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Abstract— This tutorial is about new system analysis
techniques that were developed in the past few years based
on the sum of squares decomposition. We will present
stability and robust stability analysis tools for different
classes of systems: systems described by nonlinear ordinary
differential equations or differential algebraic equations,
hybrid systems with nonlinear subsystems and/or nonlinear
switching surfaces, and time-delay systems described by
nonlinear functional differential equations. We will also
discuss how different analysis questions such as model
validation and safety verification can be answered for
uncertain nonlinear and hybrid systems.

I. INTRODUCTION

The sum of squares (SOS) technique was introduced
nearly five years ago in Parrilo’s thesis [34]. Ever since a
plethora of questions on systems analysis were tackled,
that were difficult to answer before. For example, it
allowed the algorithmic analysis of nonlinear systems
using Lyapunov methods — upon which most of nonlin-
ear systems theory is based. Apart from stability analysis
of nonlinear systems, the SOS technique has opened a
new direction in the treatment of other system types and
answering different analysis and synthesis questions.

The SOS approach generalizes a well known algorith-
mic tool in linear robust control theory — linear matrix
inequalities (LMIs) [5]. Using LMIs to formulate several
analysis and synthesis problems is advantageous, as
there are efficient algorithms to solve them, developed in
the framework of semidefinite programming (SDP) [55]
with a complexity that is worst-case polynomial in time.
The SOS technique uses exactly the same algorithm,
but all questions are formulated at the polynomial or
polynomial matrix level.

Take as an example the problem of proving stability
for an equilibrium of a dynamical system ẋ = f(x)
using what is called a Lyapunov function [19]. All that
is required to prove stability is to find a positive definite
function V (x) defined in some region of the state
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space containing the equilibrium point whose derivative
V̇ (x) = ∂V

∂x
f(x) is negative semidefinite along the

system trajectories. In the linear case, these conditions
amount to finding, for a system ẋ = Ax, a positive
definite matrix P such that AT P + PA is negative
definite [5]; then the associated Lyapunov function is
given by V (x) = xT Px. What is obvious but was not
seen from that angle until recently, is that both V (x)
and −V̇ (x) are also sums of squares.

Hand-crafted Lyapunov functions constructions are
inevitably limited to small state dimensions and depend
on the analytic skills of the researcher. In the case
in which both the vector field f and the Lyapunov
function candidate V are polynomial, the Lyapunov con-
ditions are essentially polynomial non-negativity condi-
tions which can be NP hard to test [28] — probably one
of the reasons for the lack of algorithmic constructions
of Lyapunov functions. However, if we replace the
nonnegativity conditions by SOS conditions, then not
only testing the Lyapunov function conditions — but
also constructing the Lyapunov function — can be done
efficiently using semidefinite programming (SDP) [55].
This observation can be used to answer other analysis
questions for more complicated system descriptions al-
gorithmically.

This tutorial begins with an overview of the theory
and computational aspects of the SOS decomposition.
To facilitate the transformation of the polynomial for-
mulation to the corresponding SDP formulation — that
is cumbersome if performed manually — software has
been developed. One such software is SOSTOOLS [44],
a freely-available MATLAB toolbox for solving SOS
programs. A brief overview of SOSTOOLS will be given
in Section III.

The SOS methodology has allowed the stability anal-
ysis of other system classes, including constrained non-
linear, hybrid, and time-delay, as well as the verification
of other properties for these systems, such as model
invalidation or safety verification. The rest of this tutorial
describes these advances, through illustrative examples.

The first class of systems we will be looking at is
nonlinear constrained systems. We present an extension
to Lyapunov stability theory to allow for the algorithmic
analysis of systems that evolve over equality, inequality
and integral constraints [32]. A special case of this
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framework is systems with non-polynomial vector fields,
which can be treated using a systematic recasting pro-
cedure [33]. Section IV deals with these developments.

We will next cover the second class of systems,
namely hybrid systems. These are systems that consist of
subsystems with a switching rule, and have attracted the
attention of researchers for many years now. Traditional
analysis methods concentrate on the construction of
quadratic common or multiple Lyapunov functions us-
ing LMI techniques [6], but only for systems with linear
subsystems and switching surfaces described by hyper-
planes. Using the SOS approach, polynomial Lyapunov
functions can be constructed for systems with nonlinear
subsystems and polynomial switching surfaces. A brief
description of the SOS methodologies for treating these
systems will be given in Section V.

The third class of systems we will be considering is
time-delay systems. They are the simplest infinite di-
mensional systems with a rich literature on their stability
and stabilization properties [20]. LMI techniques have
allowed the construction of simple Lyapunov certificates
for linear systems, that were many times conservative
— the complete Lyapunov functional yields infinite
dimensional LMI conditions which are difficult to solve
algorithmically. SOS techniques have enabled the algo-
rithmic analysis of nonlinear time delay systems through
the solution of these infinite dimensional LMIs. The
methodology will be presented in Section VI.

Lyapunov functions should be regarded as
proofs/certificates guaranteeing the stability property.
This aspect of Lyapunov methods is important,
as analysis questions are answered in a way that
no simulation procedure can. Using Lyapunov-like
arguments, other questions apart from stability can be
answered algorithmically. For example, estimating L2

gains in nonlinear systems can be done by constructing
appropriate storage functions [56], [57].

More recently, questions such as model valida-
tion [39] or safety verification [40], [41] were treated
using barrier certificates, which can also be constructed
using SOS techniques. An overview of the techniques
based on barrier certificates will be covered in Sec-
tions VII and VIII. Safety verification of hybrid systems
within this framework has found application on safe-
critical systems of industrial interest, such as assuring
the safe performance of a life-support system [14].

This tutorial concludes with some remarks in Sec-
tion IX.

II. THE SUM OF SQUARES DECOMPOSITION

In this section we give a brief introduction to sum
of squares (SOS) polynomials as well as their use,
and show how the existence of a SOS decomposition
can be verified using semidefinite programming [55].

A more detailed description can be found in [34],
[36] and the references therein. A “dual” approach is
given in [24]. There is a wealth of literature on SOS
and positive polynomials, especially after Hilbert’s 17th
problem [49] was answered affirmatively by Artin in
1926, a development that formed the foundation of
real algebra and real algebraic geometry [48], [4]. The
semidefinite programming method for computing the
SOS decomposition is based on the Gram matrix method
— see [7], [38] for more details.

Definition 1: For x ∈ R
n, a multivariate polynomial

p(x) is a sum of squares (SOS) if there exist some
polynomials fi(x), i = 1 . . . M such that

p(x) =

M∑
i=1

f2
i (x) . (1)

An equivalent characterization of SOS polynomials is
given in the following proposition.

Proposition 2: A polynomial p(x) of degree 2d is a
SOS if and only if there exists a positive semidefinite
matrix Q and a vector of monomials Z(x) containing
monomials in x of degree ≤ d such that

p = Z(x)T QZ(x) (2)

Proof: See [34].

In general, the monomials in Z(x) are not alge-
braically independent. Expanding Z(x)T QZ(x) and
equating the coefficients of the resulting monomials to
the ones in p(x), we obtain a set of affine relations in
the elements of Q. Since p(x) being SOS is equivalent
to Q ≥ 0, the problem of finding a Q which proves that
p(x) is an SOS can be cast as a semidefinite program
(this was first observed by Parrilo in [34]). The following
is an example of how this is done.

