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Abstract— We introduced models for a 3D pendulum, con-
sisting of a rigid body that is supported at a frictionless pivot,
in a 2004 CDC paper [1]. In that paper, several different
classifications were given and models were developed for each
classification. Control problems were posed based on these
various models. This paper continues that line of research by
studying stabilization problems for a reduced model of the 3D
pendulum. Two different stabilization strategies are proposed.
The first controller, based on angular velocity feedback only,
asymptotically stabilizes the hanging equilibrium. The domain
of attraction is shown to be almost global. The second
controller, based on angular velocity and reduced attitude
feedback, asymptotically stabilizes the inverted equilibrium,
providing an almost global domain of attraction. Simulation
results are provided to illustrate closed loop properties.

I. INTRODUCTION

Pendulum models have provided a rich source of
examples that have motivated and illustrated many re-
cent developments in nonlinear dynamics and in nonlinear
control. Much of the published research treats 1D planar
pendulum models or 2D spherical pendulum models or
some multi-body version of these. In a recent paper [1], we
summarized much of this published research, emphasizing
papers that treat control issues. In addition, we introduced
a new 3D pendulum model that, surprisingly, seems not to
have been studied in the prior literature. Another overview
of pendulum control problems was given in [2], which
also provides motivation for the importance of such control
problems. This paper continues that line of research by
developing new control and stabilization results for a 3D
rigid pendulum.

In [1], we introduced new 3D pendulum models, several
of which give rise to pendulum control problems that
have not been previously studied. In particular, one class
of pendulum control problems posed was to stabilize the
pendulum by bringing it to rest at a specified equilibrium
attitude, with its dynamics considered on TSO(3). Another
class of pendulum control problems posed was to stabilize
the pendulum by bringing it to rest at a specified reduced
equilibrium attitude, with its dynamics considered to evolve
on TSO(3)/S1. A reduced attitude is the attitude of the
pendulum, modulo rotations about the vertical. In other
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words, two attitudes have identical reduced attitudes if they
differ only by a rotation about the vertical. In [1], control
problems for 3D pendulums were introduced for control of
the full attitude and for control of the reduced attitude.

In this paper, we study stabilization problems for a 3D
rigid pendulum defined in terms of the reduced attitude. A
3D rigid pendulum is supported at a pivot. The pivot is
assumed to be frictionless and inertially fixed. The rigid
body is allowed to be either asymmetric or symmetric,
and the location of its center of mass is distinct from the
location of the pivot. Forces that arise from uniform and
constant gravity act on the rigid body. For simplicity, three
independent control moments are assumed to act on the
rigid body.

We follow the development and notation introduced in
[1]. In particular, the formulation of the model depends on
construction of a Euclidean coordinate frame fixed to the
rigid body with origin at the pivot and an inertial Euclidean
coordinate frame with origin at the pivot. We assume that
the inertial coordinate frame is selected so that the first two
axes lie in a horizontal plane and the “positive” third axis
points down. The relevant mathematical model is expressed
in terms of the angular velocity vector of the rigid body and
the reduced attitude vector of the rigid body. The reduced
attitude vector is a unit vector in the direction of gravity,
expressed in the body fixed coordinate frame. The control
problems that are treated in this paper involve asymptotic
stabilization of the hanging and the inverted equilibrium of
the 3D pendulum.

The main contribution of this paper is its development
of results for almost global asymptotic stabilization of an
equilibrium of the 3D rigid pendulum. These results are
new and interesting. The results are derived by using novel
Lyapunov functions that are suited to the 3D pendulum
problem. An important additional contribution is that the
results are developed and stated in terms of a global
representation of the reduced attitude. In particular, we
avoid the use of Euler angles and other non-global attitude
representations.

