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Abstract— Local basis functions offer computational effi-
ciency when used in nonlinear adaptive control schemes.
However, commonly used robust weight (parameter) update
methods do not result in acceptable performance when applied
to underdamped systems. This is because persistent oscillation
in the inputs encourages severe weight drift, in turn requiring
large robust terms that significantly limit the performance. In
particular, the methods of leakage, e-modification, deadzone,
and weight projection sacrifice performance to halt this weight
drift. In contrast, it is observed (in simulations) that applica-
tion of the proposed method halts the weight drift without
sacrificing the performance.

Index Terms— direct adaptive control, nonlinear approxi-
mate control, neural network control, fuzzy control, Lyapunov
stability, local basis functions, β-splines, CMAC

I. INTRODUCTION

THE methods of direct adaptive control have been

used to derive stable nonlinear approximate adaptive

controls, where a weighted sums of basis functions are used

to model the nonlinearities. Example basis functions used in

such schemes include β-splines [1], radial basis functions

[2], multilayer neural networks [3], the Cerebellar Model

Articulation Controller (CMAC) [4], and fuzzy sets [5].

Others have emphasized the common framework of these

schemes, including [6], [7], [8]. The types of basis functions

used can be classified as either global or local. Local basis

functions have a value of zero at some distance away

from their centers, and examples include β-splines, fuzzy

triangular membership functions, and the CMAC. Normally

hypercube areas are covered by each function so that table

look-up methods can be used for indexing. In this paper,

the non-zero area of the basis function will be referred

to as a cell. The advantage to using local basis functions

is that only activated (indexed) cells need to have their

functions computed, making on-line computation much

more efficient. However, the literature is devoid of examples

where local basis functions are used in direct adaptive

control of systems that exhibit persistent oscillations. In this

case, large jumps in error can occur unexpectedly, due to

the drift of the weights to large magnitudes. The traditional

robust methods used to deal with this problem of weight
drift include leakage [9], deadzone [10], e-modification [11]

and parameter projection [10] and these may work well

for global basis functions (assuming a large number of

very wide functions). However, for local basis functions
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the weight drift is much more severe due to oscillations

between local cells: two cells that are beside each other

can have weights drift toward infinity and negative infinity

respectively. The aforementioned robust methods result in

very limited performance when attempting to halt this kind

of severe weight drift.

In this paper an alternative to the standard robust methods

is proposed that addresses the problem identified above.

This method takes advantage of one of the proprieties of

neural networks: many different sets of weights are capable

of uniformly approximating the same nonlinear function.

The general idea in this approach is to find an alternate

set of weights that approximates the function, and to try

and force the weights used in the control (control weights)

toward the finite alternative rather than to zero (as in

leakage). Each alternate weight is continuously updated

and, in turn, kept close to a weight that has been identified

as the best choice found so far, as determined by a local

cost-functional. One of these choice weights may only

be changed when its corresponding cell is deactivated. It

is shown through simulation that this way of eliminating

the weight drift does not result in a dramatic loss in

performance.

The motivation for this research comes from CMAC

direct adaptive control of flexible-joint robots. It is observed

that the error jumps to very large values (appearing to go

unstable) as soon as the highest level of performance is

reached. The solution proposed in this paper is presented

using the simplest possible simulation; two local basis

functions where the disturbance, instead of the nonlinearity,

is specified. The purpose is examine this problem, and its

proposed solution, in the simplest most generic manner

possible. The intention is to find fundamental understanding

and thus wider application of the technique. The solution

has also been successfully applied to a flexible-joint robot

model, but those results are beyond the scope of this paper.

II. BACKGROUND ON ROBUST METHODS

Consider that n nonlinearities in f(x) ∈ Rn are approxi-

mated using weighted basis functions. Each nonlinearity is

approximated with m weights multiplying n-dimensional

basis functions. The basis functions are arranged in the

following matrix

φ(x) =

⎡
⎢⎢⎢⎢⎣

φ1(x) 0 . . . 0

0 φ2(x)
...

