

Abstract— Today's hyper-competitive automotive

marketplace places very stringent quality and productivity
demands on the industry's manufacturers and thus dictates an
investment in new engineering processes and methods. In this
paper, an engine design and development process based on
Toyota's process improvement vision will be presented. The
process requires the development and deployment of a Model-
based Concurrent Engine System Design Methodology. Model
based engineering has the potential to enable engineers to
investigate design alternatives, system sensitivities, and
component integration compatibility prior to building and
testing physical prototypes. These benefits could be further
magnified by engineering concurrency between the various
teams involved in engine system development. Tools and
methods needed to implement the vision are discussed.

I. INTRODUCTION

Today’s hyper-competitive automotive marketplace
places very stringent quality and productivity demands on
the industry’s manufacturers. In this context, Toyota Motor
Corporation (TMC) continuously improves its business
operation by driving for innovation and evolution [1]. As
argued in [2], the exponential complexity growth of
emerging engine systems dictates an investment in new
engineering processes and methods. The authors state that
Toyota plans to develop improved gasoline, electric-
gasoline-hybrid, and electric-fuel-cell-hybrid powerplants to
address exhaust emission and fuel resource challenges in
the global marketplace. They argue that successful
application of these technologies requires robust and high-
performance control systems. Thus it becomes crucial to
employ efficient development processes that are more inter-
disciplinary and concurrent than today’s methods. Figure 1
[2] shows a representation of such a process.

The purpose of this paper is to provide a starting point
for evaluating and developing Toyota’s vision for improved
engine system design and development. Essentially, this
vision is to develop and deploy a Model-based Concurrent
Engine System Design Methodology. Model-based
engineering has the potential to enable engineers to
investigate design alternatives, system sensitivities, and
component integration compatibility prior to building and

testing physical prototypes. We believe these benefits are
further magnified by engineering concurrency between the
various teams involved in engine system development.

The engine system under consideration includes the base-
engine, intake, exhaust, emissions after-treatment, and
electronic control (including sensor, actuator, and
communications) systems. Thus, as shown in Figure 2, we
wish to promote concurrency between the engine hardware,
control logic, embedded computing architecture, and tuning
/ optimization design domains. Figure 2 also shows the
information dependencies between design domains. It is
important to observe that each of the domains is dependent
upon information generated by the others, thus there is a
strong need for concurrency in the over-all design
methodology.

Fig. 1. Abstract Model-based Engine System Development Process

The remainder of the paper includes a more detailed
presentation of the concurrency needs for each design
domain (Section II – Design Domains) and an elaboration
of usage scenarios for the new design methodology (Section
III – Use Cases for the Concurrent Engine System Design
Methodology.) Given that we are still in the planning phase
for this work, Section II focuses on related work that should
be considered during methodology development.

Towards a Concurrent Engine System Design
Methodology

Akira Ohata, Toyota Motor Corporation, Kenneth R. Butts, Toyota Technical Center, U.S.A.

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

ThC14.4

3296

Fig. 2. Scope of Concurrent Engine System Design

II. DESIGN DOMAINS

Because our vision for concurrent engine system design
is so broad, there is much to be considered and the related
work is bountiful. A relevant overview paper on modeling
and simulation [3] focuses on technologies that support the
design of engineering systems. The paper identifies several
on-going research challenges:

• Modeling at the component level.
o Component interaction modeling.
o Selecting an adequate level of detail.
o Improvement of numerical solvers.

• Integration with design tools.
o CAD.
o Finite-element modeling.
o Optimization and synthesis tools.

• Collaborative modeling.
o Unified model representation.
o Ontologies for modeling and simulation.

An emerging and closely related field of study is called
“Computer Automated Multi-Paradigm Modeling.”

(CAMPaM) [4]. It introduces collaborative modeling
concepts in three dimensions:

• Levels of abstraction
• Multi-formalisms (transformation between modeling

formalisms)
• Model meta-modeling (modeling to describe model

formalisms)
The following discussion introduces activities that

expound on the items listed above. The presentation is far
from exhaustive and we plan to refine it as the design
methodology matures. Our immediate task is to weave the
salient aspects of these activities into a coherent plan for the
concurrent engine system design environment and promote
technology development where necessary.