This work compares with [3], wherein PD control laws
for systems evolving over Lie groups were proposed. In
contrast with the PD-based laws in [3] that generally give a
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conservative domain of attraction, we provide almost global
asymptotic stabilization results. Our approach for obtaining
almost global asymptotic stabilization in a direct way, using
a single nonlinear controller, should also be contrasted with
the more traditional approach, introduced in [4], that utilizes
a “swing-up” controller, a locally stabilizing controller, and
a strategy for switching between the two controllers.

II. UNCONTROLLED 3D PENDULUM

In this section we introduce the reduced model for the
uncontrolled 3D pendulum and we summarize fundamental
stability properties of the two equilibrium solutions. Con-
sider the reduced attitude model for the 3D pendulum. The
model, expressed in body frame coordinates, is given by{

Jω̇ = Jω × ω + mgρ × Γ,

Γ̇ = Γ × ω,
(1)

where ω represents the angular velocity of the rigid body,
Γ is a unit vector in the direction of gravity in the body
reference frame, and ρ represents the constant vector from
the pivot to the center of mass of the pendulum, in body
frame coordinates. Since SO(3)/S1 is diffeomorphic to S2,
it is sufficient to view the motion of the 3D pendulum as
evolving on R

3 × S2 according to (1).

Equating the vector field of (1) to zero, we obtain two
different reduced equilibria. These correspond to the angular
velocity, ω = 0 and to the two configurations in S2 given
by Γh = ρ

‖ρ‖ and Γi = − ρ
‖ρ‖ . The former is referred to as

the hanging reduced equilibrium, while the latter is referred
to as the inverted reduced equilibrium. Note that these two
reduced equilibria correspond to equilibrium manifolds for
the full dynamics of the 3D pendulum.

III. CONTROL OF 3D PENDULUM

We study stabilization problems for the reduced at-
titude of a 3D pendulum. In this section, we introduce
the control model, assuming full control actuation. In the
following section, we study asymptotic stabilization of the
hanging equilibrium, based on feedback of the angular ve-
locity. A domain of attraction of the hanging equilibrium is
provided. Subsequently, we study almost global asymptotic
stabilization of the inverted equilibrium, based on feedback
of angular velocity and the reduced attitude vector. By
almost global asymptotic stabilization of an equilibrium,
we mean that for every initial condition in the phase-space
contained in the complement of a set of Lebesgue measure
zero, the solution converges to this equilibrium. Thus, the
domain of attraction of the equilibrium is the whole of the
phase-space, excluding a set of Lebesgue measure zero.

As shown in [1], the control model for the fully actuated

3D pendulum is given by{
Jω̇ = Jω × ω + mgρ × Γ + u,

Γ̇ = Γ × ω,
(2)

where, ω ∈ R
3, Γ ∈ S2, and u ∈ R

3.

IV. ASYMPTOTIC STABILIZATION OF THE HANGING

EQUILIBRIUM

In this section, a simple controller is developed that
makes the hanging equilibrium asymptotically stable. The
controller is based on the observation that the control model
given by equation (2) is input-output passive if the angular
velocity is taken as the output. The total energy is the
storage function. Since the total energy 1

2 ωTJω−mgρTΓ,
has a minimum at the hanging equilibrium (0, Γh), a control
law based on angular velocity feedback is suggested.

Let Ψ : R
3 �→ R

3 be a smooth function such that

ε1‖x‖2 ≤ xTΨ(x) ≤ α(‖x‖), ∀x ∈ R
3, (3)

where ε1 > 0, and α(·) is a class-K function. Thus,
we propose a class of damping-injection based controllers,
given by

u = −Ψ(ω), (4)

where Ψ(·) satisfies (3). We next show that the above
family of controllers, which requires only angular velocity
feedback, renders the hanging equilibrium of a 3D pen-
dulum asymptotically stable, with a guaranteed domain of
attraction.