Example 3: ([34]) Suppose that we want to know
whether or not the quartic polynomial in two variables
p(x1, x2) = 2x4

1 + 2x3
1x2 − x2

1x
2
2 + 5x4

2 is a SOS. For
this purpose, define Z(x) = [ x2

1 x2
2 x1x2 ]T and

consider the following quadratic form:

p(x1, x2) = 2x4
1 + 2x3

1x2 − x2
1x

2
2 + 5x4

2

= Z(x)T

⎡
⎣ q11 q12 q13

q12 q22 q23

q13 q23 q33

⎤
⎦

︸ ︷︷ ︸
Q

Z(x)

= q11x
4
1 + q22x

4
2 + (2q12 + q33)x

2
1x

2
2

+2q13x
3
1x2 + 2q23x1x

3
2,
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from which we get the following relations:

q11 = 2, q22 = 5,

q13 = 1, q23 = 0,

2q12 + q33 = −1.

Now, decomposing p(x) as an SOS amounts to searching
for q12 and q33 satisfying the last equation, such that
Q ≥ 0. For q12 = −3 and q33 = 5, the matrix Q will
be positive semidefinite and we have

Q = LT L, where L =
1√
2

[
2 −3 1
0 1 3

]
.

This immediately yields the following SOS decomposi-
tion:

p(x) =
1

2
(2x2

1 − 3x2
2 + x1x2)

2 +
1

2
(x2

2 + 3x1x2)
2.

Note that p(x) being an SOS implies that p(x) ≥ 0
for all x ∈ R

n. However, the converse is not always
true. Not all nonnegative polynomials can be written as
SOS, apart from three special cases: (i) when n = 2,
(ii) when deg(p) = 2, and (iii) when n = 3 and
deg(p) = 4. See [49] for more details. Nevertheless,
checking nonnegativity of p(x) is an NP-hard problem
when the degree of p(x) is at least 4 [28], whereas as
argued in the previous paragraph, checking whether p(x)
can be written as an SOS is computationally tractable —
it can be formulated as a semidefinite program, which
has worst-case polynomial time complexity. We will not
entail in a discussion on how conservative the relaxation
is, but there are several results suggesting that this is
not too conservative [49], [36]. Note that as the degree
of p(x) or its number of variables is increased, the
computational complexity for testing whether p(x) is an
SOS increases. Nonetheless, the complexity overload is
still a polynomial function of these parameters.

Besides the above, what is more interesting is the
case in which the monomials in the polynomial p(x)
have unknown coefficients, and we want to search for
feasible values of those coefficients such that p(x) is
nonnegative. Since the unknown coefficients of p(x) are
related to the entries of Q via affine constraints, it is
evident that the search for the coefficients that make
p(x) an SOS can also be formulated as a semidefinite
program (these coefficients are themselves decision vari-
ables). This observation is crucial in the construction of
Lyapunov functions and other S-procedure type multi-
pliers [34].

Using Positivstellensatz (a central theorem in real
algebraic geometry [4]) and the SOS decomposition, the
S-procedure can be strengthened to yield less conserva-
tive conditions. With Positivstellensatz, a hierarchy of

polynomial-time computable stronger conditions can be
obtained, and each test is always at least as powerful
as the standard one, and often strictly stronger. We will
be using this feature in the sequel. More details can be
found in [34].

III. SOSTOOLS

The observation that the SOS decomposition can
be computed efficiently using semidefinite program-
ming [34] has introduced the need for developing soft-
ware that would facilitate the formulation of the semidef-
inite programs from their SOS equivalents. One such
software is SOSTOOLS [43], [44], [45]: a free, third-
party MATLAB1 toolbox for solving SOS programs.

We define a SOS program as the convex optimization
problem of the following form:

Minimize
J∑

j=1

wjcj

subject to (3)

ai,0(x) +

J∑
j=1

ai,j(x)cj is SOS, for i = 1, ..., I,

where the cj’s are the scalar real decision variables,
the wj’s are some given real numbers, and the ai,j(x)
are some given polynomials (with fixed coefficients).
See also another equivalent canonical form of SOS
programs in [43], [44]. While the conversion from SOS
programs to semidefinite programs (SDPs) can be man-
ually performed for small size instances or tailored for
specific problem classes, such a conversion can be quite
cumbersome in general. It is therefore desirable to have a
computational aid that automatically performs this con-
version for general SOS programs. This is exactly what
SOSTOOLS is useful for (see Figure 1). It automates
the conversion from SOS program to SDP, calls the
SDP solver, and converts the SDP solution back to the
solution of the original SOS program. In this way the
details of the reformulation are abstracted from the user,
who can work at the polynomial object level. The user
interface of SOSTOOLS has been designed to be simple,
easy to use, and transparent while keeping a large degree
of flexibility. The current version of SOSTOOLS uses
either SeDuMi [52] or SDPT3 [53], both of which are
free MATLAB add-ons, as the SDP solver.

The polynomial variables in the SOS programs can
be defined in SOSTOOLS in two different ways: using
the MATLAB Symbolic Math Toolbox or the custom-
built polynomial toolbox. The former method provides
the user the benefit of making use of all the features
in the toolbox, which range from simple arithmetic

1A registered trademark of The MathWorks, Inc.
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SOSP SDP

SOSP
Solution Solution

SDP

SeDuMi/
SDPT3

SOSTOOLS

SOSTOOLS

Fig. 1. Diagram depicting how SOS programs (SOSPs) are solved
using SOSTOOLS.

operations to differentiation, integration and polynomial
manipulation. Even though the integrated polynomial
toolbox has only some of the functions of the symbolic
toolbox, it allows users that do not have access to the
symbolic toolbox to use SOSTOOLS. It also provides
an alternative, sometimes faster SDP formulation path.

In many cases the SDPs that we wish to solve have
certain structural properties, such as sparsity, symmetry
etc. The formulation of the SDP should take them into
account: this will not only reduce the computational
burden of solving them as their size is many times
reduced considerably, but it also removes numerical ill-
conditioning. Provision has been taken for sparsity to be
taken into account when formulating the SDPs.

The frequent use of certain SOS formulations, such
as finding lower bounds on polynomial minima and
the search for Lyapunov functions for systems with
polynomial vector fields are reflected in the introduction
of customized functions in SOSTOOLS. A detailed
description of how SOSTOOLS works can be found in
the SOSTOOLS user’s guide [44].

IV. ANALYSIS OF CONSTRAINED SYSTEMS

We will now turn to systems analysis using SOS
techniques. We will first review the available result
on constructing Lyapunov functions for systems with
polynomial vector fields, and then extend the class
of systems for which the construction is possible to
nonlinear systems with equality, inequality, and integral
constraints. This is a very general class of systems,
covering differential algebraic equations and robust sta-
bility analysis formulations, areas that have attracted the
attention of many researchers in the past.

A. Lyapunov Stability

Here we concentrate on autonomous nonlinear sys-
tems of the form

ẋ = f(x), (4)

where x ∈ R
n and for which we assume without loss of

generality that f(0) = 0, i.e. the origin is an equilibrium
of the system, and that in a region D around the origin
f is Lipschitz. One of the most important properties
related to this equilibrium is its stability, and assessing
whether stability of the equilibrium holds can be done
by constructing what is called a Lyapunov function.

