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Abstract— We formulate a simple discrete time two-agent
optimal formation control problem with limited communica-
tion capacity. Two cases are studied: without communication
constraints and with limited communication capacity. In the
first case, we show how to approach the globally optimal
solution with local decisions. In the second case, a performance
metric is introduced and we show that the performance can
be impaired by as much as 20% if we limit the amount
of information exchanged in real time. We also introduce a
noisy channel into our problem and present some preliminary
results.

I. INTRODUCTION

Since Shannon’s 1948 landmark paper [13] much
progress (both theoretical and practical) has been made in
information theory. The success of this classical information
theory can be seen (albeit implicitly) through the ubiquitous
presence of electronic data transmission and storage devices
ranging from mobile phones, satellite radio to wireless local
area networks (WLAN). At the same time, advances in
fabrication technology and computer architecture have led
to the rapid growth of computation capabilities while si-
multaneously decreasing chip size and power consumption.
This in turn, has made the implementation of distributed
cooperative agents both a practical reality and an active
research area.

While optimization of coordinated actions by distributed
agents has been widely studied by the control community
(see, e.g., [1], [5], [14]); until recently, little attention has
been paid to the “information” aspect of the problem.
However, in the context of real time multi-agent coordina-
tion, classical information theory faces several fundamental
problems, such as:

• Infinite delays: Classical information theory allows
infinite delays. Various asymptotic analysis (i.e., letting
codeword length approach infinity) are inappropriate
for the real time setting where the delayed information
is often useless.

• Limited concept of feedback: Classical information
theory assumes a one-way channel. In an interactive
setting (such as the one studied in [11], [12]), where
agents communicate with each other, we must consider
a two-way noisy channel.

• Quality of information: Classical information theory
maintains no sense of the “quality” or the “importance”
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of information. Often, an agent that faces severe com-
munication constraints must decide which part of the
information is the most important to send and tradi-
tional information theory tools are not easily applied.

Many researchers have already seen the limitations of
traditional information theory and progressed toward a more
real-time and interactive version of information theory.
Schulman in [11], [12] pioneered the coding theorem for
interactive computation that is analogous to Shannon’s work
in one-way communication. Mitter in [8] described the
need for a unified approach to control, communication,
and computation. Tatikonda [15] and Sahai [10] have also
pioneered work in the area of control under communication
constraints, where the aforementioned issues are of critical
importance. Important contributions have also been made by
Elia and Mitter [4], Brockett and Liberzon [3], Hespanha et
al. [7], Ishii and Francis [6], Nair and Evans [9], and many
others.

Following in the spirit of these and other researchers, we
attempt to gain insight by studying an example problem. We
carry out this study under a two-agent formation optimal
control framework.

As an initial step, we investigate the problem of control-
ling the formation of two agents that move around on the
integer line. In each “round” (unit of time), each agent can
move one step in either the positive or negative direction
or remain in place. The goal of the agents is to reach
their respective final destinations from a arbitrary starting
point while maintaining a desired separation (1-dimensional
“formation”) using a fixed amount of communication capac-
ity that is measured in bits per round. To quantify system
performance, we define an associated metric and use tools
from optimal control theory to study the performance of this
system under various communication constraints. It turns
out that allowing any positive communication rate between
the agents can improve performance by 20%. Moreover,
any amount of communication is asymptotically equivalent
to unlimited communication.

This paper is organized as follows. In section 2, we
formulate the basic problem. In section 3, optimal control
with full and partial information feedback is discussed
where we assume the channel is error free. In section 4, the
case where the communication channel introduces error is
studied. Finally, conclusions and directions for future work
are given in section 5.
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II. PROBLEM SET UP

Two scalar agents move along the integer line (which we
shall refer to as the x-axis), with the position of the ith

agent (i ∈ {1, 2}) at time step k given by xi(k) ∈ Z. The
position of each agent is governed by the relation:

xi(k + 1) = xi(k) + ui(k) (1)

where k ∈ Z is the time index and ui ∈ {−1, 0, 1}.
The goal of each agent is to move to some final position

xi,f , while maintaining a desired a separation d from
the other agent. This problem is meant to approximate a
very simple formation task. This goal is consistent with
minimizing the cost function given by:

J =
∞∑

k=0

[(x1(k) − x1,f )2 + (x2(k) − x2,f )2

+ (x2(k) − x1(k) − d)2]. (2)

For our initial study of the problem we make the simpli-
fying assumption that the initial configuration of the agents
satisfies x1(0) < x2(0) and that d = (x2,f − x1,f ) > 0. In
addition, because two physical agents cannot pass through
one another, we constrain the problem such that x1(k) <
x2(k) for all k. Note that it is reasonable to expect that the
solution to this problem would be the mirror image if we
instead let x2(0) < x1(0) and x2(k) < x1(k) for all k.

