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Abstract— In this paper, we propose a high-gain scaling based
controller to achieve global state-feedback stabilization of a general
class of nonlinear systems which are allowed to contain uncertain
functions of all the states and the control input as long as polynomial
bounds on ratios of some uncertain system terms are available. The
design is based on a high-gain scaling involving appropriate powers
of a high-gain scaling parameter which is a dynamic signal driven
by the state. The designed controller has a very simple structure
being essentially a dynamic extension and a linear feedback with state-
dependent dynamic gains. The obtained results are applicable to both
lower triangular (strict-feedback) and upper triangular (feedforward)
structures and also to systems without any triangular structure as long
as a set of inequalities involving powers of the polynomial bounds
on the ratios of the uncertain system terms and scaling orders is
solvable. The stability analysis is based on our recent results on
uniform solvability of coupled state-dependent Lyapunov equations.

I. INTRODUCTION

We consider a high-gain scaling based state-feedback controller
design for the class of systems given by

ẋi = φ(i,i+1)(t, x, u)xi+1 + φi(t, x, u) , i = 1, . . . , n − 1

ẋn = µ(t, x, u)u + φn(t, x, u) (1)

where x = [x1, . . . , xn]T is the system state and u the input. µ,
φ(i,i+1), and φi are uncertain time-varying functions.

High-gain techniques for controller and observer designs have
been investigated in the literature. The basic adaptive high-gain
controller given by u =−ry, ṙ = y2 provides global stabilization
under the assumption that the system is minimum-phase and of
relative-degree one ([1–3] and references therein). A semiglobal
observer design based on static high-gain scaling (using observer
gains r, . . . , rn with a constant r) was considered in [4,5]. The
observer analysis utilizes scaled observer errors ei

ri (or ei

ri−1 ) with
ei being the estimation error of the ith state. A global high-gain
observer and controller with gains being powers of

∫ t

0
y2(τ)dτ

were proposed in [6] for linear systems with appended stable
nonlinear zero dynamics and input-matched nonlinearities. In [7],
a high-gain observer and a backstepping based controller were
designed for systems of form (1) under the assumptions that
φ(i,i+1) = 1, i = 1, . . . , n − 1, and with the terms φi, i =
1, . . . , n, being known functions of x1, . . . , xi incrementally
linear in unmeasured states in the sense that |φi(x1, . . . , xi) −
φi(x1, x̂2, . . . , x̂i)| ≤ Γ(x1)

∑n

j=2
|x̂j − xj | with Γ(x1) being a

known function. The dynamics of the high-gain scaling parameter
were a scalar differential Riccati equation driven by y.

In [8], it was shown that the high-gain scaling proposed in
[7] essentially amplifies the upper diagonal terms (φ(i,i+1)) thus
inducing the Cascading Upper Diagonal Dominance (CUDD) con-
dition introduced in [9,10]. Motivated by duality considerations, a
dynamic high-gain scaling based state-feedback controller and a
dual high-gain observer/controller based output-feedback solution
for strict-feedback (lower triangular, i.e., functions in dynamics
of ith state can be bounded as functions of x1, . . . , xi) systems
were proposed in [11]. The dual high-gain design in [11] was
based on the solution of a pair of coupled Lyapunov equations.
The state-feedback controller in [11] requires the upper diagonal
terms to satisfy the cascading dominance condition (which, in the
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controller context, requires the ratios |φ(i−1,i)|/|φ(i,i+1)| to be
upper bounded by a positive constant) and also requires the terms
φi to be bounded as |φi| ≤ Γ(x1)

∑i

j=1
φ(i,j)|xj | with Γ(x1) and

φ(i,j) being known continuous nonnegative functions such that
the ratios |φ(i,j)|/|φ(j−1,j)|, φ(i,2)/|φ(2,3)|, and φ(i,1)/|φ(1,2)|
are upper bounded by positive constants. These assumptions
which essentially require that the upper diagonal terms should
be dominant in the system and that there should be a cascading
dominance relation between the upper diagonal terms such that
the terms nearer to the control input are larger (in the sense that
the ratios |φ(i−1,i)|/|φ(i,i+1)| are bounded above) comprise the
CUDD condition in the controller context. The output-feedback
result in [11] provides a dual high-gain observer and controller
for strict-feedback systems assuming that the upper diagonal terms
also satisfy the observer-context cascading dominance condition
(ratios |φ(i,i+1)|/|φ(i−1,i)| bounded above). The functions φi, i =
1, . . . , n, were allowed to contain functional and parametric un-
certainties coupled with all the states.

The dual high-gain technique introduced in [11] was extended
to the case of state-feedback and output-feedback control for
feedforward (upper triangular, i.e, functions in dynamics of xi can
be bounded as functions of xi+2, . . . , xn, u) systems in [12,13].
Previously available controller design techniques for feedforward
systems include saturation-based designs [14–17] and forwarding
[18]. Nested saturation designs rely on the use of small inputs
(making the scheme sensitive to additive disturbances) and require
φi to involve only quadratic or higher powers in their arguments.
Forwarding is a recursive passivation scheme which proceeds
by adding one integrator at a time through the design of cross
terms (which, due to computational complexity, often need to be
approximated numerically). However, due to a lack of robustness
to additive disturbances in these designs [14–18], the extension
to the output-feedback case was not feasible. In contrast, the
dual high-gain approach in [12,13] provided a robustly stabilizing
controller and enabled an output-feedback solution. The state-
feedback controller in [12] required the upper diagonal terms
φ(i,i+1) to satisfy the controller-context cascading dominance
condition and also required the φi terms to be bounded linearly
(up to a factor of φ(1,2) and a polynomial function of xn) in the
states and input.