A. Systems Design Domain

The goal in the system design domain is to provide the
infrastructure and architectures that transcend and integrate
the engine system’s hardware, control systems, and
electronics and software architecture design domains.

Product-Line Development Methods: The Software
Engineering Institute has documented effective

Engine System Hardware
Design
• Base Engine
• Intake System
• Exhaust System
• After Treatment Design
• Sensors
• Actuators
• Start-Up / Failure State

Parameter Tuning &
Optimization
• Emissions
• Fuel Economy
• Driveability

• Robustness / Sensitivity

• Failure Mode Effects Analysis

Control Law and Systems
Diagnostics Design
• Engine Control
• Coordinated Transmission

Control

• Coordinated Vehicle Control
• Failure Mode Effects

Management

Embedded Computing
Architecture Design
• Calculation capability (HW /

SW synthesis)
• Communication capability

• Electronic Fault Tolerance

• Software Synthesis

Behaviors

Capabilities

Capabilities &
Parts Variations

Cost

Interface Requirements

Computation &
Communication
Requirements Latencies

Capabilities

Failure Mode
Requirements

Failure Mode
Requirements

System
Performance

System
Performance

3297

development and business methods that are critical to
organizations employing software product-line principles.
“A software product line is a set of software-intensive
systems that share a common, managed set of features
satisfying the specific needs of a particular market segment
or mission and that are developed from a common set of
core assets in a prescribed way.” [5] We believe these
architecture-based practices are largely applicable to model-
based engine system development as described in this
paper.

Systems Architecture Analysis: One technique to
promote rapid and efficient modeling is to formulate
systems architectures. The system architecture serves as the
reference specification for component and assembly
modeling that is reusable across the product line. Ford
Motor Company (FMC) has published system-modeling
architectures for control systems and hardware systems
development at the vehicle level [6], [7]. Similar concepts
could be applied to promote rapid modeling of engine
systems.

Systems Modeling Standards (SysML): The systems
engineering community, in association with INCOSE, is
developing a modeling standard called Systems Modeling
Language. This standard operates at an abstract structural
level that may be useful for systems architecture modeling
and analysis. This work [8] is set in the context of the
OMG’s Unified Modeling Language [9].

Model Management: FMC has piloted a commercial
product-life-cycle-management tool as the foundation for its
model management system. This system adheres to the
principles of product-line development because it uses an
architecture centric data model that allows a reference
design to be the basis for tailored product instances. The
data model is also designed so that the reference and
associated instances are easily maintained as they evolve
over time. Please see [10] for more detail. [11] and [12]
discuss model management in a more general setting.

Systems Optimization: Dynamic programming can be an
effective method to leverage system models for parameter
optimization and feasibility assessment. FMC has used the
dynamic programming technique to assess and optimize the
performance of engine after-treatment systems. Please see,
for example, [13].

Alternatively, rules based and direct approaches have
been used successfully at TMC [14] and FMC [15]
respectively.

B. Hardware Design Domains

As presented in [11], the strong relationship between

design and validation can be illustrated as in Figure 3. A
design’s form, behavior, and function typically progress
iteratively from concept to detailed realization. Thus, it is
critical that we improve the knowledge transfer from
computer-aided design tools to behavioral modeling and
simulation environments to improve development
productivity. In [3], the authors note that this capability
exits for single-domain design environments. While the
trend is to expand this capability towards more general,
multi-domain settings, we believe there remains a rich
opportunity to exploit the idea in our engine system design
context.

Fig. 3. Relationship between Form, Behavior, and Function

Physical Modeling: The choice of modeling language is
important here. Modern declarative languages admit a
modeling method based on component composition where
the model components have a strong mapping to the
physical system components. Model components
constructed in this way are more re-usable (i.e. high quality
product-line assets) because their causality is defined by
their system usage, not by their component definition. [3]
TMC has had a long interest in declarative modeling in
support of engine hardware and systems development [16].
Much of this work has been done in the Modelica [17]
modeling language context. Modelica is declarative and
object-oriented and thus well suited for component-based
modeling of complex systems.

