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Abstract— This paper presents a new sufficient condition for
robust �∞-stability of discrete-time systems with structured,
repeated, linear time-varying, and induced �∞-norm bounded
perturbations. The novel sufficient stability condition, which
can be interpreted in terms of an augmented scaled small
gain theorem, is shown to be less conservative than previous
techniques.

I. INTRODUCTION

The last two decades proliferated in �∞-stability (and
performance) results; see [5] for a comprehensive summary
of results and references. Recently, the class of robust �∞-
stability problems involving repeated, linear time-varying
(LTV), induced �∞-norm bounded perturbations have re-
ceived particular attention, see [2], [3], and [4].

In the present paper, a novel sufficient stability con-
dition for this type of problems is presented. The new
sufficient stability condition can be interpreted in terms
of an augmented scaled small gain theorem. The result is
conceptually simple, yet essential as it permits a significant
decrease in the conservativeness of design and analysis
in many robustness problems (as compared with previous
techniques).

It is also shown that the remarkable benefits of this new
sufficient stability condition are unfortunately not transfer-
able to its �2-stability counterpart.

The paper is outlined as follows. The required notation
is introduced in §II. Then, the improved sufficient stability
condition is presented in §III, followed by a thorough
study of a justifying example problem in §IV. Finally, it
is demonstrated in §V that the present result provides no
advantages in the �2-stability case.

II. NOTATION

Let Z
+ and Z

∗ denote the sets of positive and nonnega-
tive integers, respectively.

Let 0m×n and In denote the zero matrix of dimension
m× n and the identity matrix of dimension n× n, respec-
tively.

For any matrix A ∈ R
m×n, A

�
= [Aij ] i∈{1,...,m}

j∈{1,...,n}

, where

Aij is the ijth entry of A. Similarly, for any vector a ∈
R

n, a
�
= [a1 . . . an]T , where ai is the ith entry of a. This

notation carries to the case of MIMO systems and vector
signals.
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Let AT and AH denote the transpose and the conjugate
transpose of the matrix A, respectively.

Let ρ(A) denote the spectral radius of the square matrix
A.

Let �n
p denote the space of all infinite sequences

{s(k)}∞k=0 of vectors of length n, s(k) ∈ R
n, equipped

with the norm

‖s‖p
�
= p

√√√√ ∞∑
k=0

n∑
i=0

|si(k)|p < ∞.

For p = ∞, also define ‖s‖∞ �
= sup

k≥0
max

i∈{1,...,n}
|si(k)|.

Given a bounded operator S : �n
p �→ �m

p with s �→ S(s), let

‖S‖p−ind
�
= sup

s�=0

‖S(s)‖p

‖s‖p

be the induced p-norm of S. Furthermore, if S is linear
and causal, then S(s) is determined by the convolution

(S ∗ s)(k)
�
=

k∑
l=0

S(k, l)s(l), where S(k, l) denotes the

kernel of S. In the case when S is also time-invariant, S(s)

simplifies to (S ∗s)(k)
�
=

k∑
l=0

S(l)s(k− l), where {S(l)}∞l=0

is the impulse response of S. Then, it is known that, see
[5], ‖S‖∞−ind = ‖S‖1, where

‖S‖1
�
= max

i∈{1,...,q}

p∑
j=1

∞∑
k=0

|Sij(k)|. (1)

Moreover, let Ŝ(jθ)
�
=

∞∑
k=0

S(k)e−jθk denote the Fourier

transform of the impulse response of S. Then, it is known
that, see [5], ‖S‖2−ind = ‖Ŝ‖∞, where

‖Ŝ‖∞ �
= sup

θ∈[0,2π]

√
ρ(Ŝ(jθ)ŜH(jθ)). (2)

III. AN IMPROVED SUFFICIENT CONDITION

For simplicity, only the following class of perturbations
is considered throughout this paper. Given n∆ ∈ Z

+,

∆
one �

= {∆ = δIn∆ : δ is SISO, causal, and LTV}. (3)

Nevertheless, the results presented below extend in a
straightforward manner to other classes of structured per-
turbations involving more than one repetition pattern.