In [19], a generalized high-gain scaling involving arbitrary
powers of the high-gain scaling parameter was proposed for strict-
feedback systems. The standard scaling xi/rai+b with constants
a and b can scale functions φi relative to the upper diagonal terms
φ(i,i+1) as shown in [8], but can not modify relative magnitudes
of upper diagonal terms since all upper diagonal terms are scaled
by ra. Furthermore, this scaling requires CUDD-like assumptions
as noted above and only attenuates arbitrary functions of x1

(in the strict-feedback case) or xn (in the feedforward case). In
[19], it was seen that scaling using arbitrary powers of the high-
gain scaling parameter can scale relative magnitudes of upper
diagonal terms and also provides a technique to take into account
the form of (polynomial) bounds on ratios of system terms and
introduce a scaling specifically tailored to induce CUDD in the
scaled system. In [19], a state-feedback controller was provided for
strict-feedback systems with polynomial bounds on certain ratios
of unknown system terms and an output-feedback controller was
obtained without requiring cascading dominance.
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In this paper, we extend the results of [19] to state-feedback
controller design for the general class of systems (1) without re-
quiring a triangular structure. Furthermore, we allow φi, φ(i,i+1),
and µ to be uncertain functions of time, state, and input while all
the earlier designs required upper diagonal terms φ(i,i+1) to be
known functions of the state. The results are applicable to both
lower triangular and upper triangular systems and also to non-
triangular systems as long as a set of linear inequalities involving
powers of the polynomial bounds and scaling orders is solvable.
We show that this set of inequalities is always solvable in the
case of strict-feedback systems (recovering the result of [19])
and solvable in the case of feedforward systems under certain
assumptions. Moreover, the solvability of the set of inequalities can
be easily checked numerically even for non-triangular systems and
the proposed design yields a globally asymptotically stabilizing
state-feedback controller whenever a solution exists.

The required assumptions are listed in Section II. The state
scaling and dynamic extension are explained in Section III. The
controller design is provided in Section IV. The stability analysis
is contained in Section V. The application of the results to strict-
feedback and feedforward systems are illustrated in Sections VI
and VII, respectively. An illustrative example is provided in
Section VIII.

II. ASSUMPTIONS AND PROBLEM STATEMENT

Definition 1: A function f : R × R × . . . × R �→ R is said to
be a multinomial if it is of the form

f(z1, . . . , zl) =

N∑
k=1

χk

l∏
i=1

z
β(i,k)

i
(2)

where N is a positive integer and χk and β(i,k), i =
1, . . . , l, k = 1, . . . , N , are nonnegative real numbers. A multi-
nomial f(z1, . . . , zl) is said to be proper if a continuous non-
negative function f (called its bounding function) exists such that

|f(z1, . . . , zl)| ≤ f(z1, . . . , zl)

√∑l

i=1
z2

i . A real number ζ is
said to dominate f relative to real numbers ζ1, . . . , ζl if

ζ > ζ1β(1,k) + . . . + ζlβ(l,k) , k = 1, . . . , N. (3)

To denote that ζ dominates f relative to ζ1, . . . , ζl, we use the
notation ζ � f |(ζ1,...,ζl). It can be shown that the multinomial in
(2) is proper if and only if

∑l

i=1
β(i,k) ≥ 1, k = 1, . . . , N .

Lemma 1: If f(z1, . . . , zl) is a multinomial and ζ � f |(ζ1,...,ζl),
then for all η ≥ 1, and all real numbers z1, . . . , zl,∣∣∣∣f(ηζ1z1, . . . , ηζlzl)

ηζ

∣∣∣∣ ≤ f(|z1|, . . . , |zl|). (4)

Proof of Lemma 1: Using (2) and (3),∣∣∣∣f(ηζ1z1, . . . , ηζlzl)

ηζ

∣∣∣∣ =

∣∣∣∣∣
N∑

k=1

χk

η

∑
l

i=1
ζiβ(i,k)

ηζ

l∏
i=1

z
β(i,k)

i

∣∣∣∣∣
≤

∣∣∣∣∣
N∑

k=1

χk

l∏
i=1

|zi|
β(i,k)

∣∣∣∣∣ (5)

yielding (4). �

The control objective in this paper is to regulate the state x
of system (1) to the origin using dynamic state feedback in the
presence of the uncertain terms φi, φ(i,i+1), and µ. The design
will be carried out under the following assumptions.

Assumption A1: (Controllability of system (1)) A positive con-
stant σ is known such that for all t ≥ 0, x ∈ Rn, and u ∈ R,
|φ(i,i+1)(t, x, u)| ≥ σ > 0 , i = 1, . . . , n − 1 and |µ(t, x, u)| ≥
σ > 0. The sign of each φ(i,i+1), i = 1, . . . , n−1, is independent
of its argument and known. Furthermore, continuous nonnegative
functions φ(i,i+1), i = 1, . . . , n − 1, and µ are known such that
|φ(i,i+1)(t, x, u)| ≤ φ(i,i+1)(x, u) and |µ(t, x, u)| ≤ µ(x).