...
. . . 0

0 . . . 0 φn(x)

⎤
⎥⎥⎥⎥⎦ , (1)
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where φ(x) ∈ Rn×nm and for each i = 1 . . . n there is a

row vector of basis functions

φi(x) =
[

φi,1(x) φi,2(x) . . . φi,m(x)
]
. (2)

If each row of basis functions is the same, φi(x) = φj(x)
for i, j = 1, .., n, this describes one basis function network

with n outputs. Consider an ideal (constant) set of weights

in column vector

w =
[

w1 w2 . . . wnm

]T
. (3)

The outputs of the (ideal) basis function network are given

by φ(x)w. Note that in the case of n = 1 there is a

scalar output. Consider the local region D ∈ Rn where

the network has basis functions. The functions in φ will

qualify as basis functions if, given large enough m, f(x)
can be approximated

f(x) = φ(x)w + d ∀x ∈ D, (4)

where the modeling error d is bounded ‖d‖ < dmax i.e. the

basis functions can uniformly approximate f(x) ∈ D .

The error between the ideal weights w and the weight

estimates ŵ (actual weights) is denoted

w̃ = w − ŵ. (5)

Then to find a stabilizing control for the nonlinear system

with state x ∈ Rn represented by

ẋ = f(x) + u, (6)

where u ∈ Rn are control inputs, choose (adaptive control)

Lyapunov function

V =
1
2

xT x +
1
2β

w̃T w̃, (7)

where β is a positive constant (learning gain). Then taking

the derivative

V̇ = xT (f(x) + u) − 1
β

w̃T ˙̂w, (8)

= xT (φw + d + u) − 1
β

w̃T ˙̂w, (9)

and choosing control

u = −φŵ − Gx, (10)

with G a positive-definite matrix of control gains results in

V̇ = xT (d − Gx) + w̃T (φT x − 1
β

˙̂w). (11)

The question is how to update the weights, keeping the

system Lyapunov-stable in spite of (bounded) disturbance

d.

A. Non-robust update

The weight update

˙̂w = βφT x (12)

would result in Lyapunov derivative

V̇ = −xT Gx + xd, (13)

≤ ‖x‖(−‖x‖λmin(G) + dmax), (14)

where λmin(G) is the minimum singular value of G. In this

case the weights could drift freely to infinite magnitudes

when

‖x‖ <
dmax

λmin(G)
. (15)

This drift normally causes a sudden, large jump in state

error when the weight magnitudes have grown large enough

to adversely affect the output φŵ.

B. Leakage

The method of leakage (or σ-modification) [9] uses the

update
˙̂w = β(φT x − σŵ), (16)

where σ is a positive constant. The term containing σ in

(16) is the leakage term. By subbing in (10),(16) into (11)

and using ŵ = w − w̃ the derivative becomes

V̇ = xT (d − Gx) + σw̃T (w − w̃), (17)

≤ ‖x‖dmax − ‖x‖2λmin(G) + σ‖w‖‖w̃‖ − σ‖w̃‖2.
(18)

There is an elliptical surface defined on the (‖x‖, ‖w̃‖) plane

found by setting (18) equal to zero, outside of which V̇ <
0. By standard Lyapunov theorems, this implies the states

and weight errors are Semi-Globally Uniformly Ultimately

Bounded (SGUUB). One advantage over other methods is

that information about the nonlinearities is not needed to

ensure stability, only to quantify the bounds. In addition,

‖x‖ → 0 as λmin(G) → ∞.

The advantage to using local basis functions is that they

need not be calculated on-line when the cell is not activated

(when the function value is zero). But the leakage term in

(16) must be applied at all times. To accomplish this without

increasing on-line computations, note the i’th weight update

when the i’th basis function is zero is given by ˙̂w = −νŵi.