Lemma 1: Consider the fully actuated 3D pendulum
given by (2). Let Ψ : R

3 �→ R
3 be a smooth function sat-

isfying (3) and choose controller as given in (4). Then, the
hanging equilibrium is asymptotically stable. Furthermore,
for every ε ∈ (0, 2mg‖ρ‖), all solutions of the closed-loop
system given by (2) and (4), such that (ω(0), Γ(0)) ∈ H,
where

H =
{

(ω, Γ) ∈ R
3 × S2 :

1
2
ωTJω

+
1
2
mg‖ρ‖ ‖Γ − Γh‖2 ≤ 2mg‖ρ‖ − ε

}
(5)

satisfy (ω(t),Γ(t)) ∈ H, t ≥ 0, and lim
t→∞ω(t) = 0 and

lim
t→∞Γ(t) = Γh.

Proof: Consider the closed loop system given by
(2) and (4). We propose the following candidate Lyapunov
function

V (ω, Γ) =
1
2

[
ωTJω + mg‖ρ‖ ‖Γ − Γh‖2

]
. (6)

Note that the above Lyapunov function is positive definite
on R

3 × S2 and V (0, Γh) = 0. Furthermore, the derivative
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along a solution of the closed-loop given by (2) and (4) is

V̇ (ω, Γ) = ωT(Jω̇) + mg‖ρ‖(Γ − Γh)TΓ̇,

= ωT(Jω × ω + mgρ × Γ − Ψ(ω))

+ mg‖ρ‖(Γ − Γh)T(Γ × ω),

= − ωTΨ(ω) + mgωT(ρ × Γ) − mgρT(Γ × ω),

= − ωTΨ(ω),
≤ − ε1‖ω‖2,

where the last inequality follows from (3). Thus, V (·) is
positive definite and V̇ (·) is negative semidefinite on R

3 ×
S2.

Next, consider the sub-level set given by H = {(ω, Γ) ∈
R

3 × S2 : V (ω, Γ) ≤ 2mg‖ρ‖ − ε}. Note that the compact
set H contains the hanging equilibrium (0, Γh). Since,
V̇ (ω, Γ) ≤ 0, all solutions such that (ω(0),Γ(0)) ∈ H

satisfy (ω(t), Γ(t)) ∈ H for all t ≥ 0. Thus, H is an
invariant set for solutions of (2) and (4).

Furthermore, from LaSalle’s invariant set theorem, we
obtain that solutions satisfying (ω(0), Γ(0)) ∈ H converge
to the largest invariant set in {(ω, Γ) ∈ H : ω = 0},
that is ρ × Γ = 0. Therefore, either Γ(t) → ρ

‖ρ‖ = Γh

or Γ(t) → − ρ

‖ρ‖ = Γi as t → ∞. Since (0, Γi) 	∈ H, it

follows that Γ(t) → Γh as t → ∞. Thus, (0, Γh) is an
asymptotically stable equilibrium of the closed-loop system
given by (2) and (4), with a domain of attraction H.

Lemma 2: Consider the fully actuated 3D pendulum
given by (2). Let Ψ : R

3 �→ R
3 be a smooth function

satisfying (3) and choose controller as in (4). Then, all
solutions of the closed-loop system given by (2) and (4),
such that ω(0) 	= 0 and (ω(0), Γ(0)) ∈ A, where

A =
{

(ω, Γ) ∈ R
3 × S2 :

1
2
ωTJω

+
1
2
mg‖ρ‖ ‖Γ − Γh‖2 = 2mg‖ρ‖

}
(7)

satisfy lim
t→∞ω(t) = 0 and lim

t→∞Γ(t) = Γh.