Assumption A2: The functions φi, i = 1, . . . , n can be bounded
as |φi(t, x, u)| ≤

∑i

j=1
φ(i,j)(t, x, u)|xj | + φ̃i(t, x, u) with

φ(i,j), i = 1, . . . , n, j = 1, . . . , i, and φ̃i, i = 1, . . . , n, being
continuous nonnegative functions. Furthermore,

• proper multinomials fi, i = 1, . . . , n,
• (not necessarily proper) multinomials f(i,j), i = 1, . . . , n −

1, j =1, . . . , i, and f̃i, i = 2, . . . , n−1, and
• continuous nonnegative functions γu and φ(n,j), j =

1, . . . , n,

are known such that1

φ̃i

|φ(1,2)|
≤ fi (|x1|, . . . , |xn|, γu(x)|u|) , i = 1, . . . , n (6)

φ(i,j)√
|φ(i,i+1)||φ(j−1,j)|

≤ f(i,j) (|x1|, . . . , |xn|,γu(x)|u|) ,

i=1, . . . , n−1, j =1, . . . , i (7)

φ(n,j) ≤ φ(n,j)(x, u) , j = 1, . . . , n (8)

|φ(i−1,i)|

|φ(i,i+1)|
≤ f̃i (|x1|, . . . , |xn|, γu(x)|u|) , i = 2, . . . , n−1 (9)

with φ(0,1)
�

= φ(1,2).

Assumption A3: A continuous positive function µ̃(x), a positive
constant µ∗, and a multinomial f̃n are known such that for all
t ≥ 0, x ∈ Rn, and u ∈ R,

µ̃(x)γu(x) ≤ µ∗ (10)
|φ(n−1,n)(t, x, u)|

µ̃(x)|µ(t, x, u)|
≤ f̃n (|x1|, . . . , |xn|, γu(x)|u|) . (11)

Assumption A4: Positive constants qi, i = 1, . . . , n, and a
constant qn+1 exist such that

qi + q2 − q1 � fi|(q1,...,qn+1) , i = 1, . . . , n (12)
qi+1 + qi − qj − qj−1

2
� f(i,j)|(q1,...,qn+1) , i = 2, . . . , n − 1,

j = 2, . . . , i (13)
qi+1+qi+q2−3q1

2
� f(i,1)|(q1,...,qn+1), i=1, . . . , n−1 (14)

qi+1 + qi−1 − 2qi � f̃i|(q1,...,qn+1) , i = 2, . . . , n. (15)

If any of the multinomials among fi, i = 1, . . . , n, are zero, the
corresponding inequalities in (12) can be dropped. Note that none
of the fi can be a non-zero constant since fi, i = 1, . . . , n, are
required to be proper multinomials. If any of f(i,j), i = 1, . . . , n−

1, j = 1, . . . , i, or f̃i, i = 2, . . . , n, are non-zero constants, the
right hand sides of the corresponding inequalities in (13), (14), and
(15) reduce to zero. If any of f(i,j), i = 1, . . . , n−1, j = 1, . . . , i,
are zero, the corresponding inequalities in (13) and (14) can be
dropped. None of the f̃i can be zero since φ(i,i+1), i = 1, . . . , n−
1, are lower bounded in magnitude by σ.

Remark 1: The conditions (12) - (15) form a finite set of strict
linear inequalities. Hence, if Assumption A4 is satisfied, a positive
constant c exists such that the inequalities (12) - (15) also hold
with c subtracted from the left hand side of the inequalities. It will
be seen in Section III that Assumption A4 implies the existence of
a high-gain state scaling that can attenuate system uncertainties.

Remark 2: The decomposition of φi in Assumption A2 allows
considerable freedom in incorporating a term in a known bound
on φi into one of the φ(i,j) or φ̃i terms. For instance, given φ3 =
x1x2 + x2

3, φ3 can be decomposed in a variety of ways including
(a) φ(3,1) = |x2|, φ(3,2) = φ(3,3) = 0, φ̃3 = x2

3; (b) φ(3,1) =

φ(3,3) = 0, φ(3,2) = |x1|, φ̃3 = x2
3; and (c) φ(3,1) = φ(3,2) = 0,

1For notational convenience, we drop the arguments of functions when
no confusion will result.
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φ(3,3) = |x3|, φ̃3 = |x1||x2|. This freedom can be exploited to aid
the feasibility of (12)-(15).

III. A DYNAMIC EXTENSION AND A STATE SCALING

The control input u is designed as

u = rqn+1 µ̃(x)ξn+1 (16)

where ξn+1 is a new state variable with the dynamics

ξ̇n+1 = v − bv
ṙ

r
ξn+1 (17)

with v being the new control input, bv a positive constant, and r a
dynamic scaling parameter. The design of the dynamics of r will
ensure that r(t) ≥ 1 for all t ≥ 0. The control input transformation
(16) and (17) corresponds to a dynamic extension of the state so
that, in the extended system, the bounds on ratios of uncertain
system terms in Assumption A2 are functions of the states x and
ξn+1 and do not involve the new input v.

A state scaling is introduced as

ξi =
xi

rqi
, i = 1, . . . , n ; ξ = [ξ1, . . . , ξn+1]T . (18)

The scaled dynamics can be written in matrix form as

ξ̇ = A(t, x, u, r)ξ + Bv + Φ(t, x, u, r) −
ṙ

r
Dξ (19)

where

B = [0, . . . , 0, 1]T (20)

Φ(t, x, u, r) = [
1

rq1
φ1(t, x, u), . . . ,

1

rqn
φn(t, x, u), 0]T (21)

D = diag(q1, . . . , qn, bv) (22)

and A(t, x, u, r) is the (n + 1) × (n + 1) matrix with (i, j)th

element

A(i,i+1)(t, x, u, r) = rqi+1−qiφ(i,i+1)(t, x, u) , i = 1, . . . , n

A(i,j) ≡ 0, j �= i + 1 , i = 1, . . . , n + 1 (23)

with φ(n,n+1)(t, x, u)
�

= µ̃(x)µ(t, x, u).

