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Abstract— A new approach is proposed in this paper to
study robust stabilization of a class of sampled-data systems
with non-linear uncertainties. It is assumed that the systems
are closed via a network channel which may be subject to
data packet dropout and communication delays. Such net-
worked sampled-data systems are modelled as continuous-time
nonlinear systems with delayed input. Sufficient conditions
on the existence of stabilizing state feedback controllers are
established in terms of linear matrix inequalities (LMIs). The
maximum bound on the nonlinearity can be computed by
solving a constrained convex optimization problem. Moreover,
the upper bound on the delayed input can be obtained
by solving a quasi-convex optimization problem. Finally, a
simulation example is presented to illustrate the efficiency and
feasibility of our proposed approach.

Keywords: LMIs, sampled-data systems, non-linear perturbations,
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I. INTRODUCTION

Because of the advances in digital systems and commu-

nication networks, more and more control engineers would

like to use a real-time communication channel interfaced

to a digital system to exchange information and to com-

plete the control task. Compared with conventional point-to

point control systems, the advantages of networked control

systems (NCSs) are less wiring, lower install cost as well

as greater agility in diagnosis and maintenance. Examples

include industrial automation, intelligent vehicle systems

and advanced aircraft and spacecraft, etc. However, the in-

sertion of communication channel to sampled-data systems

makes the analysis and design of the closed-loop system

complex. Conventional sampled-data systems’ theories with

such assumptions as non-delayed sensing and determinism

must be revaluated before they can be applied to NCS [17],

[13].

Networked-induced delays and Packet losses typically

have negative effects on the NCSs’ stability and perfor-

mance. So far, different methodologies have been formu-

lated to deal with the problem of network delays. An

augmented state vector method is proposed in [13] to

control a linear system over a periodic delay network.

Queuing mechanisms are developed in [4], [10], which

utilize some deterministic or probabilistic information of

NCSs for control purpose. Random delays are discussed

in [12] via an optimal stochastic control methodology. See

also [3], [8] and the references therein for related works.

This work is supported by the National Natural Science Foundation of
China under grants (No. 10372002 and No. 60274001), the National Key
Basic Research and Development Program (No. 2002CB312200).

The authors are with Intelligent Control Laboratory Center for Systems
and Control Department of Mechanics and Engineering Science Peking
University, Beijing 100871, P. R. China. longwang@pku.edu.cn

However, no method has been given in the references above

on how to estimate the maximum allowable value of the

network-induced delays that preserves the stability of NCSs.

Packet losses often happen due to link failure or packets

are purposefully dropped in order to avoid congestion or

guarantee the most recent data to receiver. An augmented

state space method is developed to deal with the problem

of data packet dropout [18], which has not considered the

effect of networked-induced delay. The performance of real-

time NCSs with data dropout is discussed in [9]. Using

an uncertainty threshold principle, [1] presents a general

framework for stability analysis of NCSs in the presence of

packet losses. [17] models NCSs with data packet dropout

and delays as switched linear systems and presents sufficient

conditions on the stabilisation of the NCSs, whose results

can only be applied to the NCSs with constant transmission

delays. However, their approaches do not work in the case

with nonlinear perturbations.

Motivated by recent research on NCSs and nonlinear

perturbations [14], [15], [19], we will investigate the robust

stabilization problem for a class of sampled-data systems

with nonlinear uncertainties. The only information about

the nonlinearity is that it satisfies a quadratic constraint. We

are particularly interested in the case that the control loops

are realized via a real-time communication channel which

may subject to data packet dropout and communication

delays. For simplicity, we consider the setup with a clock-

driven sensor, and both the controller and the actuator are

combined into one event-driven node.