The stationary point of (1), for each agent i = 1, 2,
occurs when xi(k + 1) = xi(k) for all k, this point occurs
when each agent reaches its respective final position xi,f . In
remainder of this paper we use the terms system equilibrium
to describe the situation when both agents have reached
their stationary points, (i.e., when xi(k) = xi,f for all i).

With the assumptions above, the problem of interest
reduces to one where at any time k, the agents can only
be in one of the 4 configurations which are described in
Table I and shown graphically in Figure 1.

Name Conditions Remarks

State 1 x1(k) ≤ x1,f and x2(k) ≤ x2,f bottom of figure

State 2 x1(k) > x1,f and x2(k) < x2,f

State 3 x1(k) < x1,f and x2(k) > x2,f

State 4 x1(k) ≥ x1,f and x2(k) ≥ x2,f top of figure

TABLE I

AGENT INITIAL CONFIGURATIONS

Based on the configurations depicted in Figure 1, it can
be seen that the configurations labeled as states 2 and 3
will migrate into states 1 or 4 as time progresses; if they do
not reach system equilibrium first. However once the agents
reach either of the configurations labeled as states 1 or 4
they remain in that configuration for every time step until
the system equilibrium is reached; (i.e., both the agents stop
forever at their destinations).
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Fig. 1. Agent 1 is depicted in red, agent 2 is depicted in blue and *

denotes their desired positions.

III. ERROR FREE COMMUNICATION

A. Perfect Communication

The case where each agent can pass an unlimited amount
of information without information loss or errors is referred
to as the case of ‘Perfect Communication’. For this case, a
decentralized steepest descent algorithm is proposed. This
so called greedy algorithm is then shown to be globally
optimal.

We use the following notation:

1) → indicates that agent i travels one step to the right
(corresponding to application of ui = 1),

2) ← indicates that agent i travels one step to the left
(corresponding to application of ui = −1), and

3) | indicates that agent i stays at its current position
(corresponding to application of ui = 0).

It should be noted that if the agents start in State 2, then
the locally optimal control action is for agent 1 to go left
(←) and agent 2 to go right (→). If d1(0) < d2(0) agent 1
will reach its final position (stationary point) before agent
2 reaches its own stationary point and the configuration
will switch to State 1. Likewise, if d2(0) < d1(0) agent
2 reaches its stationary point first and the configuration
changes to State 4.

Similarly, if the agents start in State 3, then the locally
optimal control action is for agent 1 to go right (→) and
agent 2 to go left (←) until one of the agents reaches its
stationary point. If agent 1 reaches its stationary point first,
then the system transitions to State 4. Otherwise, agent 2
reaches its final position first and the system transitions to
State 1.

It should also be noted that State 4 is completely sym-
metric with respect to State 1. Thus for any control law
that is optimal for State 1, we only need to swap the
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Condition Agent 1 Agent 2

dk
1 ≥ 2dk

2 + 2 → ←
2dk

2 ≤ dk
1 ≤ 2dk

2 + 1 → |
dk
2
2

< dk
1 < 2dk

2 → →
2dk

1 ≤ dk
2 ≤ 2dk

1 + 1 | →
dk
2 ≥ 2dk

1 + 2 ← →
TABLE II

CONTROL LAWS

agent commands with each other to generate the optimal
control commands for the system in the configuration of
State 4. Therefore in the remainder of the paper the only
configuration that is discussed is State 1. The control laws
related to the agents starting in other configurations are
simple extensions.

By letting dk
1 = |x1,f − x1(k)| and dk

2 = |x2,f − x2(k)|,
one can determine the steepest descent control law for
agents starting in State 1, i.e., search through all possible
moves and find the one which minimizes the cost function
at that time step. Table II shows the criterion on the
relationship between dk

1 and dk
2 and the corresponding

optimal control laws that minimize the cost at each time
step k.

Proposition 1: The control algorithm described in Table
II globally optimizes the cost function defined in equation
(2) for any initial condition consistent with State 1.