Crucial properties of the matrices appearing in the scaled
dynamics are provided in the following results.

Theorem 1: A continuous positive function R(ξ), a 1 × (n +
1) vector function K(x, ξn+1, r), a constant symmetric positive-
definite (n+1)× (n+1) matrix P , and positive constants ν1, ν2,
and ν2 can be found such that2 for all r ≥ R(ξ), and all t ≥ 0,
x ∈ Rn, and ξn+1 ∈ R,

P [A(t, x, u, r) + Q1Φ(t, x, u, r)Q2 + BK(x, ξn+1, r)]

+[A(t, x, u, r) + Q1Φ(t, x, u, r)Q2 + BK(x, ξn+1, r)]T P

≤ −ν1

|φ(1,2)(t, x, u)|

rq1−q2
I (24)

ν2I ≤ PD + DP ≤ ν2I (25)

where Φ(t, x, u, r) is the lower triangular (n+1)×(n+1) matrix
with (i, j)th element equal to rqj−qiφ(i,j)(t, x, u) if 1 ≤ i ≤
n, 1 ≤ j ≤ i, and zero otherwise. Q1 and Q2 are arbitrary (n +
1) × (n + 1) diagonal matrices with each diagonal entry +1 or
−1.

Proof of Theorem 1: Let ρ be any positive constant. Pick

R(ξ) = max

{
1, max

i=1,...,n

{[
f̃i(|ξ1|, . . . , |ξn|, µ∗|ξn+1|)

ρ

] 1
c
}

,

max
i=1,...,n−1,j=1,...,i

{[
f(i,j)(|ξ1|, . . . , |ξn|, µ∗|ξn+1|)

ρ

] 1
c
}}

. (26)

2I denotes an identity matrix of appropriate dimensions.

Define A = A+Q1ΦQ2 and denote by A(i,j) its (i, j)th element.
Using (16), (23), and Assumptions A2 and A3,

|A(i,j)|√
|A(i,i+1)||A(j−1,j)|

≤
f̂(i,j)

r
qi+1+qi−qj−qj−1

2

, i = 2, . . . , n−1,

j = 2,. . . , i

|A(i,1)|√
|A(i,i+1)||A(1,2)|

≤
f̂(i,1)

r
qi+1+qi+q2−3q1

2

, i = 1, . . . , n − 1

|A(i−1,i)|

|A(i,i+1)|
≤

ˆ̃
fi

rqi+1+qi−1−2qi
, i = 2, . . . , n−1. (27)

where the symbols f̂(i,j) and ˆ̃
fi have been used to

denote f(i,j)(r
q1 |ξ1|, . . . , r

qn |ξn|, r
qn+1µ∗|ξn+1|) and

f̃i(r
q1 |ξ1|, . . . , r

qn |ξn|, r
qn+1µ∗|ξn+1|), respectively. Using (12)-

(15), Remark 1, and Lemma 1, it follows, using Definition A1
in the Appendix, that A is dual w-CUDD (ρ) for all r ≥ R(ξ)
with R(ξ) defined in (26). Noting that D is a diagonal matrix
with positive diagonal entries, and applying Theorem 1 in
[19] (also see Theorem 2 in [20] ), the result of Theorem
1 follows. Note that, by Theorem 1 in [19], the choice of
K depends only on the known upper and lower bounds on
φ(i,i+1), i = 1, . . . , n − 1, and the known upper bounds on
φ(n,j), j = 1, . . . , n, and does not require knowledge of the
uncertain functions φ(i,j), i = 1, . . . , n, j = 1, . . . , i, and
φ(i,i+1), i = 1, . . . , n − 1, themselves. Hence, K is a known
function of (x, ξn+1, u, r), and hence of (x, ξn+1, r) by (16).
The choice of P , ν1, ν2, and ν2 depends only on the choice of
ρ which is free to be arbitrarily picked and the signs of φ(i,i+1)

which are known and constant by Assumption A1. Furthermore,
K, P , ν1, ν2, and ν2 do not depend on the diagonal matrices
Q1 and Q2. �

Theorem 2: A continuous positive function R(ξ), a 1 × (n +
1) vector function K(x, ξn+1, r), a constant symmetric positive-
definite (n + 1) × (n + 1) matrix P , and positive constants ν1,
ν2, and ν2 can be found such that for all r ≥ R(ξ), and all
t ≥ 0, x ∈ Rn and ξn+1 ∈ R,

ξT

{
P [A(t, x, u, r) + BK(x, ξn+1, r)]

+[A(t, x, u, r) + BK(x, ξn+1, r)]T P

}
ξ

+2ξT PΦ(t, x, u, r) ≤ −ν1rq2−q1 |φ(1,2)||ξ|
2 (28)

ν2I ≤ PD + DP ≤ ν2I. (29)

Proof of Theorem 2: Let ρ be any positive constant. Obtain R(ξ),
K(x, ξn+1, r), P , ν1, ν2, and ν2 as in Theorem 1. Let

R(ξ) = max

(
R(ξ),

[
4λmax(P )f∗(ξ)

ν1

] 1
c

)
(30)

where λmax(P ) denotes the maximum eigenvalue of P and

f∗(ξ) = (1 + µ∗)

√√√√ n∑
i=1

f
2
i (|ξ1|, . . . , |ξn|, µ∗|ξn+1|) (31)

with f i being the bounding functions of fi, i = 1, . . . , n. Using
Assumption A2 and (21),3

2ξT PΦ ≤ ξT PS(Pξ)ΦS(ξ)ξ + ξT S(ξ)Φ
T

S(Pξ)Pξ

+2λmax(P )|ξ||Φ̃| (32)

where Φ̃ = [φ̃1/rq1 , . . . , φ̃n/rqn , 0]T . Using (6),

|Φ̃(t, x, u, r)| ≤ |φ(1,2)(t, x, u)|
rq2−q1

rc
f∗(ξ)|ξ| (33)

with f∗ given in (31). Invoking Theorem 1 with Q1 = S(Pξ)
and Q2 = S(ξ), and using (24), (30), (32), and (33), we obtain
(28) with ν1 = ν1/2. (29) is obtained directly from (25). As in

3If η ∈ Rnη , S(η) denotes the nη × nη diagonal matrix with ith

diagonal entry being the sign (±1) of ηi. Hence, S(η)η is a vector of
the same dimension as η obtained by replacing each element of η by its
magnitude.