Theorem 3.1: Let M be a square, discrete, causal, LTI
system of size nM ∈ Z

+ and, given na ∈ Z
+, define

the augmented system Ma
�
=

[
M 0nM×na

0na×nM
0na×na

]
. Let
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Fig. 1. M∆-loop

n∆ = nM and, for a given γ ∈ R, let ∆ ∈ ∆
one be such

that ‖∆‖∞−ind < 1
γ

. Assume that M and ∆ are connected
as in Fig.1. Then, if

∃ na ≥ 0 and D ∈ D(na) s.t. ‖D−1MaD‖1 ≤ γ, (4)

where D(na)
�
= {[dij ] i={1,...,(nM +na)}

j={1,...,(nM +na)}

: dij ∈ R, d11 =

1, 1 ≥ d12 ≥ ... ≥ d1(nM+na) ≥ 0}, then the M∆-loop is
robust �∞-stable.

Proof: Follows directly from the scaled small gain
theorem, see Appendix I for details.

Condition (4) can be best verified by the applications of
global optimization techniques that are necessary because,
for any given value of na,

inf{‖D−1MaD‖1 : D ∈ D(na)}
is nonconvex and nondifferentiable with respect to the
entries of D; see [4] and the references therein for further
details.

Condition (4) will be referred to as the standard suffi-
cient condition or the augmented sufficient condition when
na = 0 or na ≥ 1, respectively. Note that robust stabil-
ity conditions similar to the standard sufficient condition
are widely employed in the control literature, while the
augmented sufficient condition has never been proposed or
studied before.

It is easy to see that the augmented sufficient condition
implies the standard sufficient condition for any given
na ≥ 1. Yet, an interesting and unexpected feature is that,
as indicated by examples below, the augmented sufficient
condition becomes less conservative as na increases.

IV. A JUSTIFYING EXAMPLE PROBLEM

A. Example Problem Statement

In order to demonstrate, beyond any doubt, the advantage
of the augmented sufficient condition over its standard
counterpart, an example problem is introduced as follows.

Let the system M ′ be characterized by the finite impulse
response

{M ′(k)}1
k=0 =

{[
1 1
−1 1

]
,

[ −1 1
1 −1

]}
.

By virtue of Theorem 3.1, the objective is to demonstrate
that

∃ na ≥ 1 and D ∈ D(na) such that (5)

‖D−1M ′
aD‖1 < inf

D0∈D(0)
‖D−1

0 M ′D0‖1.

To abridge the notation, define

E
�
= inf

D0∈D(0)
‖D−1

0 M ′D0‖1.

The system M ′ was found to be one of the simplest
examples which allow for the satisfaction of (5). Still, the re-
sulting optimization problem E remains strongly nonconvex
with respect to the entries of D0. As a result, the strategy
adopted to demonstrate (5) resides in the application of a
complex global optimization algorithm (such as the branch-
and-bound algorithm (BBA)) to derive an arbitrarily tight
lower bound, E, for E. Next, an integer na ≥ 1 and a
matrix D ∈ D(na) are sought such that

‖D−1M ′
aD‖1 < E.

Despite its significant complexity, the use of the BBA is
fully justified as there is no simpler optimization technique
that permits to derive the lower bound E.

B. A Bounded Feasible Set

Proposition 4.1: For the example considered,

E = min
D0∈Db(0)

‖D−1
0 M ′D0‖1.

where Db

�
= {[dij ] i={1,2}

j={1,2}

: dij ∈ R, d11 = 1, 1 ≥ d12 ≥
0, |d21| ≤ 4, |d22| ≤ 4} is a bounded subset of the original
unbounded feasible set D(0).

Proof: Follows directly from Corollary 4.3 and Corol-
lary 4.5 (see below).

The proposition above is important as it is now possible
to apply a branch-and-bound algorithm over Db in order
to compute the global minimum for E, within any desired
tolerance.

Proposition 4.2: Consider a set D1

�
= {[dij ] i={1,2}

j={1,2}

:

dij ∈ R, d11 = 1, 1 ≥ d12 ≥ 0, |d21| ≤ |d22|}. Then,

inf
D∈D1

‖D−1M ′D‖1 ≥ |d2
22 − 1|
|d22| .

Corollary 4.3: If |d22| ≥ 4, then

inf
D∈D1

‖D−1M ′D‖1 ≥ 3.75.