This can be solved for ŵi(t) during the time period ∆ti
during which the basis function is zero. The solution is

applied as a discrete update the instant the basis function

regains a non-zero value,

∆ŵi =
(
e−βσ∆ti − 1

)
ŵi. (19)

There is extra memory required to store the values of

these time periods. Note that this results in resetting the

weights to zero if the cell has not been activated for a

long time (∆ŵi → −ŵi as ∆ti → ∞). Since cells must

be frequently visited, the method cannot keep previously

learned trajectories in memory for long.
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C. e-modification

The update known as e-modification [11] is given by

˙̂w = β(φT x − σ‖x‖ŵ). (20)

When the i’th basis function is zero the i’th weight update is
˙̂wi = −ν‖x‖ŵi. There is no way to calculate this without

doing on-line calculations at all times. The advantage of

using local basis functions is lost, since deactivated weights

still need to be updated. Thus e-modification is not consid-

ered in this paper.

D. Deadzone

The method of deadzone [10] simply stops updating the

weights in the nonstable region

˙̂w =

{
βφT x if‖x‖ > dmax

λmin(G) ,

0 otherwise.
(21)

The error will not go to zero, but stability (SGUUB) is

assured. However, an accurate estimate of dmax is required,

which requires accurate measurements of the nonlinearities.

Outside disturbances must also be taken into account,

making a conservative estimate of dmax more likely to be

used.

E. Projection

The method of parameter projection [10] is often used

in adaptive control. A simplified version of the projection

algorithm for the i’th weight update is

˙̂wi =

⎧⎪⎨
⎪⎩

0 if ŵi = ‖w‖∞ and (φT x)i > 0,

0 if ŵi = −‖w‖∞ and (φT x)i < 0 ,

βφT x otherwise.
(22)

This prevents the weight magnitudes from growing beyond

‖w‖∞. Again, SGUUB stability is assured. However, the

quantity ‖w‖∞ is ill-defined. Thus, a conservative estimate

would normally be used.

III. A NEW METHOD

In practice, there are severe shortcomings with the pre-

vious methods when applied to local basis functions in

the presence of persistent oscillations. The persistent os-

cillations between cells greatly increases the tendency of

the weights to drift to large magnitudes. To overcome this

problem without sacrificing performance, a new method is

proposed that uses two additional sets of weights. As a first

step, the control weights will be kept finite by introducing a

term to keep them close to a set of alternate weights p̂. The

error between the alternate weights and the ideal weights w
is denoted

p̃ = w − p̂. (23)

The alternate weights are, in turn, kept finite by keeping

them close to a set of choice weights ô, as identified by a

cost functional. The i’th choice weight will be subject to

the constraint

|øi| < omax, (24)

where omax is chosen as a (rough) estimate of ‖w‖∞ and

we define the parameter γ

γ = ‖w‖ + omax ≥ ‖w − ô‖. (25)

A. Controller derivation

Choose the (adaptive control) Lyapunov function

V =
1
2

xT x +
1
2β

w̃T w̃ +
1
2β

p̃T p̃. (26)

Define the control output as

ĉ(x) = φ(x)ŵ, (27)

and the alternate output as

â(x) = φ(x)p̂, (28)

and define the output errors

c̃ = φ(x)w − ĉ, ã = φ(x)w − â. (29)

Taking the derivative of (26) to get V̇ and then subbing in

(27) results in

V̇ = xT (c + d + u) − 1
β

w̃T ŵ − 1
β

p̃T p̂, (30)

where c = φ(x)w is a vector of ideal outputs. The following

control and weight updates are proposed

u = −ĉ − Gx, (31)

˙̂w = β
(
φT x + αφT (â − ĉ) + ζ(p̂ − ŵ)

)
, (32)

˙̂p = β
(
αφT (ĉ − â) + ν(ô − p̂)

)
. (33)

with α, ζ, ν all positive constants. The Lyapunov derivative

becomes

V̇ = xT (−Gx + c̃ + d) − w̃T φT x

− w̃T
(
αφT (â − ĉ) + ζ(p̂ − ŵ)

)
− p̃T

(
αφT (ĉ − â) + ν(ô − p̂)

)
(34)

