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Abstract— This paper considers robust stochastic stability,
stabilization and H∞ control problems for a class of jump
linear systems with time delays. By taking some zero equations,
neither model transformation nor bounding for cross terms
is required to obtain the delay-dependent results, which are
given in terms of linear matrix inequalities (LMIs). Maximum
sizes of time delays are also studied for system stability.
Furthermore, solvability conditions and corresponding H∞
control laws are given which provide robust stabilization with
a prescribed H∞ disturbance attenuation level γ. Numerical
examples show that our proposed methods are much less
conservative than existing results.

I. INTRODUCTION

Jump linear systems are a special class of hybrid systems
with two components in their vector states: the modes and
the states. The mode is described by a continuous Marko-
vian process with a finite state space. The state in each
mode is represented by a system of differential equations.
This class of systems has the advantage of representing
physical systems with abrupt variations adequately, e.g.,
solar thermal central receivers, economic systems, and so
on. Therefore, a lot of attention has been paid to the stability
analysis and controller synthesis for jump linear systems
[1]-[5].

In process industries, time delays and parameter uncer-
tainties always exist, which are sources of instability and
oscillations and make the problems (e.g., stability, controller
design, etc.) difficult to solve. So studies of the stability
criteria and the performance for uncertain jump linear sys-
tems with delays are of theoretical and practical importance.
The criteria can be generally classified into two categories:
delay-independent and delay-dependent ones. Since delay-
dependent criteria make use of information on the length
of delays, they are less conservative than delay-independent
ones, especially when the time delays are small. Thus much
attention is paid on delay-dependent stability and stabi-
lization recently [6]-[11]. In [6], delay-dependent stability
conditions were obtained based on a first-order model trans-
formation. Since additional eigenvalues are introduced, the
transformed system is not equivalent to the original system.
In [7], a neutral model transformation was presented, where
no additional eigenvalues were needed. But an additional
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assumption is required to obtain the stability condition
for the system. In [8], a new model transformation was
introduced to guarantee the equivalence of the transformed
system and the original system; it also obtained a less
conservative inequality by introducing a free matrix and
was further extended to a more general form in [9]. But [8]
and [9] only replaced some delay terms x (t − τ) by the
Leibniz-Newton formula to derive the stability condition.
Since all delay terms affect the result, which one should
be replaced is difficult to decide. Reference [10] combined
a descriptor model transformation with Park and Moon’s
inequalities to yield a new transformed system; however, it
was also based on the substitution for some x (t − τ), and
did not entirely overcome the conservatism of the methods
in [8], [9]. Reference [11] introduced some zero equations to
reduce the conservatism induced by model transformations;
therefore, it was least conservative. But in [11] only stability
analysis was considered for a class of linear time-delay
systems; the system performance analysis and controller
synthesis were not considered.

In this paper, we focus on both delay-dependent stability
analysis and H∞ control synthesis for a class of jump linear
time-delay systems. By introducing some zero equations,
which are similar to those in [11], sufficient conditions for
robust stochastic stability and stochastic stabilization are
derived in the form of LMIs, where no model transformation
is needed. Note that in computing the derivative of our
Lyapunov functional which is different from [11], both the
state and its derivative are maintained, by which substitution
and bounding for cross terms are not needed. Thus the
results obtained are less conservative and over-design is
avoided to some extent.

Briefly, the paper is organized as follows. Section 2
introduces the problem definitions. Section 3 studies the
robust stability and stabilization problems, giving solvability
conditions and stabilizing controllers in terms of LMI’s.
Section 4 considers the robust H∞ control problem – design
a control law to stabilize the uncertain jump linear system
with a prescribed disturbance attenuation level γ > 0, and
presents an LMI solution. Section 5 provides several numer-
ical examples to provide illustration of the effectiveness of
our results and comparison with existing results. Finally,
Section 6 offers some concluding remarks.