Proof: (of Proposition 4.2)

From the definition of the scaling matrix,

{D−1M(k)D}1
k=0 =

{
S(0)

det(D)
,

S(1)

det(D)

}
, (6)
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where

S11(0)
�
= d11d12 + d11d22 − d12d21 + d21d22,

S12(0)
�
= d12d12 + d22d22,

S21(0)
�
= −d11d11 − d21d21,

S22(0)
�
= −d11d12 + d11d22 − d12d21 − d21d22,

S11(1)
�
= −d11d12 − d11d22 + d12d21 + d21d22,

S12(1)
�
= −d12d12 + d22d22,

S21(1)
�
= d11d11 − d21d21,

S22(1)
�
= d11d12 − d11d22 + d12d21 − d21d22.

Let D ∈ D1. Then,

‖D−1MD‖1 ≥ |d2
12 + d2

22| + |d2
12 − d2

22|
|d11d22 − d12d21| (7)

≥ |d2
12 + d2

22| + |d2
12 − d2

22|
2|d22| (8)

≥ |d2
22 − 1|
|d22| . (9)

Equations (7), (8), and (9) follow respectively from: the
definition of the �1 norm as applied to (6); the maximization
of det(D) over D1; the second triangle inequality together
with the definition of D1.

Proposition 4.4: Consider a set D2

�
= {[dij ] i={1,2}

j={1,2}

:

dij ∈ R, d11 = 1, 1 ≥ d12 ≥ 0, |d21| ≥ |d22|}. Then,

inf
D∈D2

‖D−1M ′D‖1 ≥ |d2
21 − 1|
|d21| .

Proof: Similar to the proof of Proposition 4.2.
Corollary 4.5: If |d21| ≥ 4, then

inf
D∈D2

‖D−1M ′D‖1 ≥ 3.75.

C. Computation of the Global Minimum of E using a
Branch-and-Bound Algorithm

In this subsection, a BBA is developed to solve the
problem

E∗ �
= inf

D∈Db

‖D−1M ′D‖1.

The details of the customized BBA are given in Appendix
III.

The numerical results are displayed in Fig.2. It can be
seen that 54 iterations are required before the difference
between the best upper bound and the worst lower bound
reaches the desired tolerance (which is set to 10−4). The
final value of the worst lower bound of E∗, together with
Proposition 4.1, guarantee that the global minimum of E is
no less than 3.4142. Indeed, E yields a cost of

√
2 + 2 at

D0 =

[
1

√
2 − 1

−1
√

2 − 1

]
. For additional details concerning

the complexity of E, see Appendix II.

Fig. 2. Results using the branch-and-bound algorithm

D. Solution of the Augmented Example Problem

To complete this example, it remains to find an na ≥ 1
and a D ∈ D(na) which satisfy (5). Given na = 1,
one such solution is provided by the scaling matrix

D =

⎡
⎣ 1.0000 0.4677 0.3041

−0.6656 0.4677 −0.7353
−1.2546 0.7267 1.6175

⎤
⎦ and yields a cost

of 3.3100.
Extensive simulations demonstrate that the existence of a

solution with a cost smaller than 3.3100 seems very unlikely
even if values of na larger than one are considered.

V. AN AUGMENTED ROBUST �2-STABILITY PROBLEM

As opposed to the robust �∞-stability problem formu-
lation (4), consider the robust �2-stability problem defined
by

inf
D∈D̃(na)

‖D−1M̂aD‖∞ ≤ γ, (10)

where D̃(na)
�
= {D ∈ R

(nM+na)×(nM+na) : D =
DT , D > 0} and let the other variables be defined as in
§III; also see [11] for an introduction on robust �2-stability
theory.

As it will be shown below, the remarkable benefits of the
problem augmentation approach unfortunately do not carry
over to the �2-stability case. Define the matrix

D̃
�
= DDT ,
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which is partitioned as follows

D̃
�
=

[
D̃(11) D̃(12)

D̃(21) D̃(22)

]
,

where D(11) ∈ R
nM×nM , D(12) ∈ R

nM×na , D(21) ∈
R

na×nM , and D(22) ∈ R
na×na . Additionally, let

D̃(11)
�
= D̄D̄T

and let

A(jθ)
�
= D−1M̂a(jθ)DDT M̂H

a (jθ)D−1T
,

B(jθ)
�
= DDT γ2 − M̂a(jθ)DDT M̂H

a (jθ),

C(jθ)
�
=

[
D̃(11) D̃(12)

D̃(21) D̃(22)

]
γ2 −

[
M̂(jθ)D̃(11)M̂

H(jθ) 0
0 0

]
,

D(jθ)
�
= D̃(11)γ

2 − M̂(jθ)D̃(11)M̂
H(jθ).