Because data packet dropout, transmission delays and

nonlinear uncertainties might be potential sources to the in-

stability and poor performance of NCSs, this paper consid-

ers stabilization of such NCSs. The uncertain sampled-data

systems with data packet dropout and transmission delays

are modelled as nonlinear systems with time-varying input

delay, which might be subject to fast time-varying. There

are two main methods to deal with linear systems with

time-varying delays: one is the Krasovskii-based method

and the other is the Razumikhin-based method. Lyapunov-

Razumikhin function method is the main approach to deal-

ing with the stability issue without any restrictions on the

derivative of the delay, which usually lead to conservative

results, see e.g. [7]. Recently, for the first time [5] has used

Lyapunov-Krasovskii technique to deal with the case that

the delay part violates the condition τ̇(t) < 1. [6] has applied

this technique to ordinary sampled-data systems which has

been modelled as linear continuous-time systems with time-

varying input delays under the constraint τ̇(t) = 1. However,

to obtain the stabilizing controller in terms of linear matrix

inequalities (LMIs) the method presented in [6] must first fix

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

FrA01.3

3421



� Plant
x(t)

�
ST
�network channel

���

�x̄(t)
Bu f f er�F

�
HT

Fig. 1. A sampled-data system closed via an network channel

a tuning parameter or use an iterative algorithm. Moreover,

their approach does not work in the case with nonlinear

uncertainties. In this paper, we propose an approach to

construct a stabilizing linear constant feedback law in terms

of LMIs where there is no tuning of parameters or iterative

algorithm involved. An estimation of the upper bound on

the nonlinearity can be obtained with the computation of a

convex optimization problem. Also, the upper bound of the

delay function which is related to data packet dropout and

communication delays can be calculated directly by solving

a generalized eigenvalue problem using the efficient LMI

toolbox.

The paper is organized as follows. Section II models an

uncertain sampled-data system with data packet dropout

and delays as a nonlinear continuous-time system with

time-varying input delays. Section III develops sufficient

conditions on the stabilization of such systems; linear

constant feedback laws can be formulated in terms of LMI.

Section IV presents a simulation example to illustrate the

efficiency and feasibility of our proposed approach. Section

V concludes this paper.

Notation: In this paper, R is the set of all real numbers, Rn

is the set of all n-tuples of real numbers. AT and A−1 denote

the transpose and the inverse of a matrix A, respectively.

A > 0 (A < 0) means that A is positive definite (negative

definite). * represents blocks that are readily inferred by

symmetry and Im denotes the unit matrix with m rows and

m columns. Z+ denotes the set of non-negative integer and

R+ is the set of non-negative real number.

II. Problem formulation
The state-space model of nonlinear sampled-data system

shown in Fig. 1 consists of a continuous-time plant

ẋ(t) = Ax(t)+Bu(t)+h(t,x(t)), (1)

and a piecewise constant controller

u(t) = Fx̄(tk), t ∈ [tk, tk+1), k = 1,2, · · · , (2)

which are connected via a network channel. x(t) ∈ Rn,

u(t) ∈ Rm are the plant state and the plant input, respec-

tively. F is the state feedback gain matrix to be designed,

A, B are known real constant matrices with appropriate

dimensions. It is assumed that the pair (A, B) is stabilizable,

the sampling period is a positive scalar T and tk is the

sampling instant. We insert a sampler ST and a zero order

hold HT in the loop as in Fig. 1. The sampled value

will be transmitted through a network channel and the

successfully transmitted value will be registered in a buffer.

x̄(tk)∈Rn is the output information of the buffer which will

be used to construct the controller. h : R+×Rn → Rn is the

nonlinear uncertainties of the plant. We assume that h(t,x)
is a piecewise-continuous nonlinear function in x, satisfying

h(0) = 0 and the quadratic constraint condition

hT (t,x(t))h(t,x(t)) ≤ α2xT (t)HT Hx(t), (3)

where α > 0 is the bounding parameter on the uncertain

function h and H is a constant matrix. Also, we assume

that x = 0 is the only equilibrium of the system (1)–(2).

Note that constraint (3) is equivalent to[
x
h

]T [ −α2HT H 0

0 I

][
x
h

]
≤ 0. (4)

For any given H, we define the set

Hα = {h : Rn+1 → Rn|hT (t,x(t))h(t,x(t)) ≤
α2xT (t)HT Hx(t)for all (t,x) ∈ R+ ×Rn}. (5)

We first consider the effect of data packet dropout on

the plant. Packet losses often happen due to link failure

or packets are purposefully dropped in order to avoid

congestion or guarantee the most recent data to receiver.