II. PROBLEM STATEMENT

Given a probability space (Ω, F, P) where Ω is the sample
space, F is the algebra of events and P is the probability
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measure defined on F. {ηt, t ≥ 0} is a homogeneous, finite-
state Markovian process with right continuous trajectories
and taking values in a finite set S = {1, 2, · · · , s} with
generator Λ = (λij). The transition probability from mode
i at time t to mode j at time t + ∆t, i, j ∈ S is

Pr
(
ηt+∆t = j

∣∣ ηt = i
)

=
{

λij∆t + o (∆t) i �= j
1 + λij∆t + o (∆t) i = j

(1)
where ∆t > 0, lim∆t→0 (o (∆t) /∆t) = 0 and the transi-
tion probability rates satisfy λij ≥ 0 for i, j ∈ S, i �= j and
λii = −∑s

j=1,j �=i λij . We consider a class of stochastic
uncertain systems over the space (Ω, F, P) described by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ (t) = [A (ηt) + ∆A (ηt, t)] x (t)
+ [Aτ (ηt) + ∆Aτ (ηt, t)] x (t − τ)
+ [B (ηt) + ∆B (ηt, t)] u (t) + Bw (ηt) w (t)

z (t) =

⎡
⎣ C (ηt) x (t) + Dw (ηt) w (t)

Cτ (ηt) x (t − τ)
D (ηt) u (t)

⎤
⎦

x (t) = ψ (t) , −τ ≤ t ≤ 0 , η0 = r0

(2)
where x (t) ∈ �n is the state vector, u (t) ∈ �m is the
control input, z (t) ∈ �r is the system output, w (t) ∈
�q is the deterministic disturbance input which belongs
to L2 [0,∞). A (ηt) , Aτ (ηt) , Bw (ηt) , B (ηt) , C (ηt) ,
Cτ (ηt) , Dw (ηt) and D (ηt) are known constant matri-
ces of appropriate dimensions, ∆A (ηt, t) , ∆Aτ (ηt, t) ,
∆B (ηt, t) are unknown matrices which represent time-
varying parametric uncertainties and are assumed to belong
to certain bounded compact sets. τ is the constant time delay
of the state in the system which satisfies 0 ≤ τ ≤ h. ψ (t)
is a vector-valued initial condition of the continuous state
of the mode. For notational simplicity, in the sequel, for
ηk = i ∈ S, we will denote A (ηt) by Ai, ∆A (ηt, t) by
∆Ai, and so on.

The admissible parameter uncertainties are assumed to
be of the following forms:[

∆Ai ∆Aτi ∆Bi

]
= Hi∆i

[
E1i E2i E3i

]
(3)

Here Hi, E1i, E2i and E3i are known real constant matrices
with appropriate dimensions and the elements of ∆i are
Lebesgue measurable for any ηt ∈ S satisfying

∆T
i ∆i ≤ I, ∀t ≥ 0 (4)

Let the Lyapunov-Krasovskii functional be

V (x, t, ηt) = xT (t) P (ηt) x (t) +
∫ t

t−τ

xT (s) Qx (s) ds

+
∫ 0

−τ

∫ t

t+θ

ẋ (s) Rẋ (s) dsdθ (5)

where P (ηt), Q, R are positive definite symmetric un-
known matrices. We introduce the following definitions.

Definition 1 The free jump system ( u (t) ≡ w (t) ≡ 0 )
in (1)-(4) is said to be robustly stochastically stable if for
all finite ψ (t) ∈ �n defined on [−τ , 0] and initial mode r0,
there exists a finite number Ξ̃ (ψ (·) , h, r0) > 0 such that

lim
N→∞

{∫ N

0

E ‖x (ψ, h, t)‖2
dt

}
< Ξ̃ (ψ (·) , h, r0) (6)

holds for all admissible uncertainties satisfying (3)-(4),
where E is the statistical expectation operator.