Next, observe that

(10) ⇐⇒ inf
D∈D̃(na)

sup
θ∈[0,2π]

√
ρ(A(jθ)) ≤ γ (11)

⇐⇒ inf
D∈D̃(na)

s.t. B(jθ) ≥ 0 ∀θ ∈ [0, 2π] (12)

⇐⇒ inf
D̃∈D̃(na)

s.t. C(jθ) ≥ 0 ∀θ ∈ [0, 2π] (13)

=⇒ inf
D̃(11)∈D̃(0)

s.t. D(jθ) ≥ 0 ∀θ ∈ [0, 2π] (14)

⇐⇒ inf
D̄∈D̃(0)

‖D̄−1M̂D̄‖∞ ≤ γ. (15)

Equations (11), (12), (13), (14), and (15) follow respectively
from: definition (2); the definition of D̃; LMI representa-
tion; the Schur complement Lemma; the definition of D̃11,
the notion of positive-definiteness, and again definition (2).

Thus, (10) implies that inf
D̄∈D̃(0)

‖D̄−1M̂D̄‖∞ ≤ γ so

there is no advantage in considering na �= 0 in the robust
�2-stability case.

VI. CONCLUSION

An augmented sufficient condition for robust �∞-stability
of systems with repeated, linear time-varying (LTV), in-
duced �∞-norm bounded perturbation is presented in this
paper.

It should be pointed out that the example problem in-
vestigated has been chosen for its simplicity rather than
for its ability to allow the augmented sufficient condition
to generate an impressive decrease in conservativeness as
na increases. Still, in many cases, the improvement which
imparts to the application of the augmented sufficient con-
dition is substantial (as compared to the standard sufficient
condition), see Appendix IV for such an example.

Interestingly, the motivation behind the development of
the augmented sufficient condition originates from the study
of robust �∞-stability of systems involving repeated pertur-
bations under the perspective of the topological separation
theory, see [8]. This connection will thus be investigated
further and will hopefully provide new insight into the
optimal choice of na for any given problem.

APPENDIX I
PROOF OF THEOREM 3.1

Given n∆ = nM + na, let the augmented perturbation
block ∆a ∈ ∆

one satisfy ‖∆a‖∞−ind < 1
γ

. Assume that
Ma and ∆a are connected in a similar fashion as M and ∆
in Fig.1. Then, from the scaled small gain theorem, see [5],
a sufficient condition for robust �∞-stability of the Ma∆a-
loop is given by (4). Observe that for any ∆a ∈ ∆

one and
any D ∈ D(na), the commutativity equation ∆aD = D∆a

is also satisfied.
Moreover, since Ma and ∆a are both block diagonal, the

robust �∞-stability of the Ma∆a-loop implies the robust
�∞-stability of the M∆-loop. Hence, (4) is a valid sufficient
condition for the robust �∞-stability of the M∆-loop. �

APPENDIX II
ADDITIONAL INFORMATION CONCERNING PROBLEM E

It is interesting to note that E exhibits a local
and a global minimum as well as a pair of
saddle points. Both saddle points of E yield a

cost of 4 and are located at D0 =

[
1 0
0 1

]
and

D0 =

[
1 0
0 −1

]
. The global minimum cost of E equals

√
2 + 2 and is located at D0 =

[
1

√
2 − 1

−1
√

2 − 1

]
(Indeed, observe that {D0

−1M(k)D0}1
k=0 ={[

1
√

2 − 1

−(
√

2 + 1) 1

]
,

[ −2 0
0 0

]}
which leads to

‖D0
−1MD0‖1 =

√
2+ 2). The local minimum of E yields

a cost of ≈ 3.4641 at D0 =

[
1 1
−1 1.7321

]
. The saddle

points and the local minimum are located on the boundary
of the closed feasible set D(0).

For completeness, note that the corresponding necessary
robust �∞-stability condition, see [2], yields a value of
2.9712 which is 13.0% less than

√
2 + 2 (the global

minimum of E).

APPENDIX III
DETAILS OF THE BRANCH-AND-BOUND ALGORITHM

Since E∗ is nonconvex, it necessitates the use of a global
optimization technique such as the BBA which is found
to be particularly suitable for this case. The application of
the BBA is never a simple task as the algorithm heavily
relies on the development of a lower bound relaxed problem
formulation. The last procedure will be explained in the
context of E∗.