Theorem 4 ([19]): Consider the system (4), and let
D ⊆ R

n be a neighborhood of the origin. If there is a
continuously differentiable function V : D → R+ such
that the following two conditions are satisfied:

1) V (x) > 0 for all x ∈ D \ {0} and V (0) = 0,
i.e., V (x) is positive definite in D

2) −V̇ (x) = −∂V
∂x

f(x) ≥ 0 for all x ∈ D, i.e., V̇ (x)
is negative semidefinite in D

then the origin is a stable equilibrium. If in condition (2)
above V̇ (x) is negative definite in D then the origin is
asymptotically stable. If D = R

n and V (x) is radially
unbounded, i.e., V (x) → ∞ as ‖x‖ → ∞, then the
result holds globally.

Let us for now assume that f(x) is a polynomial
vector field, and that we will be searching for V (x)
that is also a polynomial in x. Then the two condi-
tions in Theorem 4 become polynomial nonnegativity
conditions. To circumvent the difficult task of testing
them, we can restrict our attention to cases in which
the two conditions admit SOS decompositions. This is
the procedure that was originally pursued by Parrilo
in his thesis [34]. The only apparent difficulty is the
restriction of V (x) to be positive definite, not just
positive semidefinite. To work around this problem we
can use the following proposition.

Proposition 5: Given a polynomial V (x) of degree
2d, let ϕ(x) =

∑n
i=1

∑d
j=1 εijx

2j
i such that:

m∑
j=1

εij > γ ∀ i = 1, . . . , n,

with γ a positive number, and εij ≥ 0 for all i and j.
Then the condition

V (x) − ϕ(x) is a SOS (5)

guarantees the positive definiteness of V (x).

Proof: The function ϕ(x) as defined above is
positive definite if εij’s satisfy the conditions mentioned
in the proposition. Then V (x)−ϕ(x) being SOS implies
that V (x) ≥ ϕ(x), and therefore V (x) is positive
definite.

For D = R
n, the conditions in Theorem 4 can be

formulated as SOS conditions as follows:

Proposition 6: Suppose that for the system (4) there
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exists a polynomial V (x) such that V (0) = 0, and

V (x) − ϕ(x) is SOS, (6)

− ∂V

∂x
f(x) is SOS, (7)

where ϕ(x) is as defined in Proposition 5. Then the
zero equilibrium of (4) is globally stable (i.e., the
equilibrium is stable in the sense of Lyapunov and also
all trajectories are bounded).

Below is an example of how the construction of a
Lyapunov function is performed using SOSTOOLS.

Example 7: Consider the system

ẋ1 = −x1 + x3
2 − 3x3x4, ẋ2 = −x1 − x3

2,

ẋ3 = x1x4 − x3, ẋ4 = x1x3 − x3
4,

which has the only equilibrium at the origin. As a first
attempt, we will try to construct a quadratic Lyapunov
function of the form V =

∑4
i=1

∑4
j=i aijxixj where

the aij’s are the unknowns. We search for V that satisfy
the conditions in Proposition 6.

It turns out that a Lyapunov function of the above
form does not exist (the corresponding semidefinite
program is infeasible), so we will next search for a
quartic Lyapunov function. One then finds a Lyapunov
function that satisfies condition (6) and (7), and thus
proves global asymptotic stability of the origin. To 3
significant digits this reads:

V (x) = 1.12x1x2x
2

3 − 0.785x1x2 + 0.713x
3

2x1

+ 0.500x1x2x
2

4 + 0.768x
4

4 + 1.64x
2

1 + 1.76x
2

3

+ 0.392x
2

2 + 1.63x
2

4 + 1.69x
2

1x
2

2 + 0.557x
4

3

+ 0.724x
3

1x2 + 0.181x
4

1 + 1.07x
4

2 + 0.561x
2

1x
2

3

+ 1.61x
2

2x
2

3 + 0.525x
2

1x
2

4 + 0.969x
2

2x
2

4

+ 0.569x
2

3x
2

4 − 0.251x4x3x1 + 0.432x4x3x2.

The above can be obtained by using the findlyap
command in SOSTOOLS.

B. Stability of Systems with Constraints

In this section we present extensions of Lyapunov’s
stability theorem for handling systems with equality,
inequality and integral quadratic constraints.

Inequality constraints arise naturally when consider-
ing positive systems or when describing uncertain pa-
rameter sets for the study of robust stability of systems
in the presence of parametric uncertainty.

Equality constraints prove useful when describing
systems evolving over a manifold; these are also known
as differential algebraic equations or descriptor sys-
tems [10]. They also appear in robust stability analysis,
as constraints guaranteeing that the equilibrium of the
system is at the origin.

The last type of constraints that can be incorporated
are integral quadratic constraints (IQCs) [26]. They
provide a rich framework to encapsulate many types of
uncertainty and unmodelled dynamics: dynamic, time-
varying, L2 bounded uncertainty just to mention a few.
Moreover one can formulate performance calculations
using IQCs, such as L2 input-output gain estimation etc.

Consider the nonlinear system

ẋ = f(x, u), (8)

with the following inequality, equality, and integral
constraints that are satisfied by x and u:

ai1(x, u) ≤ 0, for i1 = 1, ..., N1, (9)

bi2(x, u) = 0, for i2 = 1, ..., N2, (10)∫ T

0
ci3(x, u)dt ≤ 0, for i3 = 1, ..., N3, and ∀T ≥ 0.(11)

Here x ∈ R
n is the state of the system, and u ∈ R

m is
a collection of auxiliary variables (such as inputs, non-
polynomial functions of states, uncertain parameters, and
so on — we will see examples of these in Section IV-C).
We assume that f(x, u) has no singularity in D, where
D ⊂ R

m+n is defined as

D = {(x, u) ∈ R
m+n | ai1(x, u) ≤ 0, bi2(x, u) = 0,

for all i1 and i2}.
Without loss of generality, it is also assumed that
f(x, u) = 0 for x = 0 and u ∈ D0

u, where

D0
u = {u ∈ R

m|(0, u) ∈ D}.
The following theorem is an extension of Lyapunov’s
stability theorem, and can be used to prove that the
origin is a stable equilibrium of the above system.
It uses a technique reminiscent of the well-known S-
procedure [59] in nonlinear and robust control theory.

Theorem 8: Suppose that for the above system there
exist functions2 V (x), pi1(x, u), qi2(x, u), and constants
ri3 ≥ 0 such that

• V (x) is positive definite3 in a neighborhood of the
origin.

• pi1(x, u) ≥ 0 in D.

Then

− ∂V

∂x
f(x, u) +

∑
pi1(x, u)ai1(x, u)

+
∑

qi2(x, u)bi2(x, u) +
∑

ri3ci3(x, u) ≥ 0

(12)

will guarantee that the origin of the state space is a stable
equilibrium of the system.

2Although not written explicitly here, we assume that we keep track
of the indices.

3Strictly speaking, it is enough to require V to have a local
minimum at the origin.
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For a proof see [32].

C. Constrained Systems Analysis: SOS Techniques

In this section we will use Theorem 8 along with
the SOS decomposition to analyze various cases of
systems with constraints. Algorithmic verification of the
conditions in Theorem 8 is difficult unless the conditions
are relaxed to SOS conditions. Therefore, in our analysis
we use the following assumption and relaxations:

• the vector field fx(x, u) is assumed to be poly-
nomial or rational, and the constraint functions
ai1(x, u), bi2(x, u), ci3(x, u) are assumed to be
polynomial.

• we search for bounded degree polynomial Lya-
punov function V and multipliers pi1 , qi2 .