3429



Theorem 1, the choice of K, P , ν1, ν2, and ν2 depends only on the
known bounds on uncertain functions guaranteed in Assumptions
A1-A3 and not the uncertain functions themselves and can be
obtained by a constructive procedure. �

Lemma 2: Given any 1× (n + 1) vector function K(x, ξn+1, r)
and a constant symmetric positive-definite (n+1)×(n+1) matrix
P , a function ∆(x, ξn+1, r) can be found such that for all t ≥
0, r ≥ 1, x ∈ Rn, and ξn+1 ∈ R

ξT

{
P [A(t, x, u, r) + BK(x, ξn+1, r)]

+[A(t, x, u, r) + BK(x, ξn+1, r)]T P

}
ξ

+2ξT PΦ(t, x, u, r) ≤ ∆(x, ξn+1, r)|ξ|2. (34)

Proof of Lemma 2: Using Assumption A1,

ξT [PA+AT P ]ξ

λmax(P )
≤ 2|ξ|2

√√√√ n∑
i=1

[φ(i,i+1)(x, rqn+1 µ̃(x)ξn+1)

rqi−qi+1

]2

(35)

where φ(n,n+1)(x, u) = |µ̃(x)|µ(x). Using Assumption A2,

|Φ(t, x, u, r)| ≤ Φ̂(x, ξn+1, r) where

ˆ
Φ(x, ξn+1, r)

�
=

[
n∑

i=2

i∑
j=2

f2
(i,j)(|x1|, . . . , |xn|, r

qn+1µ∗|ξn+1|)

×φ(i,i+1)(x, rqn+1 µ̃(x)ξn+1)φ(j−1,j)(x, rqn+1 µ̃(x)ξn+1)

+

n∑
i=1

f2
(i,1)(|x1|, . . . , |xn|, r

qn+1µ∗|ξn+1|)

×φ(i,i+1)(x, rqn+1 µ̃(x)ξn+1)φ(1,2)(x, rqn+1 µ̃(x)ξn+1)

+

n∑
j=1

φ
2
(n,j)(x, rqn+1 µ̃(x)ξn+1)

] 1
2

. (36)

Using (32), (33), and (36),

2ξT PΦ ≤

[
2λmax(P )

ˆ
Φ(x, ξn+1, r)

+2λmax(P )φ(1,2)(x, rqn+1 µ̃(x)ξn+1)
rq2−q1

rc
f∗(ξ)

]
|ξ|2. (37)

Using the inequalities (35) and (37), (34) follows with

∆(x, ξn+1, r) = 2λmax(P )

√√√√ n∑
i=1

[φ(i,i+1)(x, rqn+1 µ̃(x)ξn+1)

rqi−qi+1

]2

+2λmax(P )|K(x, ξn+1, r)| + 2λmax(P )
ˆ
Φ(x, ξn+1, r)

+2λmax(P )φ(1,2)(x, rqn+1 µ̃(x)ξn+1)
rq2−q1

rc
f∗(ξ). (38)

IV. CONTROLLER DESIGN

The control input v is designed as
v = K(x, ξn+1, r)ξ (39)

and the dynamics of r are designed as
ṙ =

r

ν2

q
(
R(ξ) − r

)
[∆(x, ξn+1, r) + ∆0] ; r(0) ≥ 1 (40)

with K and R obtained as in Theorem 2 and ∆ as in Lemma 2.
∆0 is any positive constant and q is any continuous nonnegative
function such that

q(b) =

{
1 , b > 0
0 , b ≤ −εr

(41)

with εr being any positive constant. From the dynamics (40), r(t)
is a monotonically non-decreasing function of time. Hence, r(t) ≥
1 for all time t.

The overall dynamic controller designed for the control input u
is given by (16), (17), (39), and (40).

V. STABILITY ANALYSIS

The stability of the closed-loop system can be demonstrated
using the Lyapunov function V = ξT Pξ where P is the symmetric
positive-definite (n+1)× (n+1) matrix obtained in Theorem 2.
Using (19), (29), and (40),

V̇ ≤ ξT

{
P [A + BK] + [A + BK]T P

}
ξ + 2ξT PΦ

−q
(
R(ξ) − r

) [
∆(x, ξn+1, r) + ∆0

]
|ξ|2. (42)

We consider the two cases r < R(ξ) and r ≥ R(ξ). In the case
that r < R(ξ), the definition (41) of q implies that q(R(ξ)−r) =
1. Using Lemma 2,

V̇ ≤ −∆0|ξ|
2. (43)

If r ≥ R(ξ), using Theorem 2, (42) reduces to
V̇ ≤ −ν1rq2−q1 |φ(1,2)(t, x, u)||ξ|2. (44)