Definition 2 The system in (1)-(4) is said to be robustly
stochastically stable with disturbance attenuation level γ >
0 if for all w (t) ∈ L2 [0,∞), the system is robustly
stochastically stable and the response {z (t)} under zero
initial condition, i.e., ψ = 0, satisfies

E

[∫ ∞

0

zT (t) z (t) dt

]
≤ γ2

[∫ ∞

0

wT (t) w (t) dt

]
(7)

Definition 3 The jump system in (1)-(4) is said to be robust
stochastically stabilizable with disturbance attenuation level
γ > 0 if there exists a state feedback control law

u (t) = K (ηt) x (t) (8)

such that the resulting closed-loop system satisfies the
inequality in (7).

In this paper we shall investigate techniques of robust
stability, robust stabilization and robust H∞ control which
depend on the size of the time delay. Our purpose is to
develop criteria for stochastic stability and stabilization of
the system in (1)-(4), examine its robustness and design
appropriate H∞ state feedback controllers that guarantee
stochastic stability with a prescribed performance γ.

III. ROBUST STABILITY AND STABILIZATION

In this section, we will consider the stability and stabi-
lization of the system in (1)-(4) with w (t) ≡ 0. First we
introduce the following zero equation which will be used
in our main results:

Ξ1 = 2
[
xT (t) Yi + xT (t − τ) Ti

]
×

[
x (t) − x (t − τ) −

∫ t

t−τ

ẋ (s) ds

]
= 0 (9)

where Yi and Ti are unknown constant matrices with
appropriate dimensions. On the other hand, for any semi-
positive-definite (SPD) matrix

X =
[

X11 X12

XT
12 X22

]
≥ 0

we have

Ξ2 = hξT (t) Xξ (t) −
∫ t

t−τ

ξT (t) Xξ (t) ds ≥ 0 (10)

where ξ (t) =
[

xT (t) xT (t − τ)
]T

. It is easy to see
that the equation (9)-(10) are always satisfied.

Theorem 1: The free jump system in (1)-(4) is robustly
stochastically stable for any constant time delay τ satisfying
0 ≤ τ ≤ h, if there exist Pi = PT

i > 0, Q = QT > 0,
R > 0, εi > 0, a symmetric SPD matrix X ≥ 0 and
appropriately dimensioned matrices M1i, M2i, M3i, Yi and
Ti such that the following LMIs are satisfied:

Θ1 =

⎡
⎣ X11 X12 Yi

∗ X22 Ti

∗ ∗ R

⎤
⎦ ≥ 0 (11)
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Θ2 =

⎡
⎢⎢⎢⎢⎣

Π11 Π12 Π13 M1iHi ε−1
i ET

1i

∗ Π22 Π23 M2iHi ε−1
i ET

2i

∗ ∗ Π33 M3iHi 0
∗ ∗ ∗ −ε−1

i I 0
∗ ∗ ∗ ∗ −ε−1

i I

⎤
⎥⎥⎥⎥⎦ < 0 (12)

where ∗ denotes blocks that are readily inferred by symme-
try and

Π11 = Q +
∑s

j=1 λijPj + hX11 + M1iAi

+ AT
i MT

1i + Yi + Y T
i

Π12 = hX12 + M1iAτi + AT
i MT

2i + TT
i − Yi

Π13 = −M1i + Pi + AT
i MT

3i

Π22 = −Q + hX22 + M2iAτi + AT
τiM

T
2i − Ti − TT

i

Π23 = −M2i + AT
τiM

T
3i

Π33 = −M3i − MT
3i + hR

(13)
Proof: The weak infinitesimal operator �x

t [·] of the stochas-
tic process {x (t) , ηt, t ≥ 0}, acting on V (x, t, ηt) at the
point {t, x, ηt = i}, is given by

�x
t [V ] =

∂V

∂t
+ ẋT (t)