• polynomial nonnegativity and positive definiteness
conditions are relaxed to an SOS condition, and to
the condition in Proposition 5, respectively.

For instance, a relaxation of Theorem 8 is stated below.
Proposition 9: Suppose that for the above sys-

tem there exist polynomial functions V (x), pi1(x, u),
qi2(x, u), a positive definite function ϕ(x) of the form
given in Proposition 5 and constants ri3 ≥ 0 such that

V (x) − ϕ(x) is SOS, (13)

pi1(x, u) are SOS for i1 = 1, . . . , N1, (14)

− ∂V

∂x
f(x, u) +

∑
pi1(x, u)ai1(x, u)

+
∑

qi2(x, u)bi2(x, u) +
∑

ri3ci3(x, u) is SOS.
(15)

Then the origin of the state space is a stable equilibrium
of the system.

The polynomials V (x) pi1(x, u), qi2(x, u), the con-
stants ri3 and the positive definite function ϕ(x) can
be computed using SOSTOOLS [43]. We now turn to a
series of applications of the above proposition.

1) Robustness Analysis: In the case of parametric
uncertainty, some of the auxiliary variables u may now
be taken to be parameters. Additionally, some other
auxiliary variables can be used to account for the lo-
cation of the equilibrium of interest, as for a nonlinear
system the location of the equilibrium usually changes
when the parameters are varied. The use of equality and
inequality constraints in this case is natural: the region of
the parameter space that is of interest can be described
by inequality constraints, and if the equilibrium moves
as the parameters change, one can impose an equality
constraint on the corresponding auxiliary variables. Here
we present an example motivated by a biological system.

Example 10: Two species models of interacting pop-
ulations can exhibit limit cycle periodic oscillations [27].
The simplest, but chemically plausible tri-molecular

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
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0.6

0.8

1

1.2

1.4

1.6

1.8

2

b

a

Unstable Equilibrium Point 

 Region 1 

Region 2 

Intersection of regions 1 and 2 

Fig. 2. Chemical Oscillator Example: Stability region for the chemical
oscillator problem, Regions 1 and 2 defined by equations (22) and (23).

reaction that admits periodic solutions is

X
k1

�

k−1

A, B
k2→ Y, 2X + Y

k3→ 3X,

in which species X is in dynamical equilibrium with
species A with a forward rate of reaction k1 and a
backward rate of reaction k−1, and so on. Using the law
of mass action, and non-dimensionalising the equations,
we get

u̇ = a − u + u2v, (16)

v̇ = b − u2v, (17)

where u, v are the non-dimensional concentrations of X
and Y , and a, b are non-negative constant parameters
that depend on the concentrations of A and B. It is
known that for a and b satisfying

(b − a) ≥ (b + a)3,

the system exhibits a stable limit cycle and the equilib-
rium point is unstable (see Figure 2).

A Lyapunov function will be constructed for a region
of the rest of the parameter space, to prove robust
stability of the equilibrium.

The equilibrium of the above system is a (ū, v̄) pair
that satisfies

0 = a − ū + ū2v̄, (18)

0 = b − ū2v̄. (19)

We translate the equilibrium to the origin using a state
transformation u → x1, v → x2, x1 = u−ū, x2 = v−v̄,
to get an equivalent system

ẋ1 = a − (x1 + ū) + (x1 + ū)2(x2 + v̄), (20)

ẋ2 = b − (x1 + ū)2(x2 + v̄), (21)

whose equilibrium is at the origin. Now suppose that
the parameters a and b are not exactly known, but
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belong to the set {a ≥ a, b ≥ b}. Notice that when the
parameters a and b are changed, the equilibrium (ū, v̄)
also changes, see Equations (18)–(19). So there are four
parameters in the state equations (20)–(21) - namely a,
b, ū, and v̄ - that are coupled via the algebraic equality
constraints (18)–(19). Denote these parameters (which
can be regarded as auxiliary variables) by u1 through
u4, in accordance with the notation in Theorem 8.

There exist inherent constraints on the state variables,
as the concentrations of the reactants has to be positive.
Furthermore, for our purpose, it is enough to find a
Lyapunov function that has non-positive derivative in a
local region around the equilibrium. In this case, we can
impose the inequality constraints x2

1 ≤ γu2
3, x2

2 ≤ γu2
4

where 0 < γ ≤ 1. Thus, our system (complete with the
equality and inequality constraints) is described by

ẋ1 = u1 − (x1 + u3) + (x1 + u3)
2(x2 + u4)

ẋ2 = u2 − (x1 + u3)
2(x2 + u4)

0 ≥ x2
1 − γu2

3

0 ≥ x2
2 − γu2

4

0 ≥ a − u1

0 ≥ b − u2

0 = u1 − u3 + u2
3u4

0 = u2 − u2
3u4.

For this example, two quartic Lyapunov functions, which
prove stability of all the dynamical systems within the
following ranges of a and b and which are parameterized
by u1 and u2 have been constructed, using Proposition 9.

Region 1: (a, b) = (0.25, 0) (22)

Region 2: (a, b) = (0, 1.05) (23)

Each of them has more than 30 terms in it, and is
therefore not listed here. However their level curves are
shown for two different parameter values in Figure 3.

Dynamic uncertainty, on the other hand, can be char-
acterized using integral constraints [26]. For example,
an uncertain but L2-norm bounded feedback operator
relating x and u can be represented by the IQC∫ T

0

(γxT x − uT u)dt ≥ 0.

Stability of the whole system can then be verified using
Theorem 8.

2) Input-Output and Dissipativity Analysis: Input-
output analysis within the framework of dissipative
systems theory [56], [57] can also be addressed using
the SOS technique. Let us consider the system

ẋ = f(x, u), (24)

y = h(x, u), (25)

where u and y are respectively the input and output of
the system, and f(x, u), h(x, u) are polynomials in x
and u. Dissipativity of the above system with respect to a
polynomial supply rate function w(u, y) can be verified
using the following proposition.

Proposition 11: Suppose for the system (24)–(25)
and a given supply rate function w(u, y) there exists
a SOS polynomial S(x), such that S(0) = 0 and

w(u, h(x, u)) − ∂S

∂x
f(x, u) is SOS. (26)

Then the system is dissipative with respect to the supply
rate function w(u, y), as proven by the existence of a
storage function S(x).

Proof: The function S(x) being an SOS implies
that S(x) ≥ 0. Now notice that Equation (26) implies

∂S

∂x
f(x, u) ≤ w(u, h(x, u)) ∀u and x,

which is the differential version of the dissipation in-
equality [56]. Since S(x) satisfies the inequality, it
follows that S(x) is a storage function for the system,
thus proving that the system is dissipative with respect
to the supply rate w(u, y).

An important choice of supply rate function is

w(u, y) = γuT u − yT y,

since dissipativity of the system with respect to this sup-
ply rate implies that the L2-gain of the input-output map
u �→ y is less than or equal to

√
γ. Thus, by minimizing

γ and solving the corresponding SOS problem, we can
obtain an estimate of the L2-gain of the above nonlinear
input-output map.

Example 12: Consider the system

ẋ1 = −2x1 − x3
1 + x1x

2
2 + 5x1x3

ẋ2 = −3x2 + x2
1 − x1x2 − x2

1x2 − x3
2 + x2

1x3 + x1x
2
3

ẋ3 = −2x2
1 − x1x2 − 0.5x3

1 − 4x3
3 + u

y = x1

We will compute an upper bound for the L2-gain of the
map u �→ y using the method describe in Subsection IV-
C.2. A quadratic storage function for this system cannot
be found, but a quartic one exists for γ = 0.47. This
shows that the L2-gain of the system is less than or
equal to

√
0.47 = 0.6856.

