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Abstract— In data assimilation applications involving large
scale systems, it is often of interest to estimate a subset
of the system states. For example, for systems arising from
discretized partial differential equations, the chosen subset
of states can represent the desire to estimate state variables
associated with a subregion of the spatial domain. The use of
a spatially localized Kalman filter is motivated by computing
constraints arising from a multi-processor implementation of
the Kalman filter as well as a lack of global observability in a
nonlinear system with an extended Kalman filter implemen-
tation. In this paper we derive an extension of the classical
output injection Kalman filter in which data is locally injected
into a specified subset of the system states.

I. INTRODUCTION

The classical Kalman filter provides optimal least-squares
estimates of all of the states of a linear time-varying
system under process and measurement noise. In many
applications, however, optimal estimates are desired for a
specified subset of the system states, rather than all of
the system states. For example, for systems arising from
discretized partial differential equations, the chosen subset
of states can represent the desire to estimate state variables
associated with a subregion of the spatial domain. However,
it is well known that the optimal state estimator for a subset
of system states coincides with the classical Kalman filter.

For applications involving high-order systems, it is often
difficult to implement the classical Kalman filter, and thus
it is of interest to consider computationally simpler filters
that yield suboptimal estimates of a specified subset of
states. One approach to this problem is to consider reduced-
order Kalman filters. Such reduced-complexity controllers
provide estimates of the desired states that are suboptimal
relative to the classical Kalman filter [1–3, 6, 7]. Alternative
variants of the classical Kalman filter have been developed
for computationally demanding data assimilation applica-
tions such as weather forecasting [8–10], where the classical
Kalman filter gain and covariance are modified so as to
reduce the computational requirements.

The present paper is motivated by computationally de-
manding applications such as those discussed in [8–10].
For such applications, a high-order simulation model is
assumed to be available, and the derivation of a reduced-
order filter in the sense of [1–3, 6, 7] is not feasible due to
the lack of a tractable analytic model. Instead, we consider
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the use of a full-order state estimator based directly on
the simulation model. However, rather than implementing
the classical output injection Kalman filter, we derive a
suboptimal spatially localized Kalman filter in which the
filter gain is constrained a priori to reflect the desire to
estimate a specified subset of states. Our development is
also more general than the classical treatment since the state
dimension can be time varying. This extension is useful
for variable-resolution discretizations of partial differential
equations.

The use of a spatially localized Kalman filter in place
of the classical Kalman filter is motivated by the use of
the ensemble Kalman filter for nonlinear systems. For sys-
tems with sparse measurements, observability may not hold
for the entire system. In this case, the spatially localized
Kalman filter can be used to obtain state estimates for the
observable portion of the system.

II. SPATIALLY LOCALIZED KALMAN FILTER (SLKF)

We begin by considering the discrete-time dynamical
system

xk = Ak−1xk−1 + Bk−1uk−1 + wk−1, k ≥ 0, (1)

with output

yk = Ckxk + vk, (2)

where xk ∈ R
nk , xk−1 ∈ R

nk−1 , uk−1 ∈ R
mk−1 , yk ∈ R

lk ,
and Ak−1,Bk−1,Ck are known real matrices of appropriate
size. The input uk−1 and output yk are assumed to be
measured, and wk−1 ∈ R

nk−1 and vk ∈ R
lk are zero-mean

noise processes with known variances and correlation given
by Qk−1,Rk, and Sk, respectively. We assume that Qk−1, Rk,
and Sk are positive definite. Note that the dimension nk of
the state xk can be time varying, and thus Ak−1 ∈ R

nk×nk−1

is not necessarily square.
The problem of estimating a subset of states of (1) from

measurements of the output (2) is discussed in this section.

A. Estimation Problem

Consider the discrete-time dynamical system de-
scribed by (1) and (2). For this system, we take a state
estimator of the form

x̂k|k = x̂k|k−1 +ΓkKk(yk − ŷk|k−1), k ≥ 0, (3)

with output

ŷk|k−1 = Ckx̂k|k−1. (4)

where x̂k|k ∈ R
nk is the estimation of xk using the mea-

surements yi for 0 ≤ i ≤ k, ŷk|k−1 ∈ R
lk , Γk ∈ R

nk×pk , and
Kk ∈R

pk×lk . The nontraditional feature of (3) is the presence
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of the term Γk, which, in the classical case of output
injection, is the identity matrix. Here, Γk constrains the state
estimator so that only states in the range of Γk are directly
affected by the gain Kk. We assume that Γk has full column
rank for all k ≥ 0.