∂V

∂x

∣∣∣∣
ηt=i

+
s∑

j=1

λijV (t, x, i, j)

Then we have

�x
t [V ] = xT (t) Qx (t) − xT (t − τ) Qx (t − τ)

+τ ẋ (t) Rẋ (t) −
∫ t

t−τ

ẋ (s) Rẋ (s) ds

+ẋT (t) Pix (t) + xT (t) Piẋ (t)

+
s∑

j=1

λijx
T (t) Pjx (t) (14)

Introducing the following equation

Ξ3 = 2
[
xT (t) M1i + xT (t − τ) M2i + ẋ (t) M3i

]
× [−ẋ (t) + (Ai + ∆Ai (t))x (t)
+ (Aτi + ∆Aτi (t)) x (t − τ)] = 0

(15)

where M1i, M2i, and M3i are unknown constant matrices
with appropriate dimensions, it is obvious to see this free
equation is obtained by the free jump system in (2). Adding
Equations (9), (10) and (15) to Equation (14), we have the
following inequality:

�x
t [V ] ≤ ξ̄

T (t)

⎡
⎣ Π̄11 Π̄12 Π̄13

∗ Π̄22 Π̄23

∗ ∗ Π̄33

⎤
⎦ ξ̄ (t)

−
∫ t

t−τ

ζT (s) Θ1ζ (s) ds

= ξ̄
T (t) Θ̄2ξ̄ (t) −

∫ t

t−τ

ζT (s)Θ1ζ (s) ds(16)

where ξ̄ (t) =
[

ξT (t) ẋT (t)
]T

, ζ (s) =[
ξT (t) ẋT (s)

]T
and

Π̄11 = Q +
s∑

j=1

λijPj + hX11 +
(
AT

i + ∆AT
i

)
MT

1i

+M1i (Ai + ∆Ai) + Yi + Y T
i

Π̄12 = hX12 + M1i (Aτi + ∆Aτi)
+

(
AT

τi + ∆AT
τi

)
MT

2i + TT
i − Yi

Π̄13 = −M1i + Pi +
(
AT

i + ∆AT
i

)
MT

3i

Π̄22 = −Q + hX22 + M2i (Aτi + ∆Aτi)
+

(
AT

τi + ∆AT
τi

)
MT

2i − Ti − TT
i

Π̄23 = −M2i +
(
AT

τi + ∆AT
τi

)
MT

3i

Π̄33 = −M3i − MT
3i + hR

By the Lyapunov stability theory, we know that the system
is stochastically stable if there exist Θ1 > 0 and Θ̄2 < 0
such that

�x
t [V ] < λmax

(
Θ̄2

) ∥∥ξ̄ (t)
∥∥2

2
− λmin (Θ1)

∫ t

t−τ

‖ζ (s)‖2
2 ds

< 0

holds. Then by Lemma 1 [11] and Schur complements,
Θ̄2 < 0 can be easily obtained from the inequality (12).
Thus the proof is completed. �

If the system mode set S = {1}, the jump linear system
is simplified into a general linear system. Then we have the
following simplified result.

Corollary 1: The free system in (1)-(4) with i ∈
S = {1} is robustly stable for any constant time delay
τ satisfying 0 ≤ τ ≤ h if there exist P = PT > 0,
Q = QT > 0, R > 0, ε > 0, a symmetric SPD matrix
X ≥ 0 and appropriately dimensioned matrices M1, M2,
M3, Y and T such that the following LMIs are satisfied:

Θ0 =

⎡
⎣ X11 X12 Y

∗ X22 T
∗ ∗ R

⎤
⎦ ≥ 0

Θ00 =

⎡
⎢⎢⎢⎢⎣

Π110 Π120 Π130 M1H ε−1ET
1

∗ Π220 Π230 M2H ε−1ET
2

∗ ∗ Π330 M3H 0
∗ ∗ ∗ −ε−1I 0
∗ ∗ ∗ ∗ −ε−1I

⎤
⎥⎥⎥⎥⎦ < 0

where ∗ denotes blocks that are readily inferred by symme-
try and

Π110 = Q + hX11 + M1A + AT MT
1 + Y + Y T

Π120 = hX12 + M1Aτ + AT MT
2 + TT − Y

Π130 = −M1 + P + AT MT
3

Π220 = −Q + hX22 + M2Aτ + AT
τ MT

2 − T − TT

Π230 = −M2 + AT
τ MT

3

Π330 = −M3 − MT
3 + hR

Next we will present a solution to the robust stabilization
problem for the system (1)-(4) with w (t) ≡ 0. In order to
obtain an LMI solution, we have to restrict ourselves to the
case of M1i = M2i = M3i, i ∈ S in the free equation
in (15), where M−1

1i exists. Then we have the following
theorem.

Theorem 2: The jump system in (1)-(4) with w (t) ≡ 0
is robustly stochastically stabilizable for any constant time
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delay τ satisfying 0 ≤ τ ≤ h if there exist P̃i = P̃T
i > 0,

Q̃ = Q̃T > 0, R̃ > 0, εi > 0, a symmetric SPD matrix

X̃ =
[

X̃11 X̃12

X̃T
12 X̃22

]
≥ 0

and appropriately dimensioned matrices M̃1i, Ni, Ỹi and T̃i

such that the following LMIs are true:

Θ̃1 =

⎡
⎣ X̃11 X̃12 Ỹi

∗ X̃22 T̃i

∗ ∗ R̃

⎤
⎦ ≥ 0 (17)

Θ̃2 =

⎡
⎢⎢⎢⎢⎣

Π̃11 Π̃12 Π̃13 εiHi M̃1iE
T
1i + NT

i ET
3i

∗ Π̃22 Π̃23 εiHi M̃1iE
T
2i

∗ ∗ Π̃33 εiHi 0
∗ ∗ ∗ −εiI 0
∗ ∗ ∗ ∗ −εiI

⎤
⎥⎥⎥⎥⎦ < 0

(18)
where

Π̃11 = Q̃ +
s∑

j=1

λijP̃j + hX̃11 + AiM̃
T
1i + M̃1iA

T
i

+Ỹi + Ỹ T
i + BiNi + NT

i BT
i

Π̃12 = hX̃12 + AτiM̃
T
1i + M̃1iA

T
i + T̃T

i − Ỹi + NT
i BT

i

Π̃13 = −M̃T
1i + P̃i + M̃1iA

T
i + NT

i BT
i

Π̃22 = −Q̃ + hX̃22 + AτiM̃
T
1i + M̃1iA

T
τi − T̃i − T̃T

i

Π̃23 = −M̃1i + M̃1iA
T
τi

Π̃33 = −M̃1i − M̃T
1i + hR̃

In this case, the controller law is given by

Ki = NiM̃
−T
1i (19)

Proof: With the memoryless state feedback control law
u (t) = Kix (t), where the matrix Ki ∈ �m×n is to be
designed, the resulting closed-loop system becomes

ẋ (t) =
(
Āi + ∆Āi

)
x (t) + [Aτi + ∆Aτi]x (t − τ)

where Āi = Ai + BiKi, ∆Āi = ∆Ai + ∆BiKi. Hence,
the result follows immediately by applying the proof of
Theorem 1, representing Ai by Āi, ∆Ai by ∆Āi, pre-
multiplying and post-multiplying the resulting inequality
(12) by diag