The output of the buffer can be described as follows:

The plant (1) with no packet dropout at time tk: x̄(tk) =
x(tk);

The plant (1) with one packet dropout at time tk: x̄(tk) =
x(tk −T );

...

The plant (1) with d(k) packets dropout at time tk: x̄(tk) =
x(tk −d(k)T ).
The quantity of dropped packets is accumulated from the

latest time when x̄(tk) has been updated.

Then, we consider the delay effect. We denote the

communication delays as τs(t). Because of the delays, It

might happen that more than one sensor messages arrive

at the buffer of the controller at the same sampling period.

Then the most fresh message will be used to construct the

controller, the rest will be discarded.

Combining the effects of data packet dropout and com-

munication delays, the input of the controller can be given

as

x̄(tk) = x(tk −d(k)T − τs(t)).

From the above analysis, the closed-loop system with the

effects of packet loss and delays can be given by

ẋ(t) = Ax(t)+BFx(tk −d(k)T − τs(t))+h(t,x(t)),

for t ∈ [tk, tk+1). Let τ(t) = t − tk + d(k)T + τs(t), then the

system can be expressed as:

ẋ(t) = Ax(t)+BFx(t − τ(t))+h(t,x(t)), t ∈ [tk, tk+1). (6)
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The quantity d(k) ∈ Z+ may vary with time t and it is

assumed that

0 ≤ τ(t) = t − tk +d(k)T + τs(t) ≤ T +d(k)T + τs(t) ≤ τ̄,
(7)

for t ∈ [tk, tk+1), where τ̄ is a positive scalar.

In this way, the closed-loop system (1)–(2) with plant

uncertainty, data packet dropout and communication delays

is modelled as the nonlinear continuous-time system (6)

with time-varying delays, and this enables us to apply the

theory of delay systems to the analysis and design of such

sampled-data systems.

It can be seen that the time-varying delay function τ(t) =
t − tk +d(k)T +τs(t) is piecewise-linear with the derivative

of τ(t) maybe larger than one.

Remark 1: In this paper, we present the piecewise-

constant control law as a continuous-time one and deal

with sampled-data systems in the continuous-time domain,

instead of discretizing the plant (1), thus the inter-sample

behavior is taken into account.

Our major objective is to design linear constant feedback

laws to stabilize this type of systems and, at the same time,

maximize the nonlinear bound or maximize the upper bound

of the delay function τ(t) (relate to data packet dropout and

communication delays of the original system (1)–(2)) which

does not violate the stability of the closed-loop system (1)–

(2).

III. SAMPLED-DATA STABILIZATION OF AN NCS

In this section, an LMI approach will be developed to

solve the stabilization problem formulated in the previous

section.

Now, we introduce the definition of robust stability.

Definition 1: The system (6) with a state feedback gain

F is robustly stable with degree α if the equilibrium x = 0

is globally asymptotically stable for all h(t,x(t)) ∈ Hα and

delay function τ(t) satisfies condition (7).

The following lemma will be used in the proof of our

main results.

Lemma 1: [11] (Moon’s inequality) For any a ∈
Rna , b ∈ Rnb , N ∈ Rnb×na , R ∈ Rna×nb , Y ∈ Rna×nb , Z ∈
Rnb×nb , the following holds:

−2bT Na ≤
[

a
b

]T [
R Y −NT

Y T −N Z

][
a
b

]
,

where [
R Y

Y T Z

]
≥ 0.

From the previous section, the NCS (1)–(2) with data

packet dropout and communication effects can be modelled

as nonlinear delay system (6). To study robust stabilization

problem of the NCS (1)–(2), we first study robust stability

problem of the system (6).

Theorem 1: Given scalars τ̄ > 0, α > 0 and a gain matrix

F , the system (6) is stable with degree α for all τ(t) ≤ τ̄

if there exist matrices P̃1 > 0, P̃2, P̃3, Z̃1, Z̃2, Z̃3, and R̃ > 0

satisfying⎡
⎣ Λ̃+ τ̄Z̃ +

[
α2HT H 0

0 τ̄R̃

]
P̃T

[
0

I

]

∗ −I

⎤
⎦ < 0, (8)

and [
R̃ [0 FT BT ]P̃
∗ Z̃

]
≥ 0, (9)

where

Λ̃ = P̃T
[

0 I
A+BF −I

]
+

[
0 AT +FT BT

I −I

]
P̃,

P̃ =

[
P̃1 0

P̃2 P̃3

]
, Z̃ =

[
Z̃1 Z̃2
∗ Z̃3

]
.