V. ANALYSIS OF HYBRID SYSTEMS

Many systems have dynamics that are described by
a set of continuous time differential equations in con-
junction with a discrete event process. Such systems are
usually referred to as switched or hybrid systems, and
their stability analysis has been treated in [6], [18], [11].
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Fig. 3. Chemical Oscillator Example: Two parameter instances of the constructed parameterized Lyapunov functions. Arrows show the vector
field, the level curves of Lyapunov functions are shown dashed, and a few trajectories are shown with solid lines.

One way of proving stability is by using piecewise
quadratic Lyapunov functions [18], [16], which are con-
structed by concatenating several quadratic Lyapunov-
like functions. This approach is quite effective, as the
search for such Lyapunov functions can be performed
by solving linear matrix inequalities (LMIs). However,
in some cases it can be conservative.

In this section we will show how polynomial and
piecewise polynomial Lyapunov functions can be con-
structed using the SOS decomposition. The method gen-
eralizes previous analysis methods using quadratic and
piecewise quadratic Lyapunov functions. Some features
of the new approach are:

• it provides a less conservative test for proving
stability under arbitrary switching;

• stability can be proven with a smaller number of
Lyapunov-like functions, eliminating the need of
refining the state space partition;

• the method can be applied to systems with nonlin-
ear subsystems and nonlinear switching surfaces;

• parametric robustness analysis can be performed in
a straightforward manner.

A. Preliminaries and Notation

Here we establish the notation we will be using in the
rest of this section. Consider systems of the form:

ẋ = fi(x), i ∈ I = {1, ..., N}, (27)

where x ∈ R
n is the continuous state, i is the discrete

state, fi(x) is the vector field describing the dynamics
of the i-th mode/subsystem, and I is the index set. We
assume that the origin is an equilibrium of the system.

Depending on how the discrete state i evolves, a sys-
tem like (27) can be categorized as a switched system,
if for each x ∈ R

n only one i ∈ I is possible, or as
a hybrid system, if for some x ∈ R

n multiple i are
possible. The former type of systems includes systems

with saturation and variable structure systems, whereas
the latter type includes systems with hysteresis, systems
with finite automata, etc.

More specifically, in the case of switched systems, the
system is in the i-th mode at time t if x(t) ∈ Xi, where
Xi ⊂ R

n is a region of the state space described by

Xi = {x ∈ R
n : gik(x) ≥ 0, for k = 1, ...,mXi

},
(28)

for some gik : R
n → R. Additionally, the state space

partition {Xi} must satisfy
⋃

i∈I Xi = R
n and int(Xi)∩

int(Xj) = ∅ for i �= j. A switching surface between the
i-th and j-th modes, i.e. a boundary between Xi and
Xj , is given by

Sij = {x : hij0(x) = 0, hijk(x) ≥ 0, k = 1, ...,mSij
},

(29)

for some hijk : R
n → R. Note that the transition be-

tween modes on this surface can occur in both directions.
Although in principle the direction of transition for a
particular x ∈ Sij can be determined from the vector
fields fi(x) and fj(x), it is assumed in our analysis that
such a characterization is not performed a priori.

On the other hand, the evolution of the discrete state
in a hybrid system is governed by

i(t) = φ(x(t), i(t−)), (30)

with φ : R
n × I → I . Corresponding to the transition

law φ, there exists a region of the state space where a
particular mode can be active. For the i-th mode, the
active region is denoted by Xi, and is given by4

Xi = {x ∈ R
n : gik(x) ≥ 0, for k = 1, ...,mXi

}.
(31)

In the hybrid system case,
⋃

i∈I Xi = R
n still holds,

4A notation similar to (28) is chosen here for simplicity; the
interpretation should be clear from the context.

2693



but int(Xi)∩ int(Xj) is not necessarily empty for i �= j.
The transition set from the j-th mode to the i-th mode
in a hybrid system is described by

Sij = {x : i = φ(x, j)}
= {x : hij0(x) = 0, hijk(x) ≥ 0, k = 1, ...,mSij

}.
(32)

In contrast to switched systems, the transition between
modes on Sij for a hybrid system occurs only in one
direction, namely from j to i.

We assume that the discrete state i(t) is piecewise
continuous. Systems with infinitely fast switching, such
as those that have sliding modes, are excluded from our
discussion. We also assume that fi, gik, and hijk are
polynomials. In the case where any of these functions is
nonpolynomial, we can use a recasting technique [33].

B. Stability Analysis

1) Stability Under Arbitrary Switching: We will first
consider stability of the system (27) under arbitrary
switching. A sufficient condition for such stability is the
existence of a global common Lyapunov function for all
fi’s, as summarized in the following theorem.

Theorem 13: Suppose that for the set of vector fields
{fi} there exists a polynomial V (x) such that V (0) = 0
and

V (x) > 0 ∀x �= 0, (33)
∂V

∂x
fi(x) < 0 ∀x �= 0, i ∈ I, (34)

then the origin of the state space of the system (27) is
globally asymptotically stable under arbitrary switching.
Notice in particular that if the vector fields are linear,
i.e. fi(x) = Aix, and if V (x) is chosen to be quadratic,
say V (x) = xT Px, then the conditions in Theorem 13
correspond to the well-known LMIs P > 0, AT

i P +
PAi < 0 for all i, which prove quadratic stability of
the system. For higher degree polynomial vector fields
and Lyapunov functions, the search for V (x) can also
be performed using semidefinite programming by for-
mulating the conditions as SOS conditions, as described
in Section II. The higher degree test is generally less
conservative than the quadratic test, as a higher degree
Lyapunov functions may exist even if the system does
not possess a quadratic Lyapunov function. At worst,
these two tests have the same conservatism.

Example 14: Consider the system ẋ = fi(x), x =[
x1 x2

]T
, with

f1(x) =

[−5x1 − 4x2

−x1 − 2x2

]
, f2(x) =

[−2x1 − 4x2

20x1 − 2x2

]
.

It can be proven using a dual semidefinite program
that no global quadratic Lyapunov function exists for

−4 −2 0 2 4

−4

−2

0

2

4

x
1

x 2

Fig. 4. Trajectories of the system in Example 14 under arbitrary
switching. Dashed curves are level curves of the common Lyapunov
function.

this system [18]. Nevertheless, a global sextic Lyapunov
function

V (x) = 19.861x6
1 + 11.709x5

1x2 + 14.17x4
1x

2
2

+ 4.2277x3
1x

3
2 + 8.3495x2

1x
4
2 − 1.2117x1x

5
2

+ 1.0421x6
2

exists, and therefore the system is asymptotically stable
under arbitrary switching (cf. Figure 4).

2) Piecewise Polynomial Lyapunov Functions: Most
switched and hybrid systems come with a prescribed
switching scheme or a discrete transition rule. In this
case, stability can be proven in a more effective way
using piecewise polynomial Lyapunov functions. Such
functions are concatenations of polynomial functions
Vi(x) (also termed Lyapunov-like functions), typically
corresponding to the state space partition {Xi}. The
Lyapunov-like function Vi(x) and its time derivative
along the trajectory of the i-th mode are required to
be positive and negative respectively, only within Xi.