Proof: Consider the closed loop system given by (2)
and (4), and the Lyapunov function given in (6). As already
shown, V̇ (ω, Γ) = −ωTΨ(ω). Thus,

V̈ = −ω̇TΨ(ω) − ωTΨ̇(ω),

= −ω̇T

(
Ψ(ω) +

[
∂Ψ
∂ω

]T

ω

)
, (8)

since Ψ(·) is smooth. Furthermore, for all (ω, Γ) ∈ A, ω is
bounded and

ω̇ = J−1 (Jω × ω + mgρ × Γ − Ψ(ω))

is also bounded. Define

N = sup
(ω,Γ)∈A

{∥∥∥∥∥ω̇T

(
Ψ(ω) +

[
∂Ψ
∂ω

]T

ω

)∥∥∥∥∥
}

< ∞.

Next, since (ω(0),Γ(0)) ∈ A, V (ω(0), Γ(0)) = 2mg‖ρ‖
and ‖V̈ (ω(0), Γ(0))‖ ≤ N . Expanding V (ω(t), Γ(t)) in a
Taylor series expansion, we obtain

V (ω(t),Γ(t)) = 2mg‖ρ‖ − ω(0)TΨ(ω(0))t + R(t),
≤ 2mg‖ρ‖ − ε1‖ω(0)‖2 t + N t2, (9)

since the remainder necessarily satisfies ‖R(t)‖ ≤ Nt2.

Define

ε̄ = min
(

2mg‖ρ‖, 3ε21
‖ω(0)‖4

16N

)
.

It can be easily shown that for all t ∈ [T1, T2],

t2 − ε1
‖ω(0)‖2

N
t +

ε̄

N
≤ 0,

where

T1 = ε1
‖ω(0)‖2

2N

(
1 −

√
1 − 4ε̄N

ε21‖ω(0)‖4

)
> 0,

and T2 − T1 ≥ ε1
‖ω(0)‖2

2N . Choose an ε ∈ (0, ε̄). Then, for
all t ∈ [T1, T2], V (ω(t),Γ(t)) ≤ 2mg‖ρ‖− ε̄ < 2mg‖ρ‖−ε
and hence, (ω(t),Γ(t)) ∈ H, where H is an invariant set
given in Lemma 1. Thus, from Lemma 1, we obtain the
result that ω(t) → 0 and Γ(t) → Γh, as t → ∞.

Theorem 1: Consider the fully actuated 3D pendulum
given by (2). Let Ψ : R

3 �→ R
3 be a smooth function

satisfying (3) and choose controller as in (4). Then, all
solutions of the closed-loop system given by (2) and (4),
such that (ω(0),Γ(0)) ∈ N\{(0,Γi)}, where

N =
{

(ω, Γ) ∈ R
3 × S2 :

1
2
ωTJω

+
1
2
mg‖ρ‖ ‖Γ − Γh‖2 ≤ 2mg‖ρ‖

}
(10)

satisfy (ω(t), Γ(t)) ∈ N, t ≥ 0, and lim
t→∞ω(t) = 0 and

lim
t→∞Γ(t) = Γh.

Proof: From Lemmas 1 and 2, we obtain the result
that for every ε ∈ (0, 2mg‖ρ‖) and (ω(0), Γ(0)) ∈ H

⋃
A,

where H and A are as defined in Lemmas 1 and 2, ω(t) → 0
and Γ(t) → Γh as t → ∞. Since, N can be written as

N =
⋃

ε∈(0,2mg‖ρ‖)
(H

⋃
A),

the result follows.

It is important to point that N\{(0, Γi)} is an invariant
set, but it is not the maximal domain of attraction of the
hanging equilibrium. Any solution of (2) and (4), starting
from an initial condition not in N\{(0, Γi)}, that does not
pass through (0, Γi), must eventually enter N\{(0,Γi)}.
Hence, the maximal domain of attraction of the hang-
ing equilibrium is a proper superset of the invariant set
N\{(0, Γi)}.
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In the subsequent theorem, we claim that for the control
given in (4), the equilibrium (0, Γh) of (2) and (4) is almost
globally asymptotically stable.