C. Control Systems Domain

Computer-Aided Control System Design (CACSD) tools
are generally well accepted within the automotive control
design community and the mapping of these tools onto the
prototypical systems engineering ‘V’ process model is well
established [18]. Specific design methodologies include
Model Based Control Design, Rapid Controller
Prototyping, and Hardware-In-the-Loop Verification. In the
following, we present additional control system design
domain topics that are particularly relevant related to
concurrent engine system design.

VALIDATION

DESIGN

Form

BehaviorFunction

Analysis

ModelingSynthesis

3298

MAAB Controller Guidelines: The MathWorks’ tool
suite (Matlab®1, Simulink®, Stateflow® …) is one of the
primary tool suites used in automotive control systems
development. Consequently, the MathWorks Automotive
Advisory Board (MAAB) was formed to serve as a
discussion forum for automotive control system design tool
needs. An important product of MAAB is an industry
guideline [19] that helps to ensure controller models are
prepared in a common way. This common preparation
results in efficiencies for the automobile manufacturer and
the control system electronic control unit suppliers.

Automatic Code Generation: Controller models serve as
executable specifications to the embedded software
engineers. In fact, it is now possible to use automatic code
generation technology to rapidly develop a large portion of
the engine control application software and engine control
system suppliers are reporting promising automatic code
generation results. For example, Visteon say that they can
use data dictionary overlays to target multiple computing
platforms from a common engine control specification [20].
This work demonstrates how model-based development can
be used in a product-line context. Moreover, Visteon’s
metrics show that automatically generated software can be
as efficient (in terms of RAM and ROM size) as manually
generated software.

Automated Testing: The CACSD domain now has
automated tools that help validate a control system
specification and verify its software realization from either
a requirements or a development-regression perspective.
Moreover, it is possible to use automate data collection
experiments on engine test-benches to improve control
system calibration productivity. A discussion of
infrastructure for integrated model-based control system
development and automated testing can be found in [21].

Model-based Calibration: The automotive industry has
developed efficient statistical modeling techniques to
characterize static engine input-output relationships. These
relationships can be analyzed to set optimal control settings
for each engine operating condition. A commercial analysis
suite called the Model-Based Calibration Toolbox codifies
many of these techniques [22]. Some representative
application references include [23], [24], [25], and [26].

1 Matlab, Simulink, and Stateflow are Registered Trademarks of The
MathWorks, Inc, Natick, MA.

D. Electronics Architecture and Embedded Software
Domains

Architecture Analysis & Design Language (AADL):
The architecture theme is also important for electronic
computing platform design and development. For example,
the aerospace partition of the Society of Automotive
Engineers is working with the Software Engineering
Institute to standardize an architecture description language
called Architecture Analysis & Design Language. In
contrast to SysML, AADL is designed to describe and
analyze the embedded computing aspects of complex
systems. More specifically, “it is used to design and analyze
the software and hardware architecture of embedded real-
time systems and properties that are critical to the operation
of such a system such as timing, throughput, reliability. …
The vision of the SAE AADL is for avionics, aerospace,
automotive, and robotics application developers in DoD
and in industry to use predictive model-based software
system engineering practices, resulting in a major reduction
in systemic errors leading to performance and dependability
failures.” [27]

AUTOSAR: The Automotive Open System Architecture
(AUTOSAR) [28] is an industry partnership to establish an
open standard for automotive electronic control unit
software architecture. In particular, the partnership aims to
standardize 1) functional interfaces across manufacturers
and suppliers and 2) the interfaces between the different
software layers to promote modularity, scalability,
transferability and re-usability of software-based
functionality. Modularity of automotive software elements
will enable tailoring of software according to the individual
requirements of electronic control units and their tasks.
Scalability of functions will ensure the adaptability of
common software modules to different vehicle platforms to
prohibit proliferation of software with similar functionality.
Transferability of functions will optimize the use of
resources available throughout a vehicle’s electronic
architecture. Re-usability of functions will help to improve
product quality and reliability and to reinforce corporate
brand image across product lines.