{
M−1

1i M−1
1i M−1

1i εiI εiI
}

and its
corresponding transpose respectively, and setting

Q̃ = M−1
1i QM−T

1i , R̃ = M−1
1i RM−T

1i , P̃i = M−1
1i PiM

−T
1i

Ỹi = M−1
1i YiM

−T
1i , T̃i = M−1

1i TiM
−T
1i , X̃11 = M−1

1i X11M
−T
1i

X̃12 = M−1
1i X12M

−T
1i , X̃22 = M−1

1i X22M
−T
1i , Ni = KiM

T
1i

Thus the proof is completed. �
Remark 1: Theorems 1 and 2 provide delay-dependent

conditions for robust stability and robust stabilization of
uncertain time-delayed jump linear systems. Corollary 1
simplifies the results to a general linear system. These
results do not need any system transformation, do not
require any parameter tuning, and can be tested numerically
very efficiently by using standard LMI techniques. Note
that in Theorem 2, we restrict the results to the case of

M1i = M2i = M3i, i ∈ S, which are the free weighting
matrices used to express the relationship of the terms ẋ (t),
x (t) and x (t − τ) in the free equation. The zero term (15)
is inserted into the derivative of the Lyapunov functional so
that the LMIs, which determine the stability of the system,
does not include any terms containing the product of the
Lyapunov matrices and the system matrices. Moreover, the
Leibniz-Newton formula (9) is also employed to make the
criterion delay-dependent. Another advantage is that the
problem of finding the largest τ in the context of Theorems
1 and 2 can be computed by solving the following quasi-
convex optimization problem in X11, X12, X22, Pi, Q, R,
εi, M1i, M2i, M3i, Yi, Ti and h:

max h > 0 (20)

s.t.

⎧⎪⎪⎨
⎪⎪⎩

X =
[

X11 X12

XT
12 X22

]
≥ 0, Pi = PT

i > 0,

Q = QT > 0, R > 0, εi > 0 and
inequality (11)-(12) or inequality (17)-(18)

Note that the above problem has the form of a generalized
eigenvalue problem and can be solved efficiently using the
LMI algorithm “GEVP” [5].

IV. ROBUST H∞ CONTROL

In this section, we will focus on the design of a delay-
dependent robust H∞ controller for the system in (1)-(4). In
order to solve this problem, we first consider the problem of
robust H∞ performance analysis for the unforced system,
namely u (t) ≡ 0. Assume the initial condition is zero; then
we have the following theorems.

Theorem 3: Given a scalar h > 0, the system in
(1)-(4) is robustly stochastically stable with disturbance
attenuation γ for any constant time delay τ satisfying
0 ≤ τ ≤ h, if there exist Pi = PT

i > 0, Q = QT > 0,
R > 0, a symmetric SPD matrix X ≥ 0 and appropriately
dimensioned matrices M1i, M2i, M3i, Yi and Ti such that
the inequality in (11) and the following LMI are satisfied:⎡
⎢⎢⎢⎢⎢⎢⎣

Π̂11 Π12 Π13 M1iHi ε−1
i ET

1i Π̂16

∗ Π̂22 Π23 M2iHi ε−1
i ET

2i M2iBwi

∗ ∗ Π33 M3iHi 0 M3iBwi

∗ ∗ ∗ −ε−1
i I 0 0

∗ ∗ ∗ ∗ −ε−1
i I 0

∗ ∗ ∗ ∗ ∗ Π̂66

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0

(21)
where ∗ denotes blocks that are readily inferred by symme-
try, and

Π̂11 = Π11 + CT
i Ci, Π̂16 = CT

i Dwi + M1iBwi

Π̂22 = Π22 + CT
τiCτi, Π̂66 = −γ2I + DT

wiDwi

Proof: The proof is similar to the proof of Theorem 1;
hence omitted. �

Theorem 4: Given a scalar h > 0, the system in (1)-
(4) is robustly stochastically stabilizable with disturbance
attenuation γ for any constant time delay τ satisfying 0 ≤
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τ ≤ h if there exist P̃i = P̃T
i > 0, Q̃ = Q̃T > 0, R̃ > 0,