In order to find the optimal gain Kk, the first step is to
project xk−1|k−1 ahead via (1) using

x̂k|k−1 = Ak−1x̂k−1|k−1 + Bk−1uk−1. (5)

Then, define the prior state estimation error by

ek|k−1
�
= xk − x̂k|k−1. (6)

Substituting (5) and (1) into (6) we obtain

ek|k−1 = Ak−1ek−1|k−1 + wk−1. (7)

Now, define the prior error covariance matrix by

Pk|k−1
�
= E[ek|k−1eT

k|k−1], (8)

where E denotes expected value. Hence,

Pk|k−1 = Ak−1Pk−1|k−1AT
k−1 + Qk−1. (9)

Next, define the state estimation error

ek|k
�
= xk − x̂k|k, (10)

and the weighted estimation error covariance matrix

Jk(Kk)
�
= E[(Lkek|k)

T (Lkek|k)], (11)

where Lk ∈ R
qk×nk determines the weighted error compo-

nents. Then, the weighted estimation error can be obtained
as

Jk(Kk) = tr (Pk|kMk), (12)

where the error covariance matrix Pk|k ∈ R
nk×nk is defined

by

Pk|k
�
= E[ek|keT

k|k], (13)

and Mk ∈ R
nk×nk by

Mk
�
= LT

k Lk. (14)

Now, substituting (3) into (10) yields

ek|k = xk − x̂k|k−1 −ΓkKk(yk −Ckx̂k|k−1), (15)

and using (15) with (13) implies

Pk|k = ÂkPk|k−1ÂT
k + Q̂k, (16)

where

Pk|k−1
�
= E[ek|k−1eT

k|k−1], (17)

ek|k−1
�
= xk − x̂k|k−1, (18)

Âk
�
= Ink −ΓkKkCk, (19)

Q̂k
�
= ΓkKkR̃kKT

k Γ T
k −SkKT

k Γ T
k −ΓkKkST

k , (20)

R̃k
�
= CkSk + ST

k CT
k + Rk, (21)

Sk
�
= E[wk−1vT

k ]. (22)

Hence (12) becomes

Jk(Kk) = tr [(ÂkPk|k−1ÂT
k + Q̃k)Mk]. (23)

To obtain the optimal gain Kk we set ∂Jk(Kk)/∂Kk = 0,
which gives

Kk = (Γ T
k MkΓk)

−1Γ T
k MkŜkR̂−1

k , (24)

with

Ŝk
�
= Sk + Pk|k−1C

T
k , ∈ R

nk×lk , (25)

R̂k
�
= R̃k +CkPk|k−1CT

k , ∈ R
lk×lk . (26)

To update the error covariance matrix, we first note that

ΓkKk = πkŜkR̂−1
k , (27)

where πk ∈ R
nk×nk is defined by

πk
�
= Γk(Γ T

k MkΓk)
−1Γ T

k Mk. (28)

Note that πk is an oblique projector, that is, π2
k = πk. Now

using (27) with (16) yields the error covariance matrix
update equation

Pk|k = Pk|k−1 + πk⊥ŜkR̂−1
k ŜT

k πT
k⊥− ŜkR̂−1

k ŜT
k , (29)

where the complementary projector πk⊥ is defined by

πk⊥
�
= Ink −πk. (30)

If either Mk = Ink or Lk = Γ T
k , then πk is the orthogonal

projector

πk = Γk(Γ T
k Γk)

−1Γ T
k . (31)

On the other hand, if pk = qk, so that Lk ∈ R
pk×pk , then, it

can be shown that

πk = Γk(LkΓk)
−1Lk. (32)

Specializing to the case Sk = 0, Γk = Ink , and Lk = Ink , so
that πk⊥ = 0, yields the familiar Riccati update equation

Pk|k = Pk|k−1 −PkC
T
k R̂−1

k CkPk. (33)

In the classical case, nk = n for all k ≥ 0. Summarizing the
algorithm we have, for k = 1,2, . . ., the following steps:

1. Project ahead the error covariance matrix and the
estimated states using (9) and (5).

2. Compute the SLFK gain using (27).
3. Update the estimated states using (3)
4. Update the error covariance matrix using (29)
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III. SQUARE ROOT FORMULATION OF THE SLKF