Systems Design: Metropolis [29] is a design and
development tool initiative from the Center for Hybrid and
Embedded Software Systems (CHESS has four generally
relevant research thrusts: Hybrid Systems Theory, Model-
based design, Advanced tool architectures, and
Experimental applications including vehicle electronics
[30].) Metropolis contains simulation and analysis
environments aimed at supporting embedded system level
design from conception to implementation. One automotive
top-to-bottom design methodology in Metropolis is called
fault tolerant data flow.

3299

Another CHESS initiative is called CHIC – Checker for
Interface Compatibility. CHIC [31] is a formal verifier that
checks compatibility between software and hardware
component models. The fundamental goal is to ensure that
components satisfy the assumptions they make about each
other and therefore can be reliably composed to create
larger systems.

MoBIES: The United States Defense Advance Research
Program Agency (DARPA) recently completed the Model-
based Integration of Embedded Software project [32]. This
project was focused on tools and methods for improving
embedded software development. As such, much of the
MoBIES work is relevant to engine system development. In
particular, the DESERT model compiler tools [33] from
Vanderbilt University’s ISIS lab use constraint and signal
connectivity analysis to assess whether a set of model
components is compatible from a systems perspective.
Given a compatible component set, the tool can
automatically construct a large-scale and operational model
of the system assembly.

Another important focus for MoBIES was model-based
system verification. Thus Carnegie-Mellon University, The
Software Engineering Institute, Emmeskay, Inc., and The
MathWorks, Inc. collaborated to develop the System
Verification Manager (SVM) [34]. SVM provides
requirements to model architecture traceability, change-
driven verification activity management, and verification
result management and access.

Formal Methods: In [2] the authors remark that with
current methods for engine system validation and
verification “a vast number of data and tests are necessary
to guarantee sufficient reliability.” Thus they call for
continued validation and verification methods research and
development to improve productivity.

Fortunately, some practical, semi-formal tools targeted at
control-logic and software validation and verification are
now commercially available. For example, [21] shows how
tools can dramatically improve the productivity of model-
based development. Validation tools can be used to
automatically check that design models satisfy high-level
system performance assertions (i.e. system requirements).
And the improved productivity enabled by automatic test
case generation allows aerospace-quality test suites to be
used in automotive software verification. Early results of
formal methods application to automotive control logic
specifications are presented in [35].

III. USE CASES FOR THE CONCURRENT ENGINE SYSTEM

DESIGN METHODOLOGY

Model-based work products have utility throughout the
product-line life cycle. They help systems architects

evaluate structural alternatives and cascade requirements
from system to subsystem. They can document product-line
reference architectures for re-use and optimization. Models
often serve as rigorous specification and validation criteria
for component designers. Moreover, validation test results
can be re-used for component and system level verification.

In this section we describe several specific engineering
processes and tasks that could be improved with the
application of the model-based Concurrent Engine System
Design Methodology.

Early assessment of new engine technologies and
actuation systems: Engine hardware designers have
traditionally used static operating point analysis to assess
the benefit of new engine technologies and actuation
systems. The results of this analysis are often optimistic
because systems must be detuned to satisfy transient and
dynamic behavioral requirements. Concurrent hardware
design, control design, and optimization, facilitated by rapid
hardware modeling, will allow technology assessment based
on dynamic operating scenarios.

Virtual engines and vehicles for desktop calibration:
Engine control calibration is a very time consuming process
that relies on the availability of physical hardware. These
characteristics are becoming more critical as additional
control dimensions are introduced by new technology.
Predictive dynamic models that exhibit the appropriate
levels of accuracy and computational cost would reduce the
reliance on costly physical prototypes and allow the
calibration process to start at an earlier development stage
[36]. As mentioned above, additional benefits will be
realized because system performance feedback can be
provided to the hardware design teams at design time.

Early vehicle system integration studies: While the
focus of this design environment is to improve the engine
system design, the work products could be used to facilitate
improved systems interaction at the vehicle level. The
interaction of the engine system with transmission, braking,
vehicle dynamics, active safety, and energy management
control systems is critical to the delivery of today’s
sophisticated vehicle features that include vehicle stability
control, adaptive cruise control, fuel usage minimization,
and regenerative braking.