Proof: Clearly if d1(0) > d2(0), then d1(k) >
d2(k) for all k. A similar result holds for the case where
d2(0) > d1(0). Therefore without loss of generality one
can assume d1(0) > d2(0). It is then true that the globally
optimal action for agent 1 is to go toward its destination,
while agent 2 has three possible directions to move in, as
indicated in Table II.
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Fig. 2. Optimal Path for d2(0) ≤ d1(0) ≤ 20

We use a Dynamic Programming approach (see, e.g., [2])

to generate and subsequently plot the optimal path for
some finite pairs (d1(0), d2(0)). If we let C(i, j) denote
the cost associated with the initial condition where d1(0) =
i, d2(0) = j, then using dynamic programming, we have:

C(i, j) = min{C(i−1, j−1), C(i−1, j), C(i−1, j+1)}
+ i2 + j2 + (i − j)2 (3)

The optimal path is from point (i, j) to one of the three
points (i−1, j−1), (i−1, j), or (i−1, j+1). Dynamic pro-
gramming principles dictate selection of the points with the
smallest cost. Figure 2 graphically illustrates the structure of
the optimal solution generated using dynamic programming
principles. A comparison shows that the globally optimal
control law is in fact the same as the control laws in Table
II.

Using mathematical induction we can show that these
control laws remain valid for all initial conditions
(d1(0), d2(0)) provided that d1(0) ≥ d2(0). To prove this,
it is enough to show that

C(i, 0) ≥ · · · ≥ C(i, j − 1) ≥ C(i, j),

and
C(i, i) ≥ · · · ≥ C(i, j + 1) ≥ C(i, j), (4)

where j = (i + 1)/2 if i is odd and j = i/2 if i is even.
The following induction steps complete the proof.

1) When i = 4, inequality (4) holds.
2) Assume that when i = 2k inequality (4) holds, where

k ∈ Z and k ≥ 2. We can then compute C(i, j) as in
equation (3). Some analysis shows that if inequality
(4) holds for i = 2k, it also holds for i = 2k + 1.
Furthermore, if the relationship holds for i = 2k + 1,
it also holds for i = 2k + 2.

3) From the results of steps 1 and 2, the inequality (4)
holds for any i ∈ Z and i ≥ 0.

B. Partial Communication

In the following discussion we continue to assume that
the information is transmitted over an error free channel;
however we now limit the number of bits transmitted per
agent per time step. When we limit the communication in
this manner the performance of the system may be degraded
and the cost function associated with the optimal path may
increase as a function of the number of bits that are used.
In order to quantify the system degradation a ratio of the
system performance with perfect communication to that of
the performance with limited communication is examined.
The ratio used for the purpose of this study is defined such
that the results presented are valid only in cases where the
agents initial positions, xi(0), are initially far from their
desired positions, xi,f .

Suppose the two agents are given j bits to communicate
each round, then we are interested in following quantity:

rj = inf
σ

lim sup
d1(0),d2(0)

Jj(σ, d1(0), d2(0))
J∞(d1(0), d2(0))
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where:

σ ≡ any control law.
J∞(d1(0), d2(0)) ≡ the total cost with perfect
information; and
Jj(σ, d1(0), d2(0)) ≡ the total cost with j bits of
communication per agent per time step k.

The cost J∞(d1(0), d2(0)) is obtained using the optimal
control law described in section III-A. Note that rj is in
some sense the worst case performance hit since we take
the supremum over all possible initial conditions.

The following lemmas illustrate the salient features of the
ratio rj for different values of j.

Lemma 2: Assume neither agent knows when the system
equilibrium has been reached. Let σ0 be control law associ-
ated with both agents moving one step closer to their desired
positions at every time step regardless of the position of the
other agent (we call this set of control actions ‘racing to the
origin’). Then

lim sup
d1(0),d2(0)

J0(σ0, d1(0), d2(0))
J∞(d1(0), d2(0))

= 1.2

Proof: It is clear that

lim sup
d1(0),d2(0)

J0(σ0, d1(0), d2(0))
J∞(d1(0), d2(0))

= lim
n→∞

J0(σ0, n, 0)
J∞(n, 0)

.

When d1(0) = n, the optimal control law given in Table II
shows that:

J∞(n, 0) =
n∑

i=1

i2 + 5
k∑

i=1

i2 +
k∑

i=0

(n − 2i)2,

where k = n
3 −1 (assuming n

3 is an integer, otherwise, take
the largest integer near it). After some simplification, we
get

J∞(n, 0) = 15k3 + O(k2)

On the other hand, we have

J0(n, 0) = 2
n∑

i=1

i2 = 18k3 + O(k2),

hence

lim
n→∞

J0(σ0, n, 0)
J∞(n, 0)

=
18
15

= 1.2.

Lemma 3: The control law σ0 defined in Lemma 2 (i.e.,
‘racing to the origin’) achieves r0; i.e., for any other given
control law σ which achieves a finite cost,

lim sup
d1(0),d2(0)

J0(σ, d1(0), d2(0))
J∞(d1(0), d2(0))

≥ 1.2.