To avoid numerical problems when computing the SLKF,
a square root formulation, for the case Sk = 0 is presented
is this section. We can rewrite (29) as

Pk|k = P1k|k
+ P2k|k

, (34)

where P1k|k
and P2k|k

∈ R
nk×nk are defined by

P1k|k

�
= Pk|k−1 − ŜkR̂−1

k ŜT
k , (35)

P2k|k

�
= πk⊥ŜkR̂−1

k ŜT
k πT

k⊥. (36)

Hence, the square root form of 34 can be written as

Pk|k = Fk|kFT
k|k (37)

with Fk|k ∈ R
nk×(nk+lk) defined as

Fk|k
�
=

[
F1k|k

F2k|k

]
, (38)

where F1k|k
∈ R

nk×nk and F2k|k
∈ R

nk×lk satisfy

P1k|k
= F1k|k

FT
1k|k

, (39)

P2k|k
= F2k|k

FT
2k|k

. (40)

To compute F1k|k
, first notice that the Schur complement

of R̂k in Mk is P1k|k
,

Mk =

[
R̂k ŜT

k
Ŝk P1k|k−1

]
(41)

Now specializing to the case Sk = 0 we have

Mk =

[
Rk +CkPk|k−1CT

k CkPk|k−1

Pk|k−1CT
k Pk|k−1

]
. (42)

Hence, the square root form of (42) is defined by

Mk
�
= βkβ T

k (43)

with βk ∈ R
(lk+nk)×(lk+Nqk ) given by

βk =

[
LRk CkFk|k−1
0 Fk|k−1

]
(44)

with Nqk the order rank approximation of Fk|k−1 defined

below in (55), where Rk
�
= LRk LT

Rk
and Pk|k−1

�
= Fk|k−1FT

k|k−1.
Next, a lower triangular QR decomposition of βk yields[

LRk CkFk|k−1
0 Fk|k−1

]
Uk =

[
Hk 0
Jk F1k|k

]
, (45)

where Uk ∈ R
(lk+Nqk )×(lk+Nqk ) is orthogonal. As a conse-

quence, a square root factorization of Mk is given by

Mk =

[
Hk 0
Jk F1k|k

][
HT

k JT
k

0 FT
1k|k

]
, (46)

from which, assuming Hk is nonsingular, it follows that

Kk = πkJkH−1
k , (47)

R̂k = HkHT
k , (48)

Pk|k−1CT
k = JkHT

k . (49)

Then, to find F2k|k
we substitute (48) and (49) into (36)

P2k|k
= πk⊥JkHT

k (HkHT
k )−1HkJT

k πT
k⊥ (50)

P2k|k
= πk⊥JkJT

k πT
k⊥, (51)

from where

F2k|k
= πk⊥Jk. (52)

As a result, the recursive SLKF algorithm can be summa-
rized as follows:

1) Compute the Fk|k−1 via

Fk|k−1 =
[
Ak−1Fk−1|k−1 LQk−1

]
, (53)

where Qk−1
�
= LQk−1 LT

Qk−1
.

2) Compute a reduced rank approximation of Fk|k−1 to
avoid the dimensions of (53) to increase in each
iteration. A efficient way to do this is to apply the
same trick as in [12]. First, compute the eigenvalue
decomposition of PT

k|k−1

FT
k|k−1Fk|k−1 = VkDkV

T
k , (54)

then, it turns out that the reduced rank approximation
of (53) can be yielded by

F∗
k|k−1 = Fk|k−1Vk(1:nk,1:Nqk )

, (55)

where Nqk ≤ nk is the order chosen to approximate
(53), hence F∗

k|k−1 ∈ R
nk×Nqk .

3) Then use (55) to compute the lower triangular QR
decomposition of (44) to obtain F1k|k

, (47), (48), and
(49).

