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Abstract— This paper is concerned with the recovery of
bandlimited signals that are distorted by non-invertible sensor
nonlinearities. When the nonlinear sensor characteristic is
such that the input-output relationship is invertible, the
distortion caused by sensor nonlinearity may be compensated
and the signals may be reproduced from the distorted sensor
measurements. However, such methods may not work if the
nonlinear sensor dictates ill-posed input-output behavior such
as saturation and dead-band. We propose a new approach that
optimizes a non-quadratic criterion to reproduce the signal
from the distorted sensor data. The fact that the introduction
of a non-quadratic penalty in the cost function does not
alter the optimal solution as much as the quadratic penalty
does, makes it a better candidate for the problem posed.
However, this is a non-convex optimization problem, which
implies that multiple local optimal solutions may exist. A
systematic solution procedure is presented to interpret the
solutions generated by non-quadratic criteria and to identify
the global optimal point. Illustrative examples are presented
to further explain the proposed framework.

I. INTRODUCTION
A. Problem Description

Sensors are based on mechanisms in which one physical
quantity is coupled to another. For example, temperature
or pressure at the input to a sensor yields an electrical
signal at its output. Most of these physical mechanisms are
nonlinear by nature and great effort and ingenuity are used
in designing sensors to obtain a linearized regime within
which a sensor is to be operated. However, in situations
where a sensor is operated outside this linearized regime,
the interpretation of the sensor output will be complicated.
This places a major limitation on the use of such sensors
and the consequences may be intolerable.

The difficult task of achieving a linear regime, which
may require costly design procedures and the use of ex-
pensive materials, may be simplified or eliminated if sensor
nonlinearity is considered a embedded feature of a sensor.
This may enhance performance of a sensor since nonlinear
input-output characteristics can expand a sensor’s operating
regime and alleviate the constraints imposed by lineariza-
tion. For example, High Dynamic Range Complementary
Metal-Oxide Semiconductor (CMOS) Sensors utilize loga-
rithmic nonlinear sensor characteristics to increase the input
dynamic range and to obtain a good noise response. Fiber
optic displacement sensors, which are widely used to obtain
approximate displacement measurements at a very low cost,
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the Hercules Orthoflex capacity sensor, a biosensor that is
used to measure the pressure between the foot and shoe
[1], and a low cost oxygen sensor that is used for closed-
loop active combustion control in automobiles [2] are some
examples of nonlinear sensors widely used in practice.
Despite many advantages in using nonlinear sensors,
distortion caused by nonlinearity may appear at first as a
factor that does not encourage its usage. However, a signal
recovery setup developed by authors in [3], [4] guarantees
that this distortion will not be a problem and a unique
signal recovery is possible when the nonlinear sensor is
designed so as to satisfy certain requirements. A detailed
description of this method and its limitations are given
in [5]. This method may not yield accurate results if the
sensor characteristics include more severe nonlinearities
such as saturation and dead-band. Saturation nonlinearity is
a common defect found in most real sensors and its effects
are clearly apparent when the sensor is used to pick up high
amplitude signals. The main issue with such sensors is that
the accurate and unique reproduction of sensor input from
the saturated sensor data may not be possible, in general.

B. Motivation

Bearing in mind that retrieving at least some of the orig-
inal information and eliminating or reducing the distortion
caused by saturation nonlinearity are useful contributions
towards a “smart sensor technology”, we propose a new ap-
proach, which optimizes a non-quadratic performance index
to recover the original data. The fact that the introduction
of a non-quadratic penalty in the cost function does not
alter the optimal solution as much as the quadratic penalty
does, makes it a better candidate for the problem posed. The
nature of solutions generated by non-quadratic optimization
suggests its unique ability to solve several practical prob-
lems. For example, non-quadratic optimization is applied to
decentralize multi-variable model predictive control struc-
tures in [6].

We further elaborate the idea of using non-quadratic op-
timization to solve ill-conditioned equations by considering
a simple numerical example.

Consider an optimization problem that requires the fol-
lowing performance index to be minimized:

Jo = (x—a)? (1)
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where a is a constant and x is the variable to be optimized.

This is a very simple example that will become clearer
later, in which x might correspond to an estimated or
measured value and then a would correspond to the true
value. Thus the optimum is clearly x = a.

For reasons to appear later, it sometimes proves advan-
tageous in this context to augment the cost function by an
amount that is a simple function of the variable, called a
“penalty function”. To investigate the effects of different
penalty functions on the optimal solutions, let us add both
quadratic and non-quadratic penalty terms to the original
cost function given in Equation (1) and compare the results.
We first derive the quadratic cost function:

Ty = (x—a)? + A0 )
whose gradient is given by
Vi, =2(x—a)+2Ax 3)

where A, is the weight on the quadratic penalty.
The non-quadratic cost function and its gradient are
derived as follows:

Jp=(x—a)* +1,x%° 4)

VJ,=2(x—a)+ 2):;; 5)
We assume that the weight, A,,, on the non-quadratic penalty
term, knxo's , 1s reasonably low so that the global minimum
does not occur at the origin. Further discussion on the
choice of the weights and their effect on the optimal
solutions is given in Section 3.