A convenient notation will be found helpful. To this end,
define

d
�
= [d12 dd1 d22]

T ∈ R
3.

Also, let

d
�
= [d12 dd1 d22]

T ∈ R
3
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and

d
�
= [d12 dd1 d22]

T ∈ R
3

be given lower and upper bounds for d, respectively. Corre-
sponding to any pair d and d, a subregion of Db is defined
by

Db(d, d)
�
= Db ∪

{[
1 d12

d21 d22

]
: d ≤ d ≤ d

}
.

It is assumed that, at any stage of the BBA, the collection of
subregions defined in terms of different selections of pairs
(d, d) provides a non-overlapping partition of Db.

With reference to each of the subregions Db(d, d), the
BBA proceeds to find an upper and a lower bound for the
following subproblem

E∗(d, d)
�
= min

D∈Db(d,d)
‖D−1MD‖1. (16)

An upper bound for E∗(d, d) is very easy to obtain, in
fact any D ∈ Db(d, d) yields a valid upper bound for
E∗(d, d). The real challenge is hence to find a lower bound
for E∗(d, d) which is sought in terms of a solution to a
relaxed subproblem E∗(d, d) such that

E∗(d, d) ≤ E∗(d, d)

and

lim
‖d−d‖→0

E∗(d, d) = lim
‖d−d‖→0

E∗(d, d) ∀(d, d). (17)

Ideally, the relaxed subproblem E∗(d, d) needs to be defined
in such a way as to allow for a rapid global solution. Typi-
cally, E∗(d, d) is required to be at least strictly-quasiconvex.

The main idea underlying the BBA, see [10], is to
refine the partitioning of Db in a way permitting to find
a subregion which contains the global solution of E∗ by
comparing all the upper and lower bounds for E∗(d, d)
corresponding to all subregions Db(d, d). This process of
successive partitioning of Db is carried out as follows. A
list of non-overlapping subregions Db(d, d) is first created
and the corresponding subproblems E∗(d, d) are solved
(approximately) for each member on the list in terms of their
lower an upper bounds. For any given subregion Db(d, d)
on the list, if the computed lower bound for E∗(d, d)
exceeds any upper bound for any other subregion on the list,
then Db(d, d) can be removed from the list of subregions
as it cannot contain the optimal solution over Db. On the
other hand, if Db(d, d) remains on the list, then further
partitioning of Db(d, d) is carried out enriching the pool
of subregions on the list. This process is continued until
all the subregions on the list exhibit lower bounds which
differ from the currently best available upper bound by the
required tolerance margin for the solution error. Naturally,
throughout the optimization process, the global solution E∗

is always guaranteed to belong to the interval whose limits
are the current best available upper bound and the current

worst available lower bound among all subproblems on the
list.

It stands out that the relaxed subproblem E∗(d, d) is, by
far, the most complicated component of the BBA. Hence,
a computable expression for E∗(d, d) is derived below
preceded by some helpful lemmas.

Lemma 3.1: [9]
i) Given x, y, x, y ∈ R, define the convex set

C(x, y, x, y)
�
= {(x, y, z) ∈ R

3 : z ≥ yx + xy − xy,

z ≤ yx + xy − xy, z ≤ yx + xy − xy,

z ≥ yx + xy − xy}.
If x ≥ x ≥ x, y ≥ y ≥ y, and z = xy, then (x, y, z) ∈
C(x, y, x, y).

ii) Similarly, given x, x ∈ R, define the convex set

C(x, x)
�
= {(x, z) ∈ R

2 : z ≥ 2xx − x2,

z ≤ xx + xx − xx, z ≥ 2xx − x2}.
If x ≥ x ≥ x and z = x2, then (x, z) ∈ C(x, x).

Lemma 3.2: [1]
Let X ⊂ R

n be a convex set and let the function
g1 : X �→ R be linear and the function g2 : X �→ R be
linear and positive on X . Then, the function g : X �→ R,

defined by g(x)
�
= g1(x)

g2(x) is strictly-quasiconvex on X .

Lemma 3.3: [1]
Let X ⊂ R

n be a convex set and, let gi : X �→ R,
i ∈ {1, ..., m}, m ∈ Z

+, be a family of strictly-quasiconvex
functions on X . Then, the function g : X �→ R, defined by

g(x)
�
= max

i∈{1,...,m}
gi(x) is also strictly-quasiconvex on X .