4) Compute F2k|k
using (52) and finally Fk|k using (38)

IV. MASS-SPRING SYSTEM EXAMPLE

To illustrate the performance of the SLKF a simple LTI
mass-spring system is used. The state space representation
in continuous time of this system is given by[

ż
ẋ

]
=

[
Az Ax
IN 0N

][
z
x

]
+

[
IN
0N

]
u, (56)

with zi and xi the velocity and the position of the i-th mass,
respectively, and N the number of masses. In this example
the nodes at the extremes are assumed to be fixed, so, the
number of analyzed nodes is equal to the number of masses.
Ax ∈ R

N×N is a tridiagonal matrix defined by

Ax
�
=

⎡
⎢⎢⎢⎢⎢⎢⎣

−(k1 + k2)/m1 k2/m1 0 . . .

k2/m2 −(k2 + k3)/m2 k3/m2

...

0
. . .

. . .
. . .

... . . . kN/mN −(kN + kN+1)/mN

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(57)

with ki and mi the spring constant and mass of the i-th
node, respectively. Az ∈ R

N×N a diagonal matrix defined by

Az
�
=

⎡
⎢⎢⎢⎣

−c1/m1 0 . . .

0
. . .

...
... . . . −cN/mN

⎤
⎥⎥⎥⎦ , (58)
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where ci the friction coefficient of the i-th mass.
For simplicity of the analysis we take the parameters in

each node to be equal to the others; hence, mi = 1Kg, ki =
5Kg/s2, and ci = 5Kg/s, with 1 ≤ i ≤ N. We selected N =
50, m = 1 i.e., one input applied in the node 25 and defined
by

u25(t) = 30sin(t/2 + π/3), (59)

Next, the system is discretized using the zero order hold
method taking a sampling time Ts = 0.1s. Now, the discrete-
system can be represented by

xk+1 = Adxk + Bduk + wk, (60)

where Ad ∈ R
n×n, with n = 2N, Bd ∈ R

n, and wk ∈ R
n is

the process noise caused by the discretization. With output

yk = Cdxk + vk (61)

where vk ∈ R
l is the measurement noise. The process and

measurement noise are assumed to be uncorrelated white
noises.

In order to apply the SLKF to this problem, first we
define the region where we want the state estimation to be
focused. Hence, we take the node 25, this node is taken as
the measurement point for the input as well as the outputs;
velocity and position. Therefore we specify Γk such that the
SLKF concentrates around this region. Assuming Mk = In,
the weighted matrix Γk is constructed such that the entries
of each column are taken from a gaussian function with
mean the position of the analyzed state, notice that for
each analyzed state one column is needed, this makes the
state estimation around the region of interest to be smooth,
avoiding numerical problems in the model integration. For
this example pk = lk = 2.

A. Results

Two experiments with different Signal-to-Noise ratio
(SNR) were carried out, the first one with 6dB and the
second with 1dB.

Figures 1 and 2 show a comparison of the performance
of the SLKF to the classical KF at different locations,
specifically, 2, 10, 15, and 25. General speaking, it can be
seen that under high SNR conditions SLKF performs similar
to KF for any node, whereas for low SNR conditions the
performance of the SLKF is worst in the nodes far from the
measurement point and similar in the nodes around it. This
is due to the spatially localized strategy used in the SLKF.

Figure 2 compare the estimation of the velocity of the
SLKF to the classical KF for the case SNR=1dB. Again,
both filters work well at the node 25, but SLKF reduces
its performance compared to the previous case in the other
places, while the KF keeps its performance. As a matter of
fact, the classical KF is expected to do better than SLKF in
regions apart from the measurement point because it is not
restricted to certain region, whereas the SLKF satisfies the
localization constraint.
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Fig. 1. Estimation of velocity with a SNR=6dB. Solid line, original state,
dotted line classical KF estimation, and dashed line SLKF estimation.
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Fig. 2. Estimation of velocity with a SNR=1dB. Solid line, original state,
dotted line classical KF estimation, and dashed line SLKF estimation.

Summarizing, we can say that the estimation of the
SLKF and the classical KF are the same under high SNR
conditions for all the states, but under low SNR conditions,
the estimation of the SLKF is reliable just into the interested
region.

V. THE ENSEMBLE SLKF (ENSLKF)

Based on the ensemble Kalman filter (EnKF) [13] the
previous results can be extended to the nonlinear case.
Therefore, a short introduction to the EnKF is first given
before presenting the EnSLKF.