Theorem 2: Consider the fully actuated 3D pendulum
described by (2). Let Ψ : R

3 �→ R
3 be a smooth

function satisfying (3) and Ψ′(0) be positive definite and
symmetric. Choose controller as given in (4). Let M denote
the stable manifold of the equilibrium (0,Γi). Then all
solutions of the closed-loop system given by (2) and (4),
such that (ω(0), Γ(0)) ∈ (TSO(3)/S1)\M, where M is
a set of Lebesgue measure zero, satisfy lim

t→∞ω(t) = 0 and

lim
t→∞Γ(t) = Γh.

Proof: Consider the closed loop system given by (2)
and (4), and the Lyapunov function given in (6). Since S2

is a compact set and the Lyapunov function V (ω, Γ) is
quadratic in ω, each sublevel set of V (ω, Γ) is a compact
set. Furthermore, since V̇ (ω, Γ) = −ωTΨ(ω) ≤ 0, by
LaSalle’s invariant set theorem, all solutions converge to the
largest invariant set in {(ω, Γ) ∈ R

3 × S2 : V̇ (ω, Γ) = 0}.

The largest such invariant set is given by
{(0,Γh)}⋃{(0,Γi)}. Hence it is sufficient to show
that the stable manifold of the inverted equilibrium (0,Γi),
has dimension less than the dimension of TSO(3)/S1

i.e. five, since all other solutions converge to the hanging
equilibrium (0,Γh) by invariant set theorem.

Using linearization, it can be shown that the equilibrium
(0,Γi) of the closed loop given by (2) and (4) is unstable
and hyperbolic with nontrivial stable and unstable mani-
folds. Hence, from Theorem 3.2.1 in [5], it follows that the
dimension of the stable manifold is less than five, so that
the domain of attraction in Theorem 2 is almost global in
TSO(3)/S1.

We briefly compare the conclusions in Theorem 1 and
Theorem 2. Theorem 1 provides an explicit description of
a compact domain of attraction of the hanging equilibrium;
however that domain of attraction is not maximal. In
contrast, Theorem 2 shows that the maximal domain of
attraction consists of all points in TSO(3)/S1 that are
not in the stable manifold M of the inverted equilibrium.
The geometry of the stable manifold M of the inverted
equilibrium may be complicated; it depends on the model
parameters and the specific nonlinear controller.

V. ASYMPTOTIC STABILIZATION OF THE INVERTED

EQUILIBRIUM

In the last section, we proposed a family of controllers
based on angular velocity feedback that asymptotically
stabilizes the hanging equilibrium, with a guaranteed do-
main of attraction. This motivates us to study the problem
of almost global stabilization using angular velocity and
reduced attitude feedback. The development in this section

is easily modified to provide an almost globally stabilizing
controller for the hanging equilibrium; in this case improved
response performance can be obtained when compared with
the feedback controller (3).

However, the specific focus of this section is to develop
an almost globally stabilizing controller for the inverted
equilibrium. It should be noted that there exists a topological
obstruction in designing a continuous time-invariant con-
troller for global stabilization. This is due to the fact that the
configuration manifold SO(3)/S1 
 S2 is a compact mani-
fold [6]. Thus, we propose a controller that almost globally
asymptotically stabilizes the reduced inverted equilibrium.

Let Φ : [0, 1) �→ R be a C1 monotonically increasing
function such that Φ(0) = 0 and Φ(x) → ∞ as x → 1.
Let Ψ : R

3 → R
3 be a smooth function satisfying (3). We

propose a class of controllers given by

u = −
[
Φ′

(
1
4
(ΓT

i Γ − 1)2
)

(ΓT
i Γ − 1)Γi + mgρ

]
× Γ

− Ψ(ω). (11)

Theorem 3: Consider the fully actuated system given
by (2). Choose a controller as given in (11). Then (0,Γi)
is an equilibrium of the closed loop system (2) and (11)
that is almost globally asymptotically stable with domain
of attraction R

3 × (S2\{Γh}).
Proof: Consider the closed-loop system given by (2)

and (11) and the candidate Lyapunov function

V (ω, Γ) =
1
2
ωTJω + 2Φ

(
1
4
(ΓT

i Γ − 1)2
)

. (12)

Note that the Lyapunov function is positive definite on
R

3 × S2 and V (0, Γi) = 0. Furthermore, every sub-level
set of the Lyapunov function in R

3 × S2 is compact, and
the closed-loop vector field given by (2) and (11) has only
one equilibrium in each sub-level set, namely (0, Γi).