Proof: We present (6) in an equivalent descriptor form

[6]

ẋ(t) = y(t),
0 = −y(t)+Ax(t)+BFx(t − τ(t))+h(t,x(t)),

(10)

or equivalently

ẋ(t) = y(t),

0 =

⎧⎨
⎩

−y(t)+Ax(t)+Bu(t)+h(t,x(t)), if t ∈ [0, τ̄),
−y(t)+(A+BF)x(t)−BF

∫ t
t−τ(t) y(s)ds

+h(t,x(t)), if t ≥ τ̄,
(11)

which is valid in the case of piecewise-continuous delay

τ(t) for t ≥ 0. Given a matrix F and initial condition x(t) =
φ(t) (t ∈ [−τ̄,0]), where φ is a continuous function, x(t)
satisfies (6) for t ≥ 0 iff it satisfies (11).

We use the following Lyapunov-Krasovskii functional

V (t) = sT (t)EPs(t)+

∫ 0

−τ̄

∫ t

t+θ
yT (l)Ry(l)dldθ , (12)

where

s(t) =

[
x(t)
y(t)

]
, E =

[
In 0

0 0

]
, P =

[
P1 0

P2 P3

]
, R > 0,

which satisfies the following inequalities:

a|x(t)|2 ≤V (t) ≤ b sup
s∈[−τ̄,0]

|s(t + s)|2, a > 0, b > 0.

Note that

sT (t)EPs(t) = x(t)T P1x(t).

Thus, differentiating the first term of (12) with respect to t,
we have

d
dt
{sT (t)EPs(t)} = 2xT (t)P1x(t) = 2sT (t)PT

[
ẋ(t)

0

]
.

(13)

Substituting in the right-hand side of (13) by the expressions

for ẋ and 0 in (11), we obtain

dV (t)
dt = sT (t)Λs(t)+η1 +2sT (t)PT

[
0

I

]
h(t,x(t))

+τ̄y(t)Ry(t)− ∫ 0
−τ̄ yT (t +θ)Ry(t +θ)dθ ,

(14)
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where

Λ = PT
[

0 I
A+BF −I

]
+

[
0 AT +FT BT

I −I

]
P,

η1 = −2sT PT
[

0

BF

]∫ t

t−τ(t)
y(s)ds.

Taking N = PT
[

0

BF

]
, b = s(t), a = y(s), we obtain from

Lemma 1 that

η1 ≤
∫ t

t−τ(t)

[
y(s)
s(t)

]T [
R Y −NT

Y T −N Z

][
y(s)
s(t)

]
ds,

where R, Y, Z are constant matrices with appropriate di-

mensions satisfying [
R Y

Y T Z

]
≥ 0. (15)

Choosing Y = [0 FT BT ]P, we find

η1 ≤
∫ 0

−τ̄
yT (t + s)Ry(t + s)ds+ τ̄sT (t)Zs(t).

Then, we have

dV (t)
dt

≤ sT (t)(Λ+ τ̄Z +

[
0 0

0 τ̄R

]
)s(t)

+2sT PT
[

0

I

]
h(t,x(t))

= W (t)T ΩW (t),

where

W (t) =

[
s(t)
h(t,x(t))

]
,

Ω =

⎡
⎣ Λ+ τ̄Z +

[
0 0

0 τ̄R

]
PT

[
0

I

]

∗ 0

⎤
⎦ .