We write an uncertain nonlinear model, as the discrete-
time stochastic differential equation

xk+1 = Ak(xk)+ ηk, (62)

with output

yk = Ck(xk)+ vk, (63)

and where ηk is the model error at time k defined by

ηk
�
= Gk(xk)δk, (64)

with Gk(xk) ∈ R
n×lmk is a state-dependent matrix, whose

covariance Qk ∈ R
n×n is

Qk
�
= E[Gk(xk)Gk(xk)

T], (65)

and δk ∈R
lmk is a process we want to approximate as white

noise. Equation (62) implies that even if the initial state is
known precisely, future model states cannot since unknown
random model errors are continually added.
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The main difference between the KF and the EnKF is
that the error covariance matrices for the prior and the
current estimate, Pk|k−1 and Pk|k, are in the Kalman filter
defined in terms of the true state, while in the EnKF in
terms of an ensemble of forecasted model states.

Thus, the EnKF algorithm can be summarized as follows.
First, generate an initial ensemble Xk−1|k−1 ∈ R

nk×N which
properly represent the error statistics of the initial guess for
the model state.

1) Update the ensemble members of Xk−1|k−1 for i =
1, . . . ,N according to

xi
k|k−1 = Ak(x

i
k−1|k−1)

2) Compute the ensemble prior error covariance matrix,

Ek|k−1
�
=

[
x̂1

k|k−1 −
¯̂xk|k−1, . . . , x̂

N
k|k−1 −

¯̂xk|k−1
]
, (66)

3) Compute the EnKF gain

Lek = P̂k|k−1C
T
k (CkP̂k|k−1C

T
k + Rek)

−1, (67)

4) Update the ensemble members

x̂i
k|k = x̂i

k|k−1 + Lek

(
yi

k −Ck(x̂
i
k|k−1)

)
, (68)

5) Compute the state estimation taking the mean of the
updated ensemble members

x̂k|k
�
=

1
N

N

∑
i=1

x̂i
k|k. (69)

A. The EnSLKF

Comparing the algorithms of the SLKF (section II) to
the EnKF, we observe that the error covariance update steps
are omitted in the EnKF due to the fact that these steps are
implicit when the ensembles Xk|k−1, and Xk|k are updated.
As a result, by combining the ideas of the SLKF and EnKF
we can easily obtain a nonlinear version of the SLKF.

The main difference between the two algorithms is the
computation of the filter gain, while for the EnKF is given
by (67) for the SLKF by (27). Hence, the EnSLKF gain can
be defined as

ΓkKk
�
= πkŜek R̂−1

ek
, (70)

with Sek ∈ R
nk×lk defined by

Ŝek

�
= Sek + Pk|k−1C

T
k . (71)

Apart from this change, notice that the rest of the algorithm
for the EnSLKF stays the same to the EnKF.

On the other hand, note in (70) that for nk large πk

is too big to store, so, we can rewrite ΓkKk such that
the computation of the EnSLKF gain can be done more
efficiently. Hence,

ΓkKk
�
= ϒkΦk, (72)

where ϒk ∈ R
nk×pk is defined by

ϒk
�
= Γk(Γ T

k MkΓk)
−1, (73)

and Φk ∈ R
pk×lk is defined by

Φk
�
= Γ TŜek R̂−1

ek
(74)

Consequently, the term ϒk can be computed off-line and
stored in memory, while Φk is computed once each iteration.

B. Space Weather Forecast Example

As an example a Magneto-Hydrodynamics (MHD) sys-
tem is taken. MHD systems are used to simulate the plasma
in the magnetosphere around the earth. Therefore, in this
example the SLKF is used to predict the behaviour of
the magnetosphere subjected to a magnetic solar storm
in certain regions where satellites for measuring might be
located.

This system was simulated with the VAC code [5] with
the following parameters:

• Grid size: 34×54 with 0 ≤ x ≤ 0.2 and 0 ≤ y ≤ 1
• Initial conditions of the state space variables:

– Mass density, ρ = 1.0Kg/m3

– Velocity in x- and y-directions, Vx = 20m/s, Vy = 0m/s
– Pressure, p = 1.0Kg/ms2

– Magnetic field in x- and y-directions, Bx = 0mT , By = 1.0mT

• ratio of specific heats, γ = 5/3
• Simulation sample time, 1×10−4 seconds
• Data assimilation sample time, 4×10−4 seconds
• Spatial discretization method, Total Variation Diminishing Lax-

Friedrich, TVDLF.

