently, the

equation of l1 is x2 = kx1 = −(
√

5 + 2)x1.
Similarly, the equation of l2 can be obtained (by noting

that f2 = cf3 for some c < 0 on l2) as x2 = (
√

2 − 1)x1.
Assume we are given x0 = [1, 0.6]T and xf =

[1.5, 1.2]T which are all in R1. Given ε = 0.1, we can de-
sign a switching law to make xf ε-practical reachable from
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1

x 2

1x

f 1

f 3
f 2 l 2

1l Ω 1

Ω 2

Ω 3

Ω 4

2R

R 1

0

−1

Fig. 2. The different patterns of vector fields, with f1 denoted by solid
vector, f2 by dashed vector, and f3 by dotted vector.

x0 along the line segment between them. The switching law
is designed based on the switching law in Section II. We
can choose r1 and a mentioned in the proof of Theorem 3
to be r1 = 0.04 and ‖a‖ = 0.02. We choose the parameters
mentioned in the switching law proposed in Section II to
be G1 = 19.28, G2 = 0.86, L1 = 0.2, L2 = 0.004, and
δ = 0.0028. The state trajectory is shown in Fig. 3 and a
zoomed-in view near x0 is shown in Fig. 4. �

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

x
1

x 2

Fig. 3. The ε-practical reachable state trajectory along a line segment
between x0 = [1, 0.6]T and xf = [1.5, 1.2]T .

V. CONCLUSION

This paper reports some new results on practical sta-
bilization and practical reachability problems of switched
systems. We present new sufficient conditions for practical
stabilizability which are geometrically more appealing and
easier to check than conditions proposed in our previous
papers. We then study the practical reachability problems
in the light of our new practical stabilization results. It is
shown that under appropriate conditions, practical reach-
ability along some guiding paths can be obtained. Future
research includes more detailed studies of the practical

0.99 1 1.01 1.02 1.03 1.04 1.05 1.06

0.59

0.6

0.61

0.62

0.63

0.64

0.65

x
1

x 2

Fig. 4. A zoomed-in view of the state trajectory near x0 = [1, 0.6]T .

reachability of general classes of switched systems and
characterization and computation of guidable regions.
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