Computing the derivative of the Lyapunov function along
the solution of (2) and (11) yields

V̇ (ω, Γ) = ωTJω̇ + Φ′
(

1
4
(ΓT

i Γ − 1)2
)

(ΓT
i Γ − 1)ΓT

i Γ̇,

= ωT(Jω × ω + mgρ × Γ − Ψ(ω) − mgρ × Γ)

−ωT

(
Φ′

(
1
4
(ΓT

i Γ − 1)2
)

(ΓT
i Γ − 1)(Γi × Γ)

)

+ Φ′
(

1
4
(ΓT

i Γ − 1)2
)

(ΓT
i Γ − 1)ΓT

i (Γ × ω),

= Φ′
(

1
4
(ΓT

i Γ − 1)2
)

[−ωT(Γi × Γ)

+ ΓT
i (Γ × ω)] (ΓT

i Γ − 1) − ωTΨ(ω),

= −ωTΨ(ω),
≤ −ε1‖ω‖2.

Thus, V̇ (ω, Γ) is negative semidefinite on R
3 × S2 and

hence, all solutions remain in the compact sub-level set
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given by K = {(ω, Γ) ∈ R
3 × S2 : V (ω, Γ) ≤

V (ω(0), Γ(0))}. Note that K ⊂ R
3 × (S2\{Γh}).

Next, from LaSalle’s invariant set theorem, for any arbi-
trary initial condition, the solutions converge to the largest
invariant set in {(ω, Γ) ∈ K : ω = 0}. Thus, from the
second equation in (2), we obtain that Γ is constant and
from the first equation in (2), we obtain that either ΓT

i Γ = 1
or Γi × Γ = 0, or both. Therefore, either Γ(t) → Γi or
Γ(t) → Γh as t → ∞. However, (0, Γh) is not contained
in K, hence, Γ(t) → Γi as t → ∞.

It should be noted that the controller (11) is not defined
at Γ = Γh ∈ S2 and also ‖u‖ → ∞ as Γ → Γh. For all
other initial conditions in R

3 × (S2\{Γh}), the controller
guarantees that the solution of the closed-loop, given by (2)
and (11), asymptotically converges to (0, Γi).

It is insightful to view the class of controllers in (11) as
providing a combination of potential shaping, represented
by the function Φ(·) and the term containing gravity, and
damping injection, represented by the function Ψ(·). Fur-
thermore, it may be noted that the argument of the potential
function Φ(·) is proportional to the cosine of the angle
between Γ and Γi. This yields the closed loop property
that if ω(0) = 0, then for all t ≥ 0, the angle between Γ(t)
and Γi is bounded above by the angle between Γ(0) and
Γi.

Corollary 1: Consider the fully actuated system given
by (2) with controller as in (11). Furthermore, let ω(0) = 0
and Γ(0) 	= Γh. Then, for all t ≥ 0,

�(Γi,Γ(t)) ≤ �(Γi, Γ(0)).

Proof: Consider the candidate Lyapunov function (12),
for the closed-loop system. As already shown, V̇ (ω, Γ) =
−ωTΨ(ω). Thus, since V̇ (ω, Γ) is negative semidefinite,
V (ω(t), Γ(t)) ≤ V (ω(0), Γ(0)). Thus substituting ω(0) =
0 in (12), we obtain the result that for all t ≥ 0,

1
2
ω(t)TJω(t) + 2Φ

(
1
4
(ΓT

i Γ(t) − 1)2
)

≤ 2Φ
(

1
4
(ΓT

i Γ(0) − 1)2
)

.