As a result the order of the system is n = 11016, 6
state space variables and 34 × 54 grid-points. To excite
the system, a square sinusoidal wave for By and Vx was
generated at the left-hand boundary, simulating a magnetic
storm. The variation of By were from 1 to 1.5 mT while for
Vx from 20 to 30 m/s. Notice that the earth is located on
the right-hand boundary.

To apply the EnSLKF to this example, we took 6 mea-
surement points randomly represented by black triangles in
Figure 3. Then, we assumed M = In, in this example the
subscript k is dropped because the system is time invariant,
and defined the columns of Γ as gaussian functions with
center the measurement points, σx = 4 grid-points, and
σy = 6 grid-points. The number of members for the initial
ensemble was 300.

Adopting this sort of structure for Γ we observed a
good stability of the simulation code, different than the one
reported in [4] where the VAC code crashed when less than
10 measurement points were taken. This is due to the fact
that taking a smooth function as weighting function for Γ
makes the changes of the SLKF estimations to be smooth
around the localized region . Hence, the data assimilation
process reduces the chances of obtaining unrealistic values
that could make crash the model integration code. This is
an important point, because one of the major issues when
a nonlinear system is simulated is to give realistic initial
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conditions so that the integration method can converge to
a solution.

Figure 3 show the residuals between the simulated data
and the SLKF estimated data along of time. In general,
the estimated data around the measurement points (black
triangles) exhibit smaller residuals than the ones in the rest
of the grid, as expected. At the beginning of the simulation,
k = 1 iteration, the residuals are small because the initial
conditions for the simulated and estimated systems are
chosen to be closed, but while the time passes, k = 40 to
110 iterations, the residuals increases in areas far apart from
the measurement points, because the estimation is done in
localized areas. Moreover, it can be seen how the residuals
are reduced downstream the measurement points locate far
from the earth, left-hand side, as a result of the spatially
localized assimilation of the data into the model. This is an
interesting result for the forecast of solar storms, because it
suggests that it is not necessary to place several satellites in
order to have a good prediction of the system, but to place
few strategically in the path between the sun and the earth.

Close to the earth, right-hand side, is observed that the
residuals are bigger, even though there are three mea-
surement points around it. The reason is that the main
dynamic changes occur in there, so, the effective region for
estimation of the localized assimilation is smaller, contrary
to the case when the measurement points are located on the
left-hand side.
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Fig. 3. Residuals of the magnetic field. The black triangles represent the
measurement location.

VI. CONCLUSIONS

In this paper we presented an extension of the classical
output injection Kalman filter we called Spatially Localized
Kalman filter (SLKF). To avoid numerical problems in
its computation a square root formulation was developed,
and its performance assessed in a 1D linear mass-spring
system. Despite the fact that the error covariance matrix is
manipulated, the SLKF shown to work as good as the KF
in the localized regions under low SNR conditions without
presenting numerical problems.

The SLKF was extended to the nonlinear case using the
classical EnKF formulation, it was called the EnSLKF. The
EnSLKF was tested in a large scale MHD system simulating
a solar storm reaching the earth’s magnetosphere using the
VAC code. The estimation of the filter was good around
big regions of the measurement points far from the earth
and small regions close to it. This happens because the
dynamics changes in the vicinity of the earth are bigger
than in the rest of the analyzed space. Moreover, there
were no problems with the numerical stability of the data-
assimilation process, even though we chose just 6 out
of 1834 measurement points. However the computation
complexity of the EnSLKF is still as big as the classical
EnKF.

REFERENCES

[1] D. S. Bernstein and D. C. Hyland, “The Optimal Projection Equations
for Reduced-Order State Estimation,” IEEE Trans. Autom. Contr.,
Vol. AC-30, pp. 583-585, 1985.

[2] W. M. Haddad and D. S. Bernstein, “The Optimal Projection Equa-
tions for Discrete-Time Reduced-Order State Estimation for Linear
Systems with Multiplicative White Noise,” Systems Contr. Lett., Vol.
8, pp. 381-388, 1987.

[3] W. M. Haddad and D. S. Bernstein, “Optimal Reduced-Order
Observer-Estimators,” AIAA J. Guid. Dyn. Contr., Vol. 13, pp. 1126-
1135, 1990.

[4] O. Barrero, B. De Moor, and D. S. Bernstein, Data Assimilation
for Magneto-Hydrodynamics Systems, Internal report 04-74, ESAT-
SISTA, Katholieke Universiteit Leuven, Belgium, 2004.
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