Since a sufficient condition on the stability of the system

(6) is
dV (t)

dt < 0, we require

W (k)T ΩW (k) < 0. (16)

By the well-known S-procedure [16], inequality (16) with

constraint (4) is equivalent to the existence of matrices P1 >
0, P2, P3, Z1, Z2, Z3, R > 0 and a scalar ε ≥ 0 such that⎡

⎣ Λ+ τ̄Z +

[
εα2HT H 0

0 τ̄R

]
PT

[
0

I

]

∗ −εI

⎤
⎦ < 0, (17)

and [
R [0 FT BT ]P
∗ Z

]
≥ 0. (18)

It is well known that minimization under non-strict LMI

constraints gives the same result as minimization under

strict LMI constraints when both strict and non-strict LMI

constraints are feasible [2]. This is true for (17)–(18)

because if there is a solution for ε = 0 there is a solution

for some ε > 0 and sufficiently small α . Thus we can

substitute ε > 0 for ε ≥ 0 in (17)–(18). Therefore (17)–(18)

are equivalent to the existence of matrices P̃1 := P1/ε >
0, P̃2 := P2/ε, P̃3 := P3/ε, R̃ := R/ε > 0, Z̃ := Z/ε such

that (8)–(9) hold.

We introduce another important definition.

Definition 2: The control law of (2) robustly stabilize

(1) with degree α if there exists a state feedback gain F
such that the closed-loop system (1)–(2) is asymptotically

stable for all h(t,x(t))∈Hα and delay function τ(t) satisfies

condition (7).

Then, we pay our attention to design a linear constant

feedback law such that the NCS (1)–(2) with the effects

of data packet dropout and communication delays is stable.

Theorem 2: Given a scalar τ̄ > 0, the control law of (2)

robustly stabilize (1) with degree α = 1/
√γ for all τ(t)≤ τ̄

if there exist matrices R̄ > 0, Q1 > 0, Q2, Q3, Z̄1, Z̄2, Z̄3, Ȳ
and a scalar γ > 0 such that⎡

⎢⎢⎢⎢⎣

Q2 +QT
2 + τ̄Z̄1 Q3 −QT

2 +Q1AT + Ȳ T BT + τ̄Z̄2
∗ −QT

3 −Q3 + τ̄Z̄3
∗ ∗
∗ ∗
∗ ∗

0 τ̄QT
2 Q1HT

I τ̄QT
3 0

−I 0 0

∗ −τ̄R̄ 0

∗ ∗ −γI

⎤
⎥⎥⎥⎥⎦ < 0,

(19)

and ⎡
⎣ Q1 +QT

1 − R̄ 0 Ȳ T BT

∗ Z̄1 Z̄2
∗ ∗ Z̄3

⎤
⎦ ≥ 0, (20)

where γ = α−2. Furthermore, the state feedback control law

is given by

u(t) = Ȳ Q−1
1 x̄(t).

Proof: It is noted that the inequalities of Theorem 1 are

bilinear in P̃ and F . To get LMIs, we use P̃−1. It follows

from the requirement of 0 < P̃1, and the fact that in (8)

−P̃3 − P̃T
3 must be negative definite, that P̃ is nonsingular.

Define

Q := P̃−1 =

[
Q1 0

Q2 Q3

]
, R̄ := R̃−1,

Z̄ := QT Z̃Q =

[
Z̄1 Z̄2
∗ Z̄3

]
, Ȳ := FQ1.

Multiplying diag{QT , I} and its transpose on the left and on

the right sides of (8), respectively, using Schur complement

formula, we know that (8) is equivalent to (19).

Multiplying diag{Q1,QT} and its transpose on the left

and on the right side of (9), respectively, we have⎡
⎣ Q1R̄−1Q1 0 Ȳ T BT

∗ Z̄1 Z̄2
∗ ∗ Z̄3

⎤
⎦ ≥ 0. (21)

Since R̄ = R̃−1 > 0, and

[Q1 − R̄]R̄−1[Q1 − R̄]T > 0, (22)
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we obtain that

Q1R̄−1QT
1 ≥ Q1 +QT

1 − R̄.

Then, (21) can be guaranteed by (20). This completes the

proof.

To establish robust stabilization of the system (1) under

constraint (3) with maximum α , we propose the convex

optimization problem

minimize γ
subject to Q1 > 0, Q2, Q3, Z̄1, Z̄2, Z̄3, Ȳ and

(19)− (20) for a given scalar τ̄ > 0.

⎫⎬
⎭ (23)

Now, we conclude our result as follows.

Theorem 3: Given a scalar τ̄ > 0, if the optimization

problem (23) is feasible, the control law of (2) robustly

stabilize (1) with maximum nonlinear bound α = 1/
√γ

with

F = Ȳ Q−1
1 .