Referring to Equation (3), the gradient of the quadratic
cost function is linear and the optimal solution is the point
where the terms 2(x—a) and 2A,x are equal but of opposite
sign. As schematically shown in Figure 1, the proximity of
the optimal solution of the quadratic cost function, J,, to
the actual solution (a in this case) is determined by weight,

Gradient of non-
quadratic penalty

Optimal Solution with J,

Fig. 1.  Comparison of Op-
timal Solutions obtained with
Quadratic and Non-quadratic
Cost Functions

Fig. 2.  Effect of Weight on
Non-quadratic Penalty on Op-
timal Solutions

The gradient of the non-quadratic function given in
Equation (5) has a different shape as shown in Figure 1.
Depending on the value of weight, A,, the gradient of the

non-quadratic term, 2%, has a very high value near zero

and dies out as the value of x increases. We point out that
this feature of the non-quadratic function makes it a better
candidate than the quadratic function. With a suitable choice
of weight, A, the gradient of the non-quadratic penalty can
be shaped such that it dies out very soon and consequently
has a very small value at the actual solution, a, which
will lead to an optimal solution very near a. Figure 1
further illustrates this point. It is worth mentioning that the
quadratic penalty does not possess this ability as its gradient
is linear.

Another important point is that in order to drive the
optimal solution closer to the actual value, the weight on the
quadratic penalty must be chosen as low as possible since
the accuracy of the solution is simply determined by the
weight. This may not be true in the case of non-quadratic
penalty. This is because the gradient of the non-quadratic
penalty will decrease as x increases and a reasonably low
weight may be sufficient to guarantee a small gradient value
near the actual solution. It is also pointed out that the
shape of the gradient of the non-quadratic penalty is such
that it would possibly have optimal solutions only in two
neighborhoods: one is in the vicinity of the actual solution
when the weight is low and the other is at the origin when
the weight on the non-quadratic penalty is high. Figure 2
further supports this point. This fact further encourages the
use of non-quadratic cost function as the availability of wide
range of suitable weights makes the tuning process very
easy and the solution reliable.

Motivated by the above example, we tested this idea to
solve the ill-posed signal recovery problem. The results,
which are detailed in this paper, have been promising and
the optimization of a non-quadratic cost function stands out
from other available tools to generate accurate results. The
class of non-quadratic functions considered in this paper are
those that exhibit infinite gradient at the origin, {x*|0 < k <
1}.

This paper is organized as follows: Section 1 is devoted to
the introductory discussion on the topic. The preliminaries
and the related previous work are given in Section 2. The
main results are derived in Section 3. Illustrative examples
are presented in Section 4. Conclusions are drawn in Section
5.

II. PRELIMINARIES

Nonlinear Sensor

g
y +i w

Fig. 3. Nonlinear Sensor

Figure 3 shows the standard sensor measurement setup in
which a signal y is measured through a nonlinear sensor g(.)
while being corrupted by a noise signal n. Sensor output w
is related to the input signal y by
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w=g()+n (6)

It is known that even though the input signal y is
band-limited with a frequency band [—Q,€Q] the spectrum
of the output signal w will not be restricted within this
frequency band, in general [4]. This phenomenon is known
as nonlinear distortion, which has been the major limiting
factor for the successful design and the use of primary
nonlinear sensors. Furthermore, nonlinear distortion will
lead to inaccurate sensor readings if the sensor being used
is assumed to be linear.

However, the signal recovery procedure proposed in [5]
suggests that with certain nonlinear sensor characteristics,
the nonlinear distortion may be completely compensated
and the original signal y may be uniquely recovered. Fur-
thermore, it is also pointed out in the same paper that in
order to recover a band-limited signal, complete information
about the output signal may not be needed. Only a part
of the output signal that lies in the original frequency
band [—Q,Q] is sufficient to retrieve the original band-
limited signal. This invention leads to some useful practical
consequences such as band-limited sensory operation. The
infinite bandwidth nonlinear sensory operation may require
a high bandwidth sensor, which may be neither physically
realizable nor cost-effective.

The signal recovery scheme proposed in [4] uses the
setup that is schematically shown in Figure 4. In this setup,
an ideal low pass filter is employed to remove the frequency
components, which lie outside the frequency band of signal

.

Nonlinear Sensor Ideal Low Pass Filter

0 S ) N e N
— |

Fig. 4. Signal Recovery Setup

The signal y is recovered by solving the following opti-
mization problem:

min/ = le— 7~ F{g()}}I 7

where z(t) is the filtered signal, .# is Fourier Transform,
Z~! is Inverse Fourier Transform and . is a low-pass
filtering operation defined by

[ jel<e
(W) _{ 0  otherwise

An efficient solution to the unconstrained optimization
problem described by the performance index in Equation (7)
can be obtained by solving the following recursive equation:

Vit (1) = ye(t) + 0z(t) — o “HA T {g(i())}} (®)

where ¢ is the convergence accelerator.