Proof: For any given control law that achieves a finite
cost σ, at least one of the agents will reach its stationary
point in a finite number of time steps. Otherwise, the cost
may continue to increase for an infinite number of time
steps and, which would result in J0 → ∞ as k → ∞.

Selecting a sequence of pairs sk = (k, 0) as the initial
conditions for the two agents and evaluating the quantity

lim sup
sk

Jj(σ, sk)
J∞(sk)

.

After a finite amount of time, d2 will become zero for all
future time. If we then push k to ∞, we can simply ignore
the cost that agent 2 has accumulated. Then the only cost
contribution of interest is that of agent 1. Now, the best
thing agent 1 can do is to go toward the origin, since any
other σ will incur a cost that is larger than σ0, i.e.,

lim
k→∞

J0(σ, sk)
J∞(sk)

≥ lim
k→∞

J0(σ0, sk)
J∞(sk)

.

If we take the supremum of the limit of both sides, we get

lim sup
k→∞

J0(σ, sk)
J∞(sk)

≥ lim sup
k→∞

J0(σ0, sk)
J∞(sk)

.

Applying Lemma 2, we get

lim sup
k→∞

J0(σ, sk)
J∞(sk)

≥ lim
k→∞

J0(σ0, sk)
J∞(sk)

= 1.2.

Lemma 4: rj is 1 for all j > 0.
Proof: Suppose j = 2. If this ratio is indeed correct

it would represent the minimum achievable value over all
communication protocols. Thus in order to prove the valid-
ity of Lemma 4 we need to show that there is some protocol
over which it is valid. Thus we propose the following
protocol: before l = max{log2(d1(0)), log2(d2(0))} rounds
of communication, both agents go toward their destination
(i.e., they ‘race to the origin’).

For a coding scheme where ‘00’ represents ‘0’, ‘01’
represents ‘1’ and ‘10’ represents the end of the sequence
it will take l + 1 rounds, for each agent i to fully transmit
di(k) to the other agent. At this point the problem reduces
to one with perfect information and both agents can follow
the optimal control law.

Clearly when d1(0) or d2(0) becomes large, the cost
accumulated during the first l rounds is negligible compared
to the total cost. Hence rj = 1. Similarly, for any j > 2,
rj = 1.

For any j = 1
q < 2, the number of rounds required for

each of the agents to communicate its di(k) to the other
agent becomes 2ql instead of l. However, since q is fixed,
when we let d1(0) approach ∞, the relation rj = 1 remains
valid.

IV. COMMUNICATION WITH CHANNEL ERRORS

In this section we attempt to extend the results of the
previous section to the case where communication is done
over channels that may introduce errors. Suppose we are
given a Binary Erasure Channel (BEC) with error proba-
bility p, 0 < p < 1/2, i.e., when a ‘1’ is sent, a ‘1’ is
received with probability of 1 − p and an ‘x’ is received
with probability p. Similarly, when a ‘0’ is sent, a ‘0’ is
received with probability of 1 − p and an ‘x’ is received
with probability p. We are again interested in the variation
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of rj as a function of j? It turns out that a relationship that
is very similar to the one described in section III-B holds
in a probabilistic form.

Lemma 5: For any given ε, 0 < ε < 1, rj = 1 with
probability 1 − ε for all j > 0.

Proof: As was justified in the proof of Lemma 4,
without loss of generality, we assume that we can send two
bits per time step and use the same coding scheme, i.e.,
‘00’ represents ‘0’, ‘01’ represents ‘1’ and ‘10’ represents
the end of the sequence. It follows then agent i (i ∈ {1, 2})
takes log di(0)+1 rounds to send the distance information.
For simplicity, let di(0) = n for the following discussion.

In the noiseless case, this is all that is required to pass
all the necessary information from one agent to the other.
However, in the BEC case, any bit during the transmission
could be erased by the channel. Hence in order to increase
the probability that the receiving party gets the complete
information, the sending party needs to send duplicate
copies of its message. Therefore, after log n + 1 rounds of
communication, agent i keeps sending the same information
T times (T is to be determined). It is clear that on
the receiving party side, all the odd bits it receives are
indication bits, i.e., a leading ‘0’ means the next bit contains
distance information and a leading ‘1’ means the end of the
sequence.

Now consider only the T copies of the indication bits
‘1’. During the transmission, ‘1’ could be erased so the
receiving agent would get an ‘x’ instead, where ‘x’ indicates
the error event. As the error probability of the channel is
p < 1/2, then for any given ε > 0, from the weak law of
large numbers, there exits T1 > 0, such that if T > T1,

Prob{number of 1′s = T (1 − p)} > 1 − ε.