εi > 0, a symmetric SPD matrix

X̃ =
[

X̃11 X̃12

X̃T
12 X̃22

]
≥ 0

and appropriately dimensioned matrices M̃1i, Ni, Ỹi and T̃i

such that the inequality in (17) and the following LMI are
satisfied:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ11 Φ12 Φ13 Φ14 εiHi Φ16 Φ17

∗ Φ22 Φ23 Bw εiHi M̃1iE
T
2i Φ27

∗ ∗ Φ33 Bw εiHi 0 0
∗ ∗ ∗ Φ44 0 0 0
∗ ∗ ∗ ∗ −εiI 0 0
∗ ∗ ∗ ∗ ∗ −εiI 0
∗ ∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(22)
where

Φ11 = Q̃ +
s∑

j=1

λijP̃j + hX̃11 + AiM̃
T
1i + M̃1iA

T
i

+NT
i BT

i + BiNi + Ỹi + Ỹ T
i

Φ12 = hX̃12 + AτiM̃
T
1i + M̃1iAi + NT

i BT
i + T̃T

i − Ỹi

Φ13 = −M̃T
1i + P̃i + M̃1iA

T
i + NT

i BT
i

Φ14 = Bw + M̃1iC
T
i Dwi

Φ16 = M̃1iE
T
1i + NT

i ET
3i

Φ17 =
[

NT
i DT

i M̃1iC
T
i 0

]
Φ22 = −Q̃ + hX̃22 + AτiM̃

T
1i + M̃1iA

T
τi − T̃i − T̃T

i

Φ23 = −M̃T
1i + M̃1iA

T
τi

Φ27 =
[

0 0 M̃1iC
T
τi

]
Φ33 = −M̃1i − M̃T

1i + hR̃

Φ44 = −γ2I + DT
wiDwi

Moreover, the controller gain can be given by

Ki = NiM̃
−T
1i (23)

Proof: The proof is similar to the proof of Theorem 2;
hence omitted. �

Remark 2: Theorems 3 and 4 provide delay-dependent
methods for robust H∞ analysis and robust H∞ synthesis,
respectively, for a class of uncertain linear time-delayed
jump systems. Note that using the methods of Theorems
3 and 4, the problems of finding the largest h for a given γ,
or the smallest γ for a given h can be easily solved without
the need of explicitly tuning any parameters. For instance,
the smallest γ for a given h obtainable from Theorem 4 can
be determined by solving the following convex optimization
problem:

min γ2

s.t.

⎧⎪⎪⎨
⎪⎪⎩

X̃ =
[

X̃11 X̃12

X̃T
12 X̃22

]
≥ 0, P̃i = P̃T

i > 0,

Q̃ = Q̃T > 0, R̃ > 0, εi > 0
and inequalities (17) and (22)

These results can also be reduced to the case of linear
time-delay systems. For example, for the following simpli-
fied linear system⎧⎨
⎩

ẋ (t) = [A + ∆A (t)] x (t) + [Aτ + ∆Aτ (t)] x (t − τ)
+Bu (t) + Bww (t)

z (t) = col {Cx (t) , Du (t)}
(24)

the simplified results for robust stabilizability can be given
as below.

Corollary 2: Given a scalar h > 0, the simplified
system in (24) is robustly stabilizable with disturbance
attenuation γ for any constant time delay τ satisfying
0 ≤ τ ≤ h if there exist P̃ = P̃T > 0, Q̃ = Q̃T > 0,
R̃ > 0, ε > 0, a symmetric SPD matrix X̃ ≥ 0 and
appropriately dimensioned matrices M̃1, N , Ỹ and T̃ such
that the inequality in (17) and the following LMI are true:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ̄11 Φ̄12 Φ̄13 Bw εH M̃1E
T
1 Φ̄17