The conditions in the previous paragraph can be
accommodated using a method similar to the S-
procedure [5] as follows. To incorporate the fact that
Vi(x) only needs to be positive on Xi, where Xi is
described by (28), we impose the relaxed condition

Vi(x) −
mXi∑
k=1

aik(x)gik(x) > 0, (35)

for some aik(x) ≥ 0. Since gik(x) is nonnegative on
Xi, the above condition implies that Vi(x) is positive
on Xi. An analogous condition can be imposed on dVi

dt
.

Note that there is no requirement that the multipliers
aik(x) be constants (as in the S-procedure); they can also
be polynomials of higher degree. Thus, our condition is
generally less conservative than the S-procedure.
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Fig. 5. Trajectories of the system in Example 15. Dash-dotted line
and dashed curves show S21 and S12, respectively.

3) Nonlinear Vector Fields and Switching Sur-
faces/Transition Sets: So far, the systems we have
considered in the examples have linear subsystems and
linear switching surfaces. As mentioned previously, the
SOS conditions can be applied directly to systems with
nonlinear vector fields and nonlinear switching surfaces
or transition sets. To illustrate this, consider the follow-
ing example.

Example 15: Let the hybrid system ẋ = fi(x) be
composed of two subsystems

f1(x) =

[−2x1 − x3
1 − 5x2 − x3

2

6x1 + x3
1 − 3x2 − x3

2

]
,

f2(x) =

[
x2 + x2

1 − x3
1

4x1 + 2x2

]
,

with its transition rule given by

φ(0) = 1,

φ(t) =

{
1, if i(t−) = 2 and x2

2(t) = x3
1(t),

2, if i(t−) = 1 and x2(t) = 0, x1(t) ≥ 0.

Figure 5 depicts some trajectories of the system. The
active regions corresponding to the two modes are X1 =
R

2 and X2 = {x ∈ R
2 : (x3

1 − x2
2) ≥ 0}, while the

transition sets are S12 = {x ∈ R
2 : x2

2 = x3
1} and

S21 = {x ∈ R
2 : x2 = 0, x1 ≥ 0}. We can construct

a sextic piecewise polynomial Lyapunov function given
by

V (x(t)) = Vi(x(t)), if φ(t) = i,

for some Vi(x)’s, proving global asymptotic stability.
Even for a system with a rational or nonpolynomial

vector field, a system embedding can sometimes be
made such that a Lyapunov function that proves stability
can be computed using the SOS decomposition. This
has been presented in [32] and will not be discussed in

this tutorial. The same technique can also be applied to
nonpolynomial switching surfaces or transition sets.

Robust stability analysis of switched or hybrid
systems can be treated using parameter dependent
Lyapunov-like functions and multipliers. Computation of
parameter dependent quadratic Lyapunov-like functions
using LMIs had been previously difficult, since such
functions are nonquadratic polynomials in the state
and parameter variables. Using the SOS decomposition,
computation of even higher degree functions is straight-
forward. A more detail description appeared in [42].

VI. ANALYSIS OF TIME-DELAY SYSTEMS

Significant progress has been made in the stabil-
ity analysis of linear autonomous time-delay systems
(TDS) using time-domain (Lyapunov) and frequency
domain methods [15], [20]. In the linear case so called
Lyapunov-Krasovskii (L-K) functionals are constructed
by solving LMIs. On the other hand, the stability analy-
sis of nonlinear time delay systems is far more difficult
and so-called Lyapunov-Razumikhin (L-R) functions are
usually constructed ‘manually’ in this case [22].

Here we present an extension of this methodology
to the construction of L-K functionals for time-delay
systems. The functionals that we use have structures
that are similar to the complete functionals used for
stability analysis of linear systems but they have kernels
that are polynomials. This allows the use of the SOS
decomposition to check the resulting stability conditions
through the solution of LMIs. The methodology reduces
to the standard LMI conditions when the system under
consideration is linear and the functional has quadratic
kernels. The same methodology can be used to analyze
robust stability under parametric uncertainty.

The notation we will be using is standard, and is
the one that is used in [15]. R

n is an n-dimensional
real Euclidean space with norm | · |. For b > a denote
C([a, b], Rn) the Banach space of continuous functions
mapping the interval [a, b] into R

n with the topology of
uniform convergence. For φ ∈ C([a, b], Rn) the norm of
φ is defined as ‖φ‖ = supa≤θ≤b |φ(θ)|, where | · | is a
norm in R

n. Also Cγ = {φ ∈ C : ‖φ‖ < γ}.

A. Stability Analysis of Time-delay Systems

We will be concerned with autonomous Retarded
Functional Differential Equations (RFDEs) given by

ẋ(t) = f(xt). (36)

where f : Ω → Rn, Ω ⊂ C, ‘ ˙ ’ represents the right-
hand derivative and xt ∈ Ω, xt(θ) = x(t + θ), θ ∈
[−r, 0]. Definitions of stability of the steady-state x∗ of
this system satisfying f(x∗) = 0 can be found in [15].

Assessing the stability properties of the equilibrium of
(36) can be done using time-domain methodologies by
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constructing a Lyapunov-Krasovskii (L-K) functional.
Let Ω ⊂ Cγ , define V : Ω → R a continuous function
and let V̇ denote the Upper Right Dini Derivative. Then
we have the following theorem [20]:

Theorem 16: (Lyapunov-Krasovskii) Let Ω ⊂ Cγ .
Suppose V : Ω → R is continuous and there exist
nonnegative functions a(s) and b(s) such that a(s) → ∞
as s → ∞, and a(0) = b(0) = 0 such that

a(|φ(0)|) ≤ V (φ), V̇ (φ) ≤ −b(|φ(0)|) ∀ φ ∈ Ω.
(37)

Then the solution x = 0 of (36) is uniformly stable. If,
in addition, b(s) is positive definite, then the solution
x = 0 of (36) is uniformly asymptotically stable.

Just as in the case of ODEs, this is a powerful theorem
as it answers questions about stability without requiring
a solution to (36). At the same time, however, no
methodology exists to construct these functions. Here we
will use the SOS decomposition and construct Lyapunov
functionals V with polynomial kernels, sacrificing non-
negativity of V with the non-negativity of its kernel.
Non-polynomial FDEs can be handled in a way similar
to non-polynomial ODEs [32].

Consider the following functional:

V (xt) = V0(x(t)) +

∫ 0

−r

V1(θ, x(t), x(t + θ))dθ +

+

∫ 0

−r

∫ t

t+θ

V2(x(ζ))dζdθ (38)

for the system of the form (36). The first term is
added to impose positive definiteness of V and the
last term is added for convenience, as it will be used
in the derivative condition to ‘complete the squares’.
Sufficient conditions for the (global) stability of the zero
equilibrium can then be formulated as follows:

Proposition 17: Let 0 be an equilibrium for the sys-
tem given by (36). Let there exist polynomials V0, V1

and V2 and a positive definite polynomial ϕ(x(t)) such
that:

1) V0(x(t)) − ϕ(x(t)) ≥ 0,
2) V1(θ, x(t), x(t + θ)) ≥ 0 for θ ∈ [−r, 0],
3) V2(x(ζ)) ≥ 0,
4) r ∂V1

∂x(t)f + dV0

dx(t)f − r ∂V1

∂θ
+ rV2(x(t))− rV2(x(t+

θ))+V1(0, x(t), x(t))−V1(−r, x(t), x(t−r)) ≤ 0
for θ ∈ [−r, 0].