From (43) and (44), V (t) is a non-increasing function of time over
the maximal interval of existence of solutions [0, tf ) implying that
ξ(t) is uniformly bounded on [0, tf ). Noting from (40) and (41)
that ṙ = 0 if r ≥ R(ξ) + εr , the boundedness of ξ implies the
boundedness of r. Also, from (40), r(t) ≥ 1 for all t ∈ [0, tf ).
Therefore, xi = rqiξi, i = 1, . . . , n, and hence the control input
u are uniformly bounded over [0, tf ). This implies that tf = ∞
and solutions exist for all time with all closed-loop signals being
uniformly bounded. By the above arguments, r(t) ∈ [1, r] ∀t ≥ 0
with r being some positive constant. From (43) and (44), we obtain
using Assumption A1 that

V̇ ≤ −
1

λmax(P )
min(∆0, ν1σ, ν1σrq2−q1 )V. (45)

The inequality (45) implies that V (t) and hence |ξ(t)| go to zero
exponentially as t → ∞. Since |xi| ≤ rqi |ξi|, the states x(t) and
the control input u(t) also go to zero exponentially.

The stability properties of the closed-loop system are summa-
rized in the following theorem.

Theorem 3: Under Assumptions A1-A4, the proposed dy-
namic compensator given by (16), (17), (39), and (40) guaran-
tees global boundedness of all closed-loop states. Furthermore,
limt→∞ xi(t) = 0, i = 1, . . . , n, limt→∞ ξn+1(t) = 0, and
limt→∞ u(t) = 0.

VI. APPLICATION TO STRICT-FEEDBACK SYSTEMS

Systems for which fi, f(i,j), and f̃i have a lower triangular
structure given by

fi = fi(|x1|, . . . , |xi−1|) , i = 1, . . . , n

f(i,j) = f(i,j)(|x1|, . . . , |xi|) , i = 1, . . . , n − 1, j = 1, . . . , i

f̃i = f̃i(|x1|, . . . , |xi|) , i = 2, . . . , n (46)

and φ(i,i+1), i = 1, . . . , n − 1, and φ(n,j), j = 1, . . . , n, do not
depend on the control input u form a class of strict-feedback
systems. In this case, γu(x) ≡ 0 and (10) is trivially satisfied.
Also, (11) can be satisfied with

µ̃(x) =
φ(n−1,n)(x)

σ
, f̃n = 1. (47)

Hence, Assumption A3 is automatically satisfied for strict-
feedback systems. In fact, since fi and f̃i do not involve the control
input u, the dynamic extension (16) and (17) is not needed and
Assumption A3 (which is needed specifically to enforce w-CUDD
structure with the dynamic extension and to handle the dependence
of fi and f̃i on u) can be eliminated altogether. If the dynamic
extension (16) and (17) is not introduced, the scaled state vector
is defined as ξ = [ξ1, . . . , ξn]T with ξi, i = 1, . . . , n, given by
(18) and using results analogous to Theorem 2 and Lemma 2, the
controller is designed as u = K(x, r)ξ with the dynamics of r
given by (40).

The following theorem guarantees that constants qi, i =
1, . . . , n+1, can be obtained to satisfy the inequalities (12) - (15)
given any multinomials fi, i = 1, . . . , n, f(i,j), i = 1, . . . , n −
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1, j = 1, . . . , i, and f̃i, i = 2, . . . , n, of the lower triangular
structure (46).

Theorem 4: Given any multinomials fi(z1, . . . , zi−1), i =
1, . . . , n, f(i,j)(z1, . . . , zi), i = 1, . . . , n − 1, j = 1, . . . , i, and
f̃i(z1, . . . , zi), i = 2, . . . , n, positive constants qi, i = 1, . . . , n+
1, can be found such that

qi + q2 − q1 � fi|(q1,...,qi−1) , i = 1, . . . , n (48)
qi+1 + qi − qj − qj−1

2
� f(i,j)|(q1,...,qi)

, i = 2, . . . , n−1,

j = 2, . . . , i (49)
qi+1 + qi + q2 − 3q1

2
� f(i,1)|(q1,...,qi)

, i=1, . . . , n−1 (50)

qi+1 + qi−1 − 2qi � f̃i|(q1,...,qi)
, i = 2, . . . , n. (51)

Proof of Theorem 4: Pick any q1 > 0. The constants q2, . . . , qn+1

can be picked recursively. Assuming that constants q1, . . . , qi have
been picked, pick qi+1 such that

qi+1 > max

{
0, q1−q2+f̂i+1, max

j=2,...,i
{qj +qj−1−qi+2f̂(i,j)},

3q1 − q2 − qi + 2f̂(i,1), 2qi − qi−1 +
ˆ̃
fi

}
(52)

where f̂i+1, f̂(i,j), and ˆ̃
fi are given by

f̂i+1 = inf{θ ∈ R|θ � fi+1|(q1,...,qi)
}

f̂(i,j) = inf{θ ∈ R|θ � f(i,j)|(q1,...,qi)
}

ˆ̃
fi = inf{θ ∈ R|θ � f̃i|(q1,...,qi)

} (53)

with fn+1 ≡ 1. The sequence q1, . . . , qn+1 generated by this
recursive algorithm satisfies inequalities (48)-(51). �

Remark 3: Theorem 4 shows that Assumption A4 is always
satisfied for strict-feedback systems. Hence, the design for strict-
feedback systems requires only Assumptions A1 and A2. Assump-
tion A2 can be further weakened using the technique proposed in
[19] to include arbitrary (not necessarily polynomially bounded)
continuous nonnegative functions of x1 as multiplicative factors in
the bounds (6)-(9). In [19], the state x1 is not scaled and appears as
a separate x2

1 term in the Lyapunov function along with a quadratic
ξT Pξ term with ξ = [(x2 + ζ(x1))/rq2 , x3/rq3 , . . . , xn/rqn ]
where the design freedom ζ which generates a cros term in the
Lyapunov function derivative is introduced to handle the additional
x1 dependent terms in the bounds on uncertain functions. The
approach in this paper, however, has the advantage that it provides
a unified design for general nonlinear systems including both lower
triangular and upper triangular systems.