As T (1−p) > Tp, there must be at least two consecutive
‘1’s that appear in the odd positions between which there
are 2 log n bits conveying the distance information. The
receiving part can then break the 2T (log n + 1) bits it has
received into T copies of the same information and form
an information matrix of size T × log n. The rows of the
matrix are the identical distance information extracted from
the even bit positions and the columns represent the received
bits for the same bit. For example, if n = 2601, then the
binary expansion of it is 101000101001. The sending part
would send ‘01’ ‘00’ ‘01’ ‘00’ ‘00’ ‘00’ ‘01’ ‘00’ ‘01’
‘00’ ‘00’ ‘01’ ’10’ for T times. The receiver part would
then form a matrix such as the one depicted in Figure 3.

Notice that this communication scheme would fail if at
least one column consists completely ‘x’s. Let this failing
probability be Pe, then it is easy to show that

Pe ≤ (log n)pT + C2
log np2T + ... + C log n

log np(log n)T , (5)

where Ck
log n = (log n)!

(log n−k)!k! . Therefore,

Ck
log npkT =

(log n)!
(log n − k)!k!

pkT ,

≤ ((log n)pT )k. (6)
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Fig. 3. Information pattern at the receiver side

Substitute inequality (5) into (6) we get,

Pe ≤
log n∑

i=1

(
(log n)pT

)i

= (log n)pT 1 − ((log n)pT )log n

1 − (log n)pT

Hence, by letting T = log n, we get

lim
n→∞Pe = 0.

Therefore, for large enough n such that log n > T1,
by letting T = log n, the above communication scheme
produces error less than any pre-specified number ε in a
probabilistic sense. On the other hand, as we have

lim
n→∞

(log n)2

n
= 0,

the cost accumulated during the (log n)2 rounds of com-
munication is negligible compared to the total cost. Hence,
r2 = 1.

We are also interested in how rj changes when other
types of communication channels with behavior more com-
plicated than the BEC are introduced. The simplest example
is the Binary Symmetric Channel (BSC). This channel is
one such that when a ‘1’ is sent, a ‘1’ is received with
probability of 1 − p and a ‘0’ is received with probability
p. Here 0 < p < 1/2 and the relationship is completely
symmetric for the case when a ‘0’ is sent.

Conjecture 6: Similar to the BEC case, in BSC, we have
that for any given ε, 0 < ε < 1, rj = 1 is of probability
1 − ε for all j > 0.

While we believe conjecture (6) to be true, the proof
is considerably more difficult because it crucially depends
on the communication scheme which is used. This added
complexity arises from the fact that with a BSC channel
the indication bits are harder to decipher and thus cannot
help us in the same way. Further, greater system knowledge
or added constraints like an upper bound on the di(0) are
likely to be required. Current work is underway to verify
this conjecture.

V. CONCLUSIONS AND FUTURE DIRECTIONS

As an initial step toward developing real-time informa-
tion theory, we studied the problem of optimal two-agent
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one dimensional formation control, both with and without
communication constraints.

In the first case, we assumed each agent could exchange
unlimited information with the other. For this case, we
showed that the control laws based on local decisions
achieve the globally optimal solution.

In the second case, we limited the amount of information
that could be exchanged by each agent during one round
(i.e., per time step). When the communication was limited,
(a finite number of bits could be transmitted per round), we
showed that this communication constraint could degrade
system performance. In order to get a quantitative measure
of this degradation we introduced the ratio, rj to describe
the lower bound of the performance impairment. Here j
is the number of bits that can exchanged each round and
rj is the ratio of cost with j bits of information to the
cost with unlimited information. We found r0 = 1.2 and
rj = 1 for any j > 0 as long as the initial position
of each the agents was far enough away from its desired
position. Similar results were obtained when we introduced
a BEC model into the communication channels. However
because the BEC channel behaves in a stochastic fashion
only probabilistic results are possible.

In the near future, there are several interesting issues that
we can study, such as:

• The development of a systematic method to generate a
globally optimal solution, (based on local decisions),
for a general multi-agent optimal control system, with-
out communication constraints. Roughly speaking, this
problem is very difficult to transfer into a convex
problem, but it may be solvable using a dynamic
programming approach.

• The addition of agent dynamical behavior to the system
model. In this paper, the local rules are pretty simple
and no dynamics are involved. The problem may
become complicated if the agents had some interesting
dynamics or if they were chasing moving targets. Then
the dynamics of agents and the targets would affect
system performance.

• The extension of the results to a system with a BSC
model, especially computation of the performance ratio
rj .
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