Targeted (Optimized) Electronics Architecture Design:
The trend in the embedded electronics industry is to provide
“systems-on-chips” [37] that serve as highly optimized
computational platforms for the task at hand. This
optimization is achieved even though the design cycles are
relatively short: typically less than one year. In contrast, the
automotive industry tends to re-use standard computational

3300

platforms from vehicle project to vehicle project with a long
electronics platform design cycle. Thus the computational
platform acts as a major constraint on the control logic
design that often results in compromised system
performance or late engineering changes. The concurrent
engine system design methodology, used in conjunction
with rapid-electronics systems synthesis from the embedded
electronics industry, should result in more optimized engine
systems.

Automated Software Synthesis: Given control law
specification models, it is now (or soon will be) possible to
use automatic code generation to synthesize production
quality software realizations of the control law [2]. In
addition to the inherit benefits of high quality and improved
productivity, this rapidly developed software 1) facilitates
early verification of the real-time aspects computational
platform and 2) can be used as a computationally efficient
control logic model for large-scale engine system
simulation and optimization.

Knowledge Capture: Model-based development
processes produce rigorous and reusable development
assets in the form of models, executable specifications, and
verification procedures. These assets serve as the base
design reference for the corporation’s vehicle product line.
Given proper care in the implementation of the
environment’s data repository, these design references can
be re-used by a globally distributed development team and
customized as needed for a particular product application.
This re-use represents a kaizen mechanism for on-going
productivity and quality improvements. Two specific
examples are the capability to rapidly perform regression
verification on minor changes and to train new engineers in
the model-based concurrent engine system design
methodology.

Use Case Considerations: The model-based concurrent
engine system design methods should account for the
following considerations:
• Engine systems must be developed to meet the needs of

the application marketplace. There may be reason to
perform local market place optimizations to meet those
needs.

• Engine systems are developed in global and cross-
organizational teams.

• Engine systems development spans research, advanced
development, and series development or any subset
thereof. In other words, changes may be large and
systematic or they may be minor and incremental.

• Engine systems quality and verification are of critical
importance.

• Engine systems must be designed for

manufacturability.

IV. CONCLUSION

This paper presents a formative vision of a model-based
and concurrent engineering method that is intended to
improve automotive engine system development. The
realization of this vision will require a rational synthesis of
the elements described. Hopefully, this paper will spur
discussion and effort in that regard.

REFERENCES

[1] J. Liker, The Toyota Way: 14 Management Principles From The
World's Greatest Manufacturer, McGraw-Hill, New York, 2004.

[2] T. Ueda, A. Ohata, “Trends of Future Powertrain Development and
the Evolution of Powertrain Control Systems,” in Proc. 2004 SAE –
Convergence Conference, October, 2004.

[3] R. Sinha, V-C Liang, C. J. J. Paredis, P. K. Khosla, “Modeling and
Simulation Methods for Design of Engineering Systems,” JCISE,
2001.

[4] P. J. Mosterman, H. Vangheluwe, “Computer Automated Multi-
Paradigm Modeling: An Introduction,” Simulation: Transactions of
The Society for Modeling and Simulation International, vol. 80, no.
9, pp. 433 – 450, September, 2004.

[5] The Software Engineering Institute, The US Department of Defense,
and Carnegie-Mellon University,
http://www.sei.cmu.edu/plp/plp_init.html.

[6] M. Jennings, et al, “A Vehicle Model Architecture for Vehicle
System Control Design,” 2003-01-0092, Proc. SAE 2003 World
Congress, 2003.

[7] M. Tiller et al, “Development of a Vehicle Model Architecture in
Modelica,” Proc. Modelica Workshop 2003,
http://www.modelica.org/Conference2003/papers/h32_vehicle_Tiller
.pdf, 2003.

[8] Systems Modeling Language, www.sysml.org/.
[9] Object Management Group, http://www.uml.org/.
[10] K. Butts, et al, “A Model Repository for Automotive Embedded

Control Systems Design,” DETC/CIE-48237, Proc. DETC’03,
ASME 2003 Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, 2003.

[11] C. J. J. Paredis, A. Diaz-Calderon, R. Sinha, P. K. Khosla,
“Composable Models for Simulation-Based Design,” Technical
Report ICES-04-21-00, Institute for Complex Engineered Systems,
Carnegie Mellon University, Pittsburgh, PA, 2000.