Then the equilibrium 0 of the system given by (36) is
globally uniformly stable.
A proof can be found in [30].

This proposition can be used in practice in a similar
way as described in the delay-independent case. To
impose the conditions θ ∈ [−r, 0], we use a process
similar to the S-procedure, as it was done in Theorem 8.
The polynomial V1(θ, x(t), x(t + θ)) is required to be

i = 1 i = 2

i = 3

l = 1 l = 2

Fig. 6. A simple network.

non-negative only when h(θ) = θ(θ + r) ≤ 0 is
satisfied. We therefore adjoin this constraint to a, using
instead of constant positive multipliers (S-procedure),
SOS multipliers p, and we rewrite condition (2) in
Proposition 17 above, as follows:

V1(θ, x(t), x(t+ θ))+p(θ, x(t), x(t+ θ))h(θ) is a SOS

Condition (4) can be verified in a similar manner.
This results in four SOS conditions in a relevant SOS
programme which can be solved using SOSTOOLS [44].
We can also consider different Lyapunov structures [30].

Remark 18: As remarked earlier, when dealing with
nonlinear systems with multiple equilibria or with natu-
ral constraints on their state-space, it is useful to use a
restricted region for which stability is to be proven, in
the same way that it was done in the delay-independent
case. We will still need to specify Ω = {xt ∈ C :
‖xt‖ ≤ γ}, and adjoin the relevant conditions on x(t),
x(t − r) and x(t + θ) ∀ θ ∈ [−r, 0] to the relevant
kernels of the Lyapunov functionals using the extended
S-procedure, in much the same way that the conditions
θ ∈ [−r, 0] were adjoined in Conditions (2) and (4) of
Proposition 17.

B. Example: Stability Analysis of A Network Congestion
Control Scheme

Consider the network shown in Figure 6 that uses
a primal-dual version of FAST [25] as its protocol.
We assume that all forward and backward delays are
overbounded by τ/2, and that the sources and links
have dynamics that are described in [29]. The system
is not polynomial in its original form, but it can be
rendered polynomial through some nonlinear transfor-
mations [31]. The closed loop system is then given by

ż1(t) =

(
− K1β

K̃1cτ
[z1(t) + z4(t) + z1(t)z4(t)]

−α
τ

[z1(t) + 1][K̃2z3(t − τ) + K̃1z1(t − τ)]

)

ż2(t) =

(
− K2β

K̃1cτ
[z2(t) + z5(t) + z2(t)z5(t)]+

−α
τ

[z2(t) + 1][K̃2z3(t − τ) + K̃1z2(t − τ)]

)
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ż3(t) =

⎛
⎜⎝ − β

K̃1cτ
[(z3z4 + z3 + z4)K1 + (z3z5 + z3 + z5)K2]

− α
2τ

[z3(t) + 1]

×[z1(t − τ)K̃1 + z2(t − τ)K̃1 + 2z3(t − τ)K̃2]

⎞
⎟⎠

ż4(t) =
K̃1c

K1

(K̃1z1(t − τ) + K̃2z3(t − τ))

ż5(t) =
K̃1c

K2

((K1 + K2)z2(t − τ) + K3z3(t − τ))

We set c = 40, α = 1, τ = 0.2, and we calculate
β = 0.64α

τ
and we let K1 = 15, K2 = 20, K3 = 25;

furthermore, K̃1 = K1+K2

K1+K2+K3

and K̃2 = K3

K1+K2+K3

.
We can construct a similar Lyapunov functional to (38)
with all polynomials V0, V1 of second order and V2 of
order 4 for

0 ≤ x1t
≤ 2.3x1,0, 0 ≤ x2t

≤ 2.3x2,0,

0 ≤ x3t
≤ 2.3x3,0, q1 ≥ 0, q2 ≥ 0.

This proves stability of the equilibrium for τ = 0.2.

VII. MODEL VALIDATION

Modelling is an important precursor to system anal-
ysis and controller design. For successful analysis and
design, it is crucial to obtain a model that captures essen-
tial behaviors of the system under consideration. Model
validation provides a way to evaluate the ability of a
proposed model to represent observed system behaviors.
However, as often mentioned in the literature [51], [37],
[12], “model validation” is actually a misnomer; it is
impossible to validate a model, because to do so requires
an infinite number of experiments and data. The role of
model validation is to invalidate a model, by proving
that some experimental data are inconsistent with the
model, thus indicating that a refinement of the model is
required.

In the simplest setting, consider the model

ẋ(t) = f(x(t), p, t), (39)

where x(t) ∈ R
n is the vector of state variables, t is the

time, and p ∈ R
m is the parameter vector, assumed to

take its value in a set P ⊂ R
m. Let an experiment be

performed with the real system, and two measurements
be taken at time t = 0 and t = T . Suppose that these
measurements indicate that x(0) ∈ X0 and x(T ) ∈ XT ,
where both X0 and XT are subsets of R

n. In addition,
assume that x(t) ∈ X for all t ∈ [0, T ], where X ⊆ R

n.
With these notations, the invalidation problem can be
stated as follows:

Problem 19: Given the model (39), parameter set
P , and trajectory information {X0,XT ,X}, provide
a proof that the model (39) with parameter set P is
inconsistent with {X0,XT ,X}. That is, prove that for
all possible parameter p ∈ P , the model (39) cannot
produce a trajectory x(t) such that x(0) ∈ X0, x(T ) ∈
XT , and x(t) ∈ X,∀t ∈ [0, T ].

Before proceeding further, we would like to remark
that necessarily X0 ⊆ X and XT ⊆ X , and in most
cases X will be much larger than X0 or XT . In fact, X
can be the whole state space. The information about X
may come from the experiment and/or from a priori
knowledge about the system5, and such information
will strengthen the model validation test. Note also that
output measurement using the output y = g(x) can be
accommodated, e.g. by defining X0 = {x ∈ X : y

0
≤

g(x) ≤ y0}, and similarly for XT .
If such a proof in Problem 19 can be found, then

we say that the model (39) and parameter set P are
invalidated by {X0, XT , X}. Traditional approaches for
solving this problem include exhaustive simulation of
(39) using parameters p and initial conditions x(0)
sampled randomly from P and X0. If after many such
simulations no trajectory x(t) that satisfies the initial hy-
pothesis can be found, then inconsistency is concluded.
Indeed simulation (possibly after some parameter fitting)
is a good way for proving that a model can reproduce
some behaviors of the system it represents. However, for
proving inconsistency, the required number of simulation
runs will soon become prohibitive. Moreover, a proof
by simulation alone is never exact, simply because it is
impossible to test all p and x(0).

On the other hand, our method relies on the existence
of a function of state-parameter-time, which we term
barrier certificate. A barrier certificate gives an exact
proof of inconsistency by providing a barrier between
possible trajectories of the model starting at X0 and the
final measurement XT . This is accomplished without
performing any simulation nor computing the flow of
the model. The method is summarized in the following
theorem.

Theorem 20 ([39]): Let the model (39) and the sets
P,X0, XT , X be given. Assume that there is a function
B : R

n × R
m × R → R (a barrier certificate), differen-

tiable with respect to x and t, such that

B(xT , p, T ) − B(x0, p, 0) > 0

∀xT ∈ XT , x0 ∈ X0, p ∈ P, (40)
∂B

∂x
(x, p, t)f(x, p, t) +

∂B

∂t
(x, p, t) ≤ 0

∀x ∈ X, p ∈ P, t ∈ [0, T ]. (41)

Then the model (39) and its associated parameter set P
are invalidated by {X0, XT , T}.