VII. APPLICATION TO FEEDFORWARD SYSTEMS

Systems for which fi and f̃i, i = 1, . . . , n, have an upper
triangular structure

fi = fi(|xi+2|, . . . , |xn|, γu(x)|u|) , i = 1, . . . , n−2

f̃i = f̃i(|xi+2|, . . . , |xn|, γu(x)|u|) , i = 2, . . . , n−2

fn−1 = fn−1(|xn|, γu(x)|u|) , fn ≡ 0

f̃i = f̃i(|xn|, γu(x)|u|) , i = n − 1, n (54)

and f(i,j) ≡ 0, i = 1, . . . , n, j = 1, . . . , i, form a class of
feedforward systems. Unlike the case of strict-feedback systems
considered in Section VI, the triangularity in (54) is not sufficient
to guarantee solvability of the inequalities in Assumption A4.
A particular case in which solvability can be guaranteed and an
explicit solution for q1, . . . , qn+1 obtained is provided in Theorem
5. The conditions imposed in Theorem 5 essentially require that
|xi+2|, . . . , |xn−1| appear linearly in the multinomials fi, but
allow |xn| and γu(x)|u| to appear with arbitrary powers in fi

and f̃i. In other cases, Assumption A4 can be numerically tested
for feasibility. Since the inequalities in Assumption A4 are all
linear in q1, . . . , qn+1, it is numerically straightforward to check
feasibility and obtain a solution when the inequalities are feasible.

In the example in Section VIII, a system which is neither strict-
feedback nor feedforward is considered and a numerical solution
for the inequalities in Assumption A4 is provided.

Theorem 5: Given multinomials fi, i = 1, . . . , n, and f̃i, i =
2, . . . , n, of the form

fi(zi+2, . . . , zn+1) = f(i,n)(zn)f(i,n+1)(zn+1)

n+1∑
j=i+2

|zj | ,

i = 1, . . . , n − 2 (55)
fn−1(zn, zn+1) = f(i,n)(zn)f(i,n+1)(zn+1)|zn+1| (56)

f̃i(zn, zn+1) = f̃(i,n)(zn)f̃(i,n+1)(zn+1) , i = 2, . . . , n (57)

with f(i,n), f(i,n+1), f̃(i,n), and f̃(i,n+1) being multinomials (not
necessarily proper), positive constants q1, . . . , qn, and a constant
qn+1 can be found such that

qi + q2 − q1 � fi|(qi+2,...,qn+1) , i=1, . . . , n−2 (58)

qn−1 + q2 − q1 � fn−1|(qn,qn+1) (59)

qi+1 + qi−1 − 2qi � f̃i|(qn,qn+1) , i = 2, . . . , n. (60)

Proof of Theorem 5: Defining
qi = (n − i) + a(n − i)2 , i = 1, . . . , n − 1

qn+1 = −1 + a ; a ≤
1

2n + 1
, (61)

we have the relations
qi + q2 − q1 = qi+2 + 1 + a(2n − 4i − 1)

≥ qi+2+4a , i = 1, . . . , n−3

qn−2 + q2 − q1 ≥ 8a

qn−1 + q2 − q1 ≥ qn+1 + 4a

qi+1 + qi−1 − 2qi = 2a , i = 2, . . . , n − 2

qn−2 − 2qn−1 = 2a

qn+1 + qn−1 = 2a (62)

so that
qi+q2−q1−ε � fi|(qi+2,...,qn−1,0,qn+1), i=1, . . . , n−3

qi+q2−q1−ε � fi|(0,qn+1) , i = n − 2, n − 1

qi+1+qi−1−2qi−ε � f̃i|(0,qn+1) , i = 2, . . . , n − 1

qn+1+qn−1−ε � f̃n|(0,qn+1) (63)

for any positive constant ε < 2a and any positive qn. Choose qn

to be a small enough positive constant such that
ε − qn � f(i,n)|qn , i = 1, . . . , n − 1

ε − qn � f̃(i,n)|qn , i = 2, . . . , n − 1

ε − 3qn � f̃(n,n)|qn . (64)

Such a choice of qn is always possible for any multinomials f(i,n)

and f̃(i,n) since ε > 0. This choice of qn along with the choice
of q1, . . . , qn−1, qn+1 in (61) satisfies inequalities (58)-(60). �

Remark 4: The conditions imposed in Theorem 5 essentially
require that |xi+2|, . . . , |xn−1| appear linearly in the multinomials
fi, but allow |xn| and γu(x)|u| to appear with arbitrary powers.
Also, the multinomials f̃i are allowed to involve arbitrary powers
but are required to depend only on |xn| and γu(x)|u|. Note that
since fn ≡ 0, the inequalities in (58) and (59) for i = n is not
required.