Given d, d ∈ R
3, (16) is redefined as follows to stress

the dependance on the optimization variables

f(d)
�
= E∗(d, d). (18)

The above problem is further rearranged by replacing the
bilinear terms of (18) by new variables defined as

dr
�
= [d12;12 d12;21 d21;21 d21;22 d22;22]

T ∈ R
5

and satisfying

d12;12
�
= d12d12,

d12;21
�
= d12d21,

d21;21
�
= d21d21, (19)

d21;22
�
= d21d22,

d22;22
�
= d22d22.

Thus, the subproblem (18) becomes

g(d, dr) subject to (19)

where, assuming that (19) holds, g(d, dr) = f(d).
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Given the following convex set of constraints derived
from Lemma 3.1

(d12, d12;12) ∈ C(d12, d12),

(d21, d21;21) ∈ C(d21, d21),

(d22, d22;22) ∈ C(d22, d22), (20)

(d12, d21, d12;21) ∈ C(d12, d21, d12, d21),

(d21, d22, d21;22) ∈ C(d21, d22, d21, d22),

a relaxed version for the subproblem is given by

g(d, dr) subject to (20)

where again, assuming that (20) holds, g(d, dr) ≤ f(d).
Partitionning the relaxed feasible set according to the

sign of d22 − d12;21, the final expression for the relaxed
subproblem is given by

E(d, d)
�
= min (h1(d, dr), h2(d, dr))

where

h1(d, dr)
�
= g(d, dr) subject to (20) and d22 − d12;21 ≥ 0

and

h2(d, dr)
�
= g(d, dr) subject to (20) and d22 − d12;21 ≤ 0.

It follows from Lemma 3.2 and 3.3 that h1(d, dr) and
h2(d, dr) are both strictly quasiconvex optimization prob-
lems. Hence, the relaxed subproblem E∗(d, d) is easily
solvable (two steps required) by employing any nondifferen-
tiable optimization algorithm (Shor’s r-algorithm has been
used here). Moreover, from Lemma 3.1, it is easy to show
that E∗(d, d) satisfies condition (17).

APPENDIX IV
ADDITIONNAL EXAMPLE

Consider the discrete, causal, stable, LTI system M

of dimension compatible with ∆ ∈ ∆
one such that

‖∆‖∞−ind < 1
γ

, as illustrated in Fig.1. The system M is
fully characterized by the following finite impulse response:

{M(k)}3
k=0

�
=

{ [
2.3 3.4
−1.9 0.7

]
,

[ −1.3 0.5
2.0 −0.6

]
,

[
1.9 2.9
1.2 4.6

]
,

[
0.2 −3.3
3.8 4.8

]}
.

Stability of the M∆-loop is assessed using Theorem 3.1.
Four different na values (na = 0, 1, 2, 3) are considered

in this example. The na-dependent problems of the form

inf{‖D−1MaD‖1 : D ∈ D(na)} (21)

are solved by using a local nonsmooth optimization algo-
rithm. For each value of na, a hundred local searches are
performed over (21). Each local search is initialized by a
randomly chosen scaling matrix D (with its entries limited
to the interval [−5, 5]).

TABLE I

OPTIMAL RESULTS

Value of na Minimal Cost

na = 0 16.35

na = 1 15.84

na = 2 15.76

na = 3 15.76

The results are displayed in Table I, where it is shown
that the minimum cost of 15.76 is obtained with na = 2
and na = 3. It is an improvement of 3.61% as compared
with 16.35 which is the minimal cost computed when
na = 0 (i.e., the smallest value associated with the standard
sufficient condition). The importance of these results is yet
better elucidated by comparing the costs listed in Table I
with 13.30 which is the value derived from the necessary
robust �∞-stability condition computed for this problem
according to the methodology proposed in [2]. It then
follows that the proposed augmented sufficient condition
is able to tighten the gap with its necessary counterpart by
19.36% =

(
1 − 15.76−13.30

16.35−13.30

)
· 100%.

For the purpose of further comparisons, the next val-
ues have also been calculated: ‖M‖1 = 19.60 and

ρ

( ‖M11‖1 ‖M12‖1

‖M21‖1 ‖M22‖1

)
= 18.01. The two previous ex-

pressions respectively follows from sufficient conditions
for robust �∞-stability of systems with unstructured per-
turbations and independent (i.e., not repeated) structured
perturbations; see [6] and [7] for details.
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