To analyze V̇ make the following substitutions

ŵ = w − w̃, ĉ = c − c̃, p̂ = w − p̃, â = c − ã,

and then

V̇ = xT (−Gx + d) − w̃T
(
αφT (c̃ − ã) + ζ(w̃ − p̃)

)
− p̃T

(
αφT (ã − c̃) + ν(ô + p̃ − w)

)
. (35)

Expanding the terms gives

V̇ = −xT Gx + xT d − α(c̃ − ã)T (c̃ − ã)

+ ζw̃T p̃ − ζw̃T w̃ + νp̃T (w − ô) − νp̃T p̃. (36)

The derivative can be bounded

V̇ ≤ −λmin(G)‖x‖2 + ‖x‖dmax + ζ‖w̃‖‖p̃‖
+ νγ‖p̃‖ − ζ‖w̃‖2 − ν‖p̃‖2, (37)
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trajectory

i’th cell

t = ta t = tb t = tc

Fig. 1. Determining the cost functional (four local cells shown)

V̇ ≤
⎡
⎣ ‖x‖

‖w̃‖
‖p̃‖

⎤
⎦

T ⎡
⎣ −λmin(G) 0 0

0 −ζ ζ/2
0 ζ/2 −ν

⎤
⎦

⎡
⎣ ‖x‖

‖w̃‖
‖p̃‖

⎤
⎦

+

⎡
⎣ ‖x‖

‖w̃‖
‖p̃‖

⎤
⎦

T ⎡
⎣ dmax

0
νγ

⎤
⎦ , (38)

and if the parameters are chosen such that

ζ − 4ν < 0, (39)

then V̇ < 0 outside of a (bounded) region near the origin,

implying SGUUB stability.

B. Identifying the choice weights

A cost functional for the i’th cell is defined that incorpo-

rates the average error in the i’th cell, the magnitude of the

i’th weight, and the average error in the next cell activated

in time. The i’th cell is activated at time ta, deactivated

at time tb, whereas the next cell is activated at time tb and

deactivated at time tc. This notation is illustrated in Figure 1

where a trajectory is shown moving through four cells, and

the middle two will be used to compute the cost-functional.

The cost functional is defined at time tc as

fi(tc) =

∫ tc

ta
‖x‖

tc − ta

+

{
(κ1 − κ2(tb − ta))|ŵi| if (tb − ta) > κ1

κ2
,

0 otherwise.
(40)

If this is the minimal value found so far, then the i’th weight

is kept in memory as a choice weight ôi. Thus, the following

assignment occurs at time tc

ôi ← ŵi(tb) if fi(tc) < fi(τ), ∀ τ ≤ ta. (41)

The parameters κ1 and κ2 are positive constants chosen

to ensure that cells activated for short periods of time are

penalized much more for large weight magnitude. They are

chosen with knowledge of the period of oscillation T such

that κ1
κ2

> T . Thus, cells that have less than a full period

of oscillation occur within them will always be penalized

for the weight magnitude. Only cells that contain more than

one period of oscillation will be penalized solely on average

state error.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

x

φ
i(

x
)

Fig. 2. Two local spline basis functions

C. Discrete updates

The terms multiplied by ζ and ν in (32) and (33)

respectively must be applied regardless of the value of φi.

They must be applied even when the cell is deactivated. To

accomplish this, identify the weight updates when a cell is

deactivated as ˙̂wi = ζ(p̂i − ŵi) and ˙̂pi = ν(ôi − p̂i). The

value of choice weight ôi will be a constant during deacti-

vation ( ˙̂oi = 0 for ti,o ≤ t ≤ ti,a). Thus the solutions for

wi(t) and pi(t) can be calculated using standard techniques

and upon reactivation of the cell the weights are set to the

following values (assuming ζ 	= ν)

ŵi(ti,a) =ŵi(ti,o)e−ζ∆ti

+ p̂i(ti,o)
[(

e−ζ∆ti

ν − ζ

)
+

(
e−ν∆ti

ζ − ν

)]