Example 21: As the second example, consider the
model ẋ = −px3, with X = R and P = [0.5, 2]. The
measurement data used for invalidating this model are
X0 = [0.85, 0.95] and XT = [0.55, 0.65] at T = 4. Us-

5For example, in biological systems typical state variables are the
concentration of some chemical substrates. In this case, they can be
neither negative nor very large.
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Fig. 7. A level set of the barrier certificate B(x, t) in Example 21
is shown as a dashed curve in this figure. Bold line at t = 4 is XT ,
whereas the solid patch is the collection of all possible trajectories of
the model with p ∈ P , starting at x(0) ∈ X0.

ing the SOS technique, we obtain as a barrier certificate
for this example B(x, t) = 8.35x + 10.4x2 − 21.5x3 +
9.86x4 −1.78t+6.58tx−4.12tx2 −1.19tx3 +1.54tx4.
It is shown in Figure 7 how a level set of this function
serves as a barrier in the state-time space.

With this methodology, we are able to treat in a
unified way model validation of a very large class
of continuous-time models — some of which have
never been addressed before. This includes differential-
algebraic models, models with uncertain inputs, mod-
els with memoryless and dynamic uncertainties, hybrid
models, and their combinations. Moreover, the methods
are computationally tractable, as barrier certificates can
be constructed using the SOS decomposition, in a way
similar to what we have shown in the previous sections.
These we consider as some of the most important
features of our approach. For more on these, including
how to extend the invalidation setting to the case where
there are measurements at more than two time instants,
see [39].

VIII. SAFETY VERIFICATION

Complex behaviors that can be exhibited by modern
engineering systems, which typically have hybrid (i.e., a
mixture of discrete and continuous) dynamics, make the
safety verification of such systems both critical and chal-
lenging. In principle, safety verification or reachability
analysis aims to show that starting at some initial condi-
tions, a system cannot evolve to some unsafe region in
the state space. For safety verification, several methods
have been proposed (see e.g. [3], [2], [8], [54]). Explicit
computation of either exact or approximate reachable
sets corresponding to the continuous dynamics is crucial
for virtually all of these methods. Consequently, it is

hard to handle nonlinearity, uncertainty, and constraints
with these methods.

With regard to this, it is interesting to note that safety
verification addresses a question related to Problem 19 in
the previous section. If we assume that the set XT in the
previous section is the unsafe set, then verifying safety
requires proving that no trajectory of the system starting
from X0 enters this set for all positive time instant. Thus,
it is natural to expect that barrier certificates can also be
used for safety verification, and in fact it is.

The safety verification method based on barrier cer-
tificates can be easily adapted to handle hybrid systems,
as we will show in this section. We adopt the hybrid
modelling framework that was first proposed in [1],
which is more general than those in Section V. See
also [2] for a more detailed explanation and example. A
hybrid system is a tuple H = (X , L,X0, I, F, T ) with
the following components:

• X ⊆ R
n is the continuous state space.

• L is a finite set of locations. The overall state space
of the system is X = L × X , and a state of the
system is denoted by (l, x) ∈ L ×X .

• X0 ⊆ X is the set of initial states.
• I : L → 2X is the invariant, which assigns to each

location l an invariant set I(l) ⊆ X that contains
all possible continuous states while at location l.

• F : X → 2R
n

is a set of vector fields. F assigns
to each (l, x) ∈ X a set F (l, x) ⊆ R

n which
constrains the evolution of the continuous state
according to the differential inclusion ẋ ∈ F (l, x).

• T ⊆ X × X is a relation capturing discrete
transitions between two locations. Here a transition
((l, x), (l′, x′)) ∈ T indicates that from the state
(l, x) the system can undergo a discrete jump to
the state (l′, x′).

Trajectories of the hybrid system H start from some
initial state (l0, x0) ∈ X0 and are concatenations of a
sequence of continuous flows and discrete transitions.
During a continuous flow, the discrete location l is main-
tained and the continuous state evolves according to the
differential inclusion ẋ ∈ F (l, x), as long as x remains
inside the invariant set I(l). At a state (l1, x1), a discrete
transition to (l2, x2) can occur if ((l1, x1), (l2, x2)) ∈ T .
Given a hybrid system H and a set of unsafe states
Xu ⊆ X , the safety verification problem is concerned
with proving that all trajectories of the hybrid system H
cannot enter the unsafe region Xu.

For each location l ∈ L, we define the set of initial
and unsafe continuous states as Init(l) = {x ∈ X :
(l, x) ∈ X0} and Unsafe(l) = {x ∈ X : (l, x) ∈ Xu}.
To each tuple (l, l′) ∈ L × L with l �= l′, we associate
a guard set Guard(l, l′) = {x ∈ X : ((l, x), (l′, x′)) ∈
T for some x′ ∈ X}, and a (possibly set valued) reset
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map Reset(l, l′) : x �→ {x′ ∈ X : ((l, x), (l′, x′)) ∈ T},
whose domain is Guard(l, l′). Obviously, if no discrete
transition from location l to location l′ is possible, then
the set Guard(l, l′) will be regarded as empty, and the
associated reset map needs not be defined.

Using this formalism, the following test for safety can
be stated.

Theorem 22 ([40]): Let the hybrid system H =
(X , L,X0, I, F, T ) and the unsafe set Xu be given. Sup-
pose there exists a collection of differentiable functions
Bl(x) which, for each l ∈ L and (l, l′) ∈ L2, l′ �= l,
satisfy

Bl(x) > 0 ∀x ∈ Unsafe(l), (42)

Bl(x) ≤ 0 ∀x ∈ Init(l), (43)
∂Bl

∂x
(x)fl(x, d) ≤ 0 ∀(x, d) ∈ I(l) × D(l), (44)

Bl′(x
′) ≤ 0 ∀x′ ∈ Reset(l, l′)(x),

for all x ∈ Guard(l, l′) s.t. Bl(x) ≤ 0. (45)

Then the safety of the hybrid system H is guaranteed.
Again, when the vector fields of the system are

polynomials and the sets in the system description are
semialgebraic (i.e., described by polynomial equalities
and inequalities), the SOS technique can be utilized for
constructing a polynomial barrier certificate {Bl(x)}.
While the computational cost of this construction de-
pends on the degrees of the vector fields and the barrier
certificate in addition to the dimension of the continuous
state, for fixed degrees the complexity is polynomial
with respect to the state dimension. Hence we expect
our method to be more scalable than many other existing
safety verification methods.

A large class of hybrid systems can be treated within
this framework, including those with nonlinear contin-
uous dynamics, uncertain inputs, uncertain parameters,
and constraints. More recently, the method has also been
extended to handle stochastic safety verification [41].
For an application example, we refer the reader to [14].

IX. CONCLUSIONS

In this paper we have presented a brief tutorial on
sum of squares techniques for systems analysis. We have
shown how it can be used to solve problems such as
nonlinear stability and robustness analysis, analysis of
hybrid systems, analysis of time-delay systems, model
validation, and safety verification. Other work in this
area includes estimation of the domain of attraction [34],
[50], LPV analysis and synthesis [58] and nonlinear
synthesis [17], [47], [46]. We would also refer the reader
to the paper [35] and the upcoming volume [13]. For
industrial application examples, we refer the reader to
[14], [21], [23], [9].
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