Remark 2: Theorem 3 provides a delay-dependent con-

dition on the robust stabilization of the plant (1) by the

control law (2) with its maximum nonlinear bound in terms

of the solvability of LMI. It is noted that finding the largest

τ̄ (related to the upper bound of data packet dropout and

communication delays of the system (1) ) that preserves

the stability of the closed-loop system can be computed by

solving the following quasi-convex optimization problem (a

generalized eigenvalue problem):

minimize 1
τ̄

subject to Q1 > 0, Q2, Q3, Z̄1, Z̄2, Z̄3, Ȳ
and (19)− (20).

⎫⎬
⎭ (24)

Remark 3: Using inequality (22), the robust stabilization

problem can be solved directly in terms of a set of LMIs

and no tuning of parameters is involved. Sampled-data sta-

bilization of linear systems has been considered by Fridman

et al. in [6], where they must first fix a tuning parameter or

use an iterative algorithm to obtain the stabilizing controller

in terms of LMIs. Our proposed approach has another

advantage that an estimation of maximum delay bound τ̄
can be calculated directly by Remark 2.

IV. AN ILLUSTRATIVE EXAMPLE

Example 1: Let us consider the sampled-data system[
ẋ1(t)
ẋ2(t)

]
=

[
1 1

0 0.99

][
x1(t)
x2(t)

]
+

[
0

10

]
u(t)

+h(t,x(t))
(25)

with H = [1 0] and the state feedback gain F to be designed.

It is found using the software LMI toolbox in MATLAB

that the corresponding quasi-convex optimization problem

(24) is feasible and we find that the upper bound of the delay

function τ(t) is τ̄ = 0.2509. Given τ̄ = 0.2509, solving the

convex optimization problem (23), we obtain

Q1 = 104 ×
[

3.4414 −3.4491

−3.4491 6.8925

]
,

Q2 = 105 ×
[ −0.9293 0.9114

0.5787 −1.1841

]
,

Q3 = 104 ×
[

0.9293 −0.5784

−0.9217 1.2244

]
,

Z̄1 = 105 ×
[

1.4939 −1.2382

−1.2382 2.2520

]
,

Z̄2 = 104 ×
[ −1.4931 1.3676

1.2372 −1.7462

]
,

Z̄3 = 105 ×
[

1.4928 −1.3672

−1.3671 3.6057

]
,

R̄ = 104 ×
[

4.1371 −4.1495

−4.1495 5.8811

]
,

Ȳ = 105 × [−0.0012 −1.0257],

γ = 6.3229×105.

It can be easily calculated from Theorem 2 that

αmax = 0.0013, F = [−0.2999 −0.2989]

with the eigenvalues of matrix A+BF located at −0.4995+
0.8664i and −0.4995−0.8664i.

It is noted that if the upper bound of the delay function

τ̄ is increased, the nonlinear bound α has to be decreased.

The relation between the upper bound of delay function τ̄
and the maximum nonlinear bound α for the system (25)

is illustrated in Fig. 2.

For the purpose of simulation, we choose the non-linear

function as

h(t,x(t)) =

[
0.3x1(t)sin(x1(t))

0

]
,

which satisfies the quadratic constraint (5). It is found that

x = 0 is the only equilibrium of the closed-loop system. For

τ̄ = 0.22, solving the convex optimization problem (23), we

obtain from Theorem 2 that

αmax = 0.1365, F = [−0.3590 −0.3170].

With the initial state x(0) = [−15 10]T , the state trajectory

of the system (25) with the delayed input is shown in Fig.

3, from which we know that the unstable system can be

effectively stabilized.

V. CONCLUSION

This paper have investigated the robust stabilisation prob-

lem for a class of sampled-data systems with nonlinear

uncertainties. The controller and the plant are connected

via a network channel which may be subject to data

packet dropout and communication delays. We have de-

veloped sufficient conditions on the robust stabilisation for

such NCSs. The stabilizing feedback controllers produce

a closed-loop system which is maximally tolerant to the

uncertain nonlinear terms or is maximally tolerant to the

delayed input. An illustrative example is worked out to show

how an unstable system can be effectively stabilised via the

controller designed in this paper.
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