[12] B. Johansson, Model Management for Computational System
Design, Dissertation No. 857, Linköping Studies in Science and
Technology, Institute of Technology, Linköping University, Sweden,
2003.

[13] Y. Kim et al, “Optimization of Lean NOx Trap Control for Fuel
Economy and Exhaust Emissions,” Proc. 2004 American Control
Conference, 2004.

[14] T. Fukuma, et al, “Challenging the Vision of Calibration-Free Diesel
Engine Development by Means of Model-based Control and
Automatic Optimization,” 25th Internationales Wiener
Motorensymposium, Vienna, Austria, April 2004.

[15] J. Sun, et al, "Issues in Cold Start Emission Control for Automotive
IC Engines," Proc. American Control Conference, Philadelphia PA,
June 1998.

[16] S. Soejima, “Examples of usage and spread of Dymola within
Toyota,” Proc. Modelica Workshop 2000,
http://www.modelica.org/workshop2000/proceedings/Soejima.pdf,
2000.

[17] Modelica Association, http://www.modelica.org/.
[18] dSpace, Inc., http://www.dspaceinc.com/ww/en/inc/systems.html.

3301

[19] The MathWorks, Inc., “Controller Style Guidelines for Production
Intent Development Using MATLAB, Simulink, and Stateflow,”
Version 1.00, April 2001.

[20] G. Hodge et al, “Multi-Target Modelling for Embedded Software
Development for Automotive Applications,” 2004-01-0269, Proc.
2004 SAE World Congress, 2004.

[21] Reactive Systems, “Model-Based Testing and Validation of Control
Software with Reactis®,” November, 2003, http://www.reactive-
systems.com/.

[22] The MathWorks, Inc., Model-Based Calibration Toolbox,
http://www.mathworks.com/products/mbc/.

[23] T. Holliday, et al, “Engine-Mapping Experiments: A Two-Stage
Regression Approach,” TECHNOMETRICS, May 1998, vol. 40. no
2, American Statistical Association and the American Society for
Quality, 1998.

[24] D. W. Rose, et al, “An engine mapping case study – a two-stage
regression approach,” ImechE Paper C606/025/2002, Statistics &
Analytical Methods in Automotive Engineering, London,
September, 2002.

[25] K. Ropke, editor, Design of Experiments (DoE) in der
Motorenentwicklung, ISBN 3-8169-2271-6, Expert Verlag, 2003.

[26] K. Plischke, “Bringing MATLAB® Into the Test Cell, SAE 2003-01-
1025, Proc. 2003 SAE World Congress, 2003.

[27] Society for Automotive Engineers, Architecture Analysis & Design
Language, http://aadl.info/.

[28] Automotive Open System Architecture, http://www.autosar.org/.
[29] Gigascale Systems Research Center,

http://www.gigascale.org/metropolis/.
[30] Center for Hybrid and Embedded Software Systems,

http://chess.eecs.berkeley.edu/.
[31] Checker for Interface Compatibility, CHIC, http://www-

cad.eecs.berkeley.edu/~tah/chic/.
[32] DARPA Model-based Integration of Embedded Software project,

http://dtsn.darpa.mil/ixo/programdetail.asp?progid=38.
[33] S. Neema, et al, “Constraint-Based Design Space Exploration and

Model Synthesis, EMSOFT 2003, Lecture Notes in Computer
Science 2855, Springer-Verlag, 2003.

[34] System Verification Manager, http://www.ece.cmu.edu/~webk/svm/.
[35] S. Sims, R. Cleaveland, K. Butts, and S. Ranville, “Automated

validation of software models,” Proc. 16th IEEE International
Conference on Automated Software Engineering, ASE'01. IEEE,
2001.

[36] T. M. Morton, et al, “Model-based Optimal Calibration of a Dual
Independent Variable Valve-Timing Engine,” Kartsen Ropke, editor,
Design of Experiments (DoE) in der Motorenentwicklung, ISBN 3-
8169-2271-6, expert verlag, 2003.

[37] F. Winters, et al, “Design Process Changes Enabling Rapid
Development,” Proc. 2004 SAE Convergence Conference, October,
2004.

3302

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ArialNarrow-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Oblique
 /Times-Roman
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