+ ôiζ

[
1 − e−ζ∆ti −

(
e−ζ∆ti

ν − ζ

)
−

(
e−ν∆ti

ζ − ν

)]
(42)

p̂i(ti,a) =p̂i(ti,o)e−ν∆ti + ôi(1 − e−ν∆ti) (43)

where ∆ti = ti,a − ti,o, the length of time the i’th cell

was deactivated. Note that if a trajectory has been learned

but not implemented for a long time (∆ti → ∞) then the

weights will be set to the choice weights upon reactivation

(ŵi(ti,a) ← ôi and p̂i(ti,a) ← ôi). This is an immediate

advantage over leakage where the weights would be reset

to zero.

IV. SIMULATION RESULTS

A. Using local basis functions

For demonstration only two local basis functions, with

one state input, are used on a generic system. In this way

the problem and the proposed solution can be understood at

the simplest level. The basis functions used in the simulation

are local spline polynomials. Each function is localized to

a region. To this end define an activation function for the

i’th cell as

Ci(x) =

{
1 if mini ≤ x ≤ maxi,

0 otherwise,
(44)

where mini and maxi are the lower and upper boundaries

of the cell respectively. Possible basis function types include

rectangular (binary CMAC), triangular (fuzzy set), or spline.

A continuous differentiable function is often (mathemati-

cally) required, so here the following spline is used:

gi(x) = 16(hi(x)2 − 2h3
i (x) + h4

i (x)), (45)
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where 0 ≤ hi(x) ≤ 1 gives the position inside the cell

calculated

hi(x) = Ci(x)
(

x − mini

maxi − mini

)
. (46)

The two splines used in the simulation are illustrated in

Figure 2.

To examine performance the differential equations re-

sulting from applying the control and update rules are

simulated. In this hypothetical case the ideal weights are

chosen and the disturbance d is then the input to the

system. Since it is now the nonlinearity that is unknown,

the advantage is that the performance can be inspected

independent of the type of nonlinearity, and it becomes

easier to see the effects of disturbances and modeling errors.

The system can be simulated with only two basis functions

(and two weights) so that the behavior of the weights can

be understood completely. We are interested in the effect

of oscillation of the state about a cell boundary, and the

common parameters used to investigate this were chosen to

be

w =
[ −1 1

]T
β = 1

d = 0.1 sin(2πt) G = 1

and the two basis functions shown in Figure 2 were used.

The simulations are run for t = 500 seconds. If the

weight drift is continuing after this time we consider the

stability from the robust modification to be inadequate

(even though weight drift will be halted as t → ∞).

The justification is that in practice, with more complex

systems, this continued weight drift will eventually result

in a large leap in state error, often appearing to go unstable.

Even with this simple two-function system a leap in state

error is sometimes observed, depending on basis function

placement and weight value. If, on the other hand, weight

drift has been stopped in t = 500 seconds we consider

this adequate stability. The goal is to halt the weight drift

without sacrificing performance. The measure of error used

to evaluate performance is the amplitude of the steady-state

oscillation

error = ‖x(t > 400)‖∞. (47)

B. Simulation using robust weight updates

er
ro

r

σ

Fig. 3. Leakage: with weight drift, ’x’, weight drift prevented, ’*’.

1) Leakage: The control (10) applied to the system (6)

with n = 1 and weight updates (16) result in the differential

equations

ẋ = φw̃ + d − Gx, (48)

˙̃wi = β [−φix + σ(wi − w̃i)] for i = 1, 2. (49)

In Figure 3 the parameter σ is varied and the maximum

error measure is plotted, and the observation on whether

weight drift is prevented or not is marked with different

symbols. It can be seen that with leakage there is a direct

trade-off between performance and stability. In order to halt

the weight drift, performance must be sacrificed.

er
ro

r
δ

Fig. 4. Deadzone: with weight drift, ’x’, weight drift prevented, ’*’.