∗ Φ̄22 Φ̄23 Bw εH M̃1E
T
2 0

∗ ∗ Φ̄33 Bw εH 0 0
∗ ∗ ∗ −γ2I 0 0 0
∗ ∗ ∗ ∗ −εI 0 0
∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

where

Φ̄11 = Q̃ + hX̃11 + AM̃T
1 + M̃1A

T + NT BT

+BN + Ỹ + Ỹ T

Φ̄12 = hX̃12 + AτM̃T
1 + M̃1A + NT BT + T̃T − Ỹ

Φ̄13 = −M̃T
1 + P̃ + M̃1A

T + NT BT

Φ̄17 =
[

NT DT M̃1C
T

]
Φ̄22 = −Q̃ + hX̃22 + AτM̃T

1 + M̃1A
T
τ − T̃ − T̃T

Φ̄23 = −M̃T
1 + M̃1A

T
τ

Φ̄33 = −M̃1 − M̃T
1 + hR̃

Moreover, the controller gain can be given by

K = NM̃−T
1

V. NUMERICAL EXAMPLES

In this section, some examples are used to demonstrate
that the methods presented in this paper are effective and
are an improvement over the existing methods.

Example 1: Consider the nominal free jump system with
w (t) = u (t) = 0, ∆Ai = ∆Aτi = 0, and the following
parameters as used in [12], [14]:

A1 =
[

0.5 −1
0 −3

]
, Aτ1 =

[
0.5 −0.2
0.2 0.3

]

A2 =
[ −5 1

1 0.2

]
, Aτ2 =

[ −0.3 0.5
0.4 −0.5

]

The initial condition is assumed to be x (t) =
[

1 1
]T

and r0 = 1 for −τ ≤ t ≤ 0. The generator matrix of the
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Fig. 1. The state trajectories of the free jumping system (Example 1)

TABLE I

THE UPPER BOUND OF THE TIME DELAY FOR ROBUST STABILITY

Delay bound [15] [16] [17] [18] Our result
h 0.1958 0.2010 0.3199 0.4437 2.3970

stochastic process ηt is

λ =
[ −λ1 λ1

λ2 −λ2

]
When λ1 = 7 and λ2 ≤ 6, the result of [12] cannot be
applied for stability. When λ1 = 7 and λ2 = 6, based on the
result of [13], the system is found to be delay-independent
stable. If we decrease λ2 more, e.g., λ1 = 7 and λ2 =
3, the result of [13] cannot guarantee the system stability.
But Theorem 1 in [14] can be used to obtain a feasible
solution with τ ≤ h = 0.404. Moreover, by Theorem 1 of
our results, we can obtain a feasible solution with τ ≤ h =
0.7316, which is much larger than that of [14]. The state
trajectories are shown in Fig. 1 when h = 0.7316. By this
example we can see that our stability criterion gives a less
conservative result than those obtained by the methods of
[12], [13] and [14].

Example 2: Consider the free uncertain time-delay system,
namely w (t) = u (t) = 0, ηt = i, i ∈ S = {1}, where

A =
[ −2 0

0 −0.9

]
, Aτ =

[ −1 0
−1 −1

]

H =
[

0.2 0
0 0.2

]
, E1 = E2 =

[
1 0
0 1

]
By comparing the robust stability criterion of Corollary 1
with those of [15]-[18] for the above system, we have Table
1. Hence, for this example, the robust stability criterion we
derived for linear time-delay systems is less conservative
than those reported in [15]-[18].

VI. CONCLUSIONS

In this paper, new delay-dependent conditions for robust
stochastic stability and stabilization of jump linear time-
delay systems are derived, where none of model trans-
formation, bounding for cross terms and substitution is

needed. The H∞ controller guarantees the robust stability
of the delayed jump linear system, while providing a certain
level of disturbance attenuation. Moreover, an algorithm for
calculating the delay upper bound for system stability is
given. All the results are presented in terms of standard
LMIs, which are very easy to solve in Matlab. Numerical
examples illustrate the effectiveness of our methods. Finally,
extension to time-varying systems and discrete-time case are
possible.
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