Since, the kinetic energy term is strictly non-negative and
Φ(·) is a monotonic function, we obtain

|ΓT
i Γ(t) − 1| ≤ |ΓT

i Γ(0) − 1|, t ≥ 0.

Thus,
ΓT

i Γ(t) ≥ ΓT
i Γ(0), t ≥ 0,

which implies that

cos (�(Γi,Γ(t))) ≥ cos (�(Γi, Γ(0))) , t ≥ 0.

Since �(Γi, Γ(t)) ∈ [0, π) and cos(·) is non-increasing in
[0, π), the result follows.

VI. SIMULATION RESULTS

In the previous section, we introduced a class of con-
trollers that guarantee almost global stabilization of the
inverted equilibrium of the reduced system (2). In this sec-
tion, we present simulation results for a specific controller
selected from the family of controllers given by (11). We
choose

Φ(x) = −k ln(1 − x),

where k > 0, and Ψ(x) = Px, where P is a positive definite
matrix. The resulting control law (11) is given by

u = −Pω − mgρ × Γ + k
(ΓT

i Γ − 1)
1 − 1

4 (ΓT
i Γ − 1)2

(Γ × Γi).

Consider the model (2) where m = 140 kg, ρ = (0, 0, 0.5)T

m and J = diag(3, 40, 50) kg-m2. Let u be the controller
(11) where P = 2.5I3 and k = 5. The following figures
describe the evolution of the closed loop system (2) and
(11). The initial conditions are ω(0) = (1, 3, 1)T rad/s and
Γ(0) = (0.5, 0.7071, 0.5)T.

Simulation results in Figures 1 and 2 show that ω(t) → 0,
and Γ(t) → Γi as t → ∞. This is also clearly seen from
the plot of the angle between Γ(t) and Γi in Figure 3. The
path that the center of mass of the 3D pendulum follows in
the inertial frame in 3D is shown in Figure 4.

For the case, ω(0) = 0, we only show the plot of
the angle between Γ(t) and Γi in Figure 5. The gains
were chosen to be P = 2I3 and k = 10. As expected
from Corollary 1, the angle between Γ(t) and Γi remains
bounded above by the angle between Γ(0) and Γi which is
120 deg. This is in contrast to Figure 3, where the excursion
in angle exceeds 120 deg.

VII. CONCLUSIONS

In [1], we introduced models for a 3D pendulum, con-
sisting of a rigid body that is supported at a frictionless
pivot and we posed various control problems. In this paper
we study stabilization problems for a reduced model of the
3D rigid pendulum. We propose two different controllers for
stabilization of the 3D pendulum. The first controller, based
on angular velocity feedback only, asymptotically stabilizes
the hanging equilibrium. Furthermore, it is also shown that
the domain of attraction is almost global in TSO(3)/S1, i.e.
the domain of attraction is the whole phase-space, except
for a set of Lebesgue measure zero. The second controller,
based on angular velocity and reduced attitude feedback,
asymptotically stabilizes the inverted equilibrium providing
an almost global domain of attraction. Simulation results
are provided to illustrate the closed loop properties.
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Fig. 1. Evolution of the angular velocity of the 3D pendulum in the body
frame.
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Fig. 2. Evolution of the components of the direction of gravity Γ in the
body frame.
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Fig. 3. Evolution of the angle between the reduced attitude vector Γ(t)
and the desired reduced attitude vector Γi for ω(0) = (1, 3, 1)T rad/sec.
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Fig. 4. Swing-up motion of the vector between the pivot and the center
of mass of the 3D pendulum in the inertial frame.
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Fig. 5. Evolution of the angle between the reduced attitude vector Γ(t)
and the desired reduced attitude vector Γi for ω(0) = 0 rad/sec.
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