2) Deadzone: The same system with the same control

and weight updates (21) result in the differential equations

ẋ = φw̃ + d − Gx, (50)

˙̃wi =

{
−βφix if |x| > δ

0 otherwise
i = 1, 2, (51)

where the parameter δ is an estimate of the disturbance

bound. For SGUUB stability we require δ > dmax/G =
0.1. It can be seen in Figure 4 that there is a small region

(0.1 < δ < 0.5) where the weight drift has been prevented

without sacrificing performance. Thus, deadzone may be

appropriate for local basis functions. However, the value of

dmax must also include any external disturbances, so it may

be difficult to estimate in practice. One can see in the graph

that an inaccurate estimate may lead immediately to poor

performance. The transition from good to poor performance

is very steep, unlike leakage, so that the error increases

without warning. This type of behavior will be inappropriate

for critical systems where dmax is uncertain.

er
ro

r

M

Fig. 5. Projection: with weight drift, ’x’, weight drift prevented, ’*’.
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3) Projection: The same system with the same control

and weight updates (22) result in the differential equations

ẋ = φw̃ + d − Gx, (52)

˙̃wi =

⎧⎪⎨
⎪⎩

0 if wi − w̃i = M and φix > 0,

0 if wi − w̃i = −M and φix < 0,

−βφix otherwise,

(53)

where M is an estimate of the maximum weight, and must

chosen such that M > ‖w‖∞ = 1 for SGUUB stability.

Normally, the value of ‖w‖∞ is ill-defined, and must be

estimated. In this case, we have the luxury of having it as

a specified parameter. In Figure 5 we see that in order to

eliminate weight drift we must choose M < 1, negating

the stability result. Thus, projection is not an appropriate

method for training local basis functions.

er
ro

r

ζ

Fig. 6. New Method: with weight drift, ’x’, weight drift prevented, ’*’.

C. Simulation using new method

Given the same system with control applied as before but

with new proposed weight updates (32),(33), and (41) the

resulting differential equations are

ẋ = φw̃ + d − Gx, (54)

˙̃wi = β (−φix + αφi(ã − c̃) + ζ(p̃i − w̃i)) , (55)

˙̃pi = β (αφi(c̃ − ã) + ν(−ôi − p̃i)) , (56)

where β = 1, α = 1 and the ratio of ζ and ν is kept

constant at ζ = 2ν. In Figure 6 we see that there is a

large region (0.002 < ζ < 0.1) where the weight drift has

been prevented without sacrificing performance. Above that,

there is gradual increase in error. Thus, it is relatively easy

to pick values of ζ and ν such that both performance and

stability are maximized, by some measure.

V. CONCLUSIONS

An alternative method for robust weight updates has

been proposed that is appropriate for direct adaptive control

of nonlinear systems using local basis functions. It is

demonstrated that the traditional robust weight update meth-

ods of leakage, e-modification, deadzone, and projection

are inappropriate in this case if persistent oscillations are

present in the inputs. Leakage resulted in a direct trade-

off between performance and stability. The e-modification

method requires on-line computation of all basis functions,

preventing the efficient indexing of local basis functions.

The method of parameter (weight) projection resulted in

poor performance for a Lyapunov-stable solution. The

method of deadzone can result in acceptable performance

if the disturbance bounds are known with certainty, but can

suddenly lead to poor performance otherwise.

The new method proposed in this paper can prevent

weight drift and appears to do so without sacrificing per-

formance. There are also other advantages. Unlike leakage,

the weights do not get reset to zero if a local basis function

has been deactivated for a length of time. Unlike deadzone,

certain knowledge of disturbance bounds is not needed.

When disturbances start to affect performance, the decline is

gradual like leakage, not sudden like deadzone. Also unlike

deadzone, the error can reach exactly zero.

Since local basis functions are very computationally

efficient compared to global ones, the proposed method has

the possibility of wide application. Adaptive control using

β-splines, neural networks, and fuzzy sets have been widely

proposed, but practical computer power has limited their im-

plantation to relatively simple systems: either those of low

order or those that do not exhibit persistent oscillations. The

ability to use local basis functions will greatly increase the

applicability of such methods and make nonlinear control

more feasible for a wider variety of systems.
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