VIII. AN ILLUSTRATIVE EXAMPLE

Consider the fifth order system
ẋ1 = x2 + x2

3

ẋ2 = (1 + x4
1x2

2)x3

ẋ3 = x4

ẋ4 = (1 + x2
1x4

2)x5 + x3
3|u|

1
5 + x5

2

ẋ5 = u + x4
2x3

3. (65)

System (65) is not in either a lower triangular (strict-feedback)
form or an upper triangular (feedforward) form. The results in the
literature on controller designs for triangular systems can not be
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applied to systems such as (65). However, the design proposed in
this paper can be applied to system (65). System (65) is of the
form (1) with φ(1,2) = 1, φ(2,3) = 1+x4

1x
2
2, φ(3,4) = 1, φ(4,5) =

1 + x2
1x

4
2, µ = 1, φ1 = x2

3, φ2 = 0, φ3 = 0, φ4 = x3
3|u|

1
5 + x5

2,
and φ5 = x4

2x
3
3. Decomposing φ1, . . . , φ5 with φ(i,j) = 0, i =

1 . . . , 5, j = 1, . . . , i, and φ̃i ≡ |φi|, i = 1, . . . , 5, Assumptions
A1, A2, and A3 are satisfied with σ = 1, φ(i,i+1) ≡ φ(i,i+1), i =

1, . . . , 4, µ ≡ µ, γu = µ̃ = µ∗ = 1, f1 = x2
3, f2 = f3 = 0,

f4 = |x3|
3|u|

1
5 + |x2|

5, f5 = x4
2|x3|

3, f̃2 = 1, f̃3 = 1 + x4
1x

2
2,

f̃4 = 1, f̃5 = 1+x2
1x

4
2, f(i,j) = 0, i = 1, . . . , 4, j = 1, . . . , i, and

φ(5,j) = 0, j = 1, . . . , 5. For system (65), the set of inequalities
in Assumption A4 reduces to

q1 + q2 − q1 ≥ 2q3

q4 + q2 − q1 ≥ 3q3 + 0.2q6

q4 + q2 − q1 ≥ 5q2

q5 + q2 − q1 ≥ 4q2 + 3q3

q3 + q1 − 2q2 ≥ 0

q4 + q2 − 2q3 ≥ 4q1 + 2q2

q5 + q3 − 2q4 ≥ 0

q6 + q4 − 2q5 ≥ 2q1 + 4q2. (66)

Positive constants q1, . . . , q5, and a constant q6 to satisfy (66) are
obtained numerically as

q1 = 6 q2 = 3 q3 = 1
q4 = 30 q5 = 60 q6 = 115.

(67)

Hence, the system (65) satisfies Assumptions A1-A4 and the
proposed control design technique is applicable to system (65).

As noted in Remark 2, the decomposition |φi| ≤∑i

j=1
φ(i,j)|xj | + φ̃i in Assumption A2 allows flexibility in

assigning the terms in the bound on φi into one of the φ(i,j) or φ̃i.
This freedom can be utilized to aid the feasibility of the system of
inequalities in Assumption A4. To illustrate this, consider system
(65) with an additional term x2

1x
2
2x

2
4 added to the x4 dynamics

in (65), i.e., with φ4 changed to φ4 = x3
3|u|

1
5 + x5

2 + x2
1x

2
2x

2
4. If

φ4 is decomposed with φ(4,j) ≡ 0, j = 1, . . . , 4, and φ̃4 = |φ4|,
Assumption A2 is satisfied with f4 = |x3|

3|u|
1
5 +|x2|

5+x2
1x

2
2x

2
4.

The term x2
1x

2
2x

2
4 in f4 results in the introduction of the additional

inequality
q4 + q2 − q1 > 2q1 + 2q2 + 2q4 (68)

into the system of inequalities (66). The system of inequalities
given by (66) and (68) does not admit a solution with positive
q1, . . . , q5. However, note that, in the solution (67) for (66), q1

and q2 are much smaller than q4. This suggests that φ4 should be
decomposed as |φ4| ≤ φ(4,4)|x4| + φ̃4 with φ(4,4) = x2

1x
2
2|x4|

and φ̃4 = |x3|
3|u|

1
5 + |x2|

5. Assumption A2 can be satisfied with
f(4,4) = x2

1x
2
2|x4| which from (13) yields the inequality
q5 + q4 − q4 − q3

2
≥ 2q1 + 2q2 + q4. (69)

The system of inequalities given by (66) and (69) is feasible and
a solution is given by

q1 = 6 q2 = 3 q3 = 1
q4 = 69 q5 = 177 q6 = 310.

(70)

Furthermore, noting that φ(4,5) = 1 + x2
1x

4
2 and φ(2,3) = 1 +

x4
1x

2
2 and that f(4,4) is required to be an upper bound on the ratio

of φ(4,4) and
√

φ(4,5)φ(2,3), the bound f4 can be sharpened to
f(4,4) = |x1||x4| so that the right hand side of (69) is replaced
by q1 + q4. This, as could be expected, has the effect of reducing
q4, . . . , q6 so that Assumption A4 is satisfied with q1, q2, and q3

as in (70), q4 = 45, q5 = 105, and q6 = 190.

IX. APPENDIX

Definition A1 [20]: Let ρ be a positive constant. An n×n matrix
A is said to be dual w-CUDD(ρ) if the following hold:
1) A is in lower Hessenberg form, i.e., A(i,j) ≡ 0 for j ≥ i + 2.

2) The upper diagonal elements of A are non-zero, i.e., A(i,i+1) �=
0, i = 1, . . . , n − 1.
3) The inequalities

|A(i,j)|√
|A(i,i+1)||A(j−1,j)|

≤ ρ , i = 2, . . . , n−1, j = 2,. . . , i

|A(i,1)|√
|A(i,i+1)||A(1,2)|

≤ ρ , i = 1, . . . , n − 1

|A(i−1,i)|

|A(i,i+1)|
≤ ρ , i = 2, . . . , n − 1 (71)

are satisfied.
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