When the nonlinear operation g is non-singular, the above
optimization problem will have a unique solution. The
uniqueness condition simplifies to the following require-
ment:

dg(y)

d
0< == <oo or —oo<ﬁ<0 Vy 9)
dy d
That is, the signal y may be uniquely recovered from the
low-pass filtered version of the nonlinear sensor output if

the nonlinear sensor function is monotonic.

III. NON-QUADRATIC REGULARIZATION

The method described in the previous section will
fail if the nonlinear operation is singular. To solve “ill-
conditioned” problems of this kind, the standard regular-
ization techniques are applied in general. Tikhonov regular-
ization [7], [8] is probably the most commonly used regular-
ization method. This technique augments the least-squares
performance index given in Equation 7 with an additional
term, generally known as a penalty, which incorporates prior
information about signal y given by

minJ = |le—F A F O+ AP (10)
where A is a weight on the penalty term. The effect of the
penalty function on the optimal solution as well as on the
shape of the resultant cost function is graphically shown in
Figure 5. For convenience, the variation of the cost function
in only one direction is shown in the plot.

Effect of Weighton Qs

Fig. 5.

Effect of adding a
Quadratic Penalty Function

Fig. 6. Effect of Penalty
Function Weight on the opti-
mal solution-Quadratic Penalty
Case

It is noted that the constraint enforced by means of a
penalty moves the solution away from its actual value.
To maintain the accuracy of the solution, the weight on
the penalty A, must be kept at a low value. When the
value of A, is increased gradually, the error term on the
expression becomes insignificant and the optimal solution
moves towards y,, which is zero in this case. However, it
can be shown that the optimal solution will never be exactly
zero for a finite value of A,. Figure 6 supports this fact.

We have shown that adding a quadratic penalty may not
improve the accuracy of the solution, in general. If the
accuracy of sensor data is of paramount importance, other
approaches should be sought. In this paper, we propose
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an approach that replaces the quadratic penalty in the cost
function (10) by a non-quadratic penalty:

N
min/ = ||z = F~HAF g PP+ 2 vil* (A1)
’ i=1

where {k|0 < k < 1} is a non-quadratic index and N is the
length of the discretized signal y. In the above the discrete
version of the process is considered and the signals are
assumed to be sampled sufficiently fast.

The rationale behind the choice of the non-quadratic
penalty has already been explained in Section 1. We provide
additional insights by showing how a non-quadratic penalty
alters the shape of the cost function, which is otherwise
quadratic. Figure 7 shows how this alteration is done. Again,
the variation of the cost function only in one direction is
shown in the plot.

Effect of Penalty
Function Weight on the op-
timal solution—Non-Quadratic
Penalty Case

Fig. 7. Effect of adding a non-
quadratic penalty

Fig. 8.

Referring to Figures 8 and 9, with a low weight on the
penalty, the cost function has two local minimum. One is
at zero and the other, which is the global minimum, is very
near the actual or expected solution. The local minimum
at zero is caused by the very high gradient value of the
non-quadratic penalty near zero. The fact is, with low or
moderate weight on the non-quadratic penalty, a very low
value of the gradient of the non-quadratic penalty when
added to the gradient of the error will drive the global
minimum of cost function (11) very near the actual value.
This feature makes the proposed approach different from
other traditional approaches. As shown in Figures 8 and
9, with a high weight on the penalty A,, the cost function
has only one local minimum, which is therefore the global
minimum.

To get further insight about the role of different penal-
ties, we study the effects of quadratic and non-quadratic
penalties with the aid of Figure 10. In equations (10) and
(11), the cost functions being minimized have the following
general form:

J=E+P (12)

where E is the error function and P is the penalty on y.
Referring to Figure 10, we deduce that when the value

of y is high, the penalty on y is higher in the quadratic

case than in the non-quadratic case. The higher penalty on

Penalty Function

Non-quadratic Penalty

Fig. 9.
a high and a low weight on the
non-quadratic penalty

Optimal solutions for Fig. 10. Comparison of
penalty function values when
the variable is of high value

y may result in a less accurate solution because the cost
function being minimized is J not E and the optimizer
“will choose” the solution that minimizes J, which may
not necessarily minimize E. In order to accurately recover
signals that exhibit large fluctuations in strength, it is desired
that penalties on the variable y be restricted in the working
range. This requirement further encourages the use of non-
quadratic penalty instead of quadratic penalty. Simulation
examples presented in Section 5 support this claim.

IV. ILLUSTRATIVE EXAMPLES
A. Numerical Example
We present a numerical example to explain the proposed

methodology. Consider the following sensor model:

i=F A F{g()}} (13)

The discrete version of the above equation can be written
in the following matrix equation form [4]:

z=FGy (14)

where G corresponds to nonlinear operation g and F' denotes
the low pass filtering operation .77

Taking only the first two time samples, we will use the
following ill-conditioned process to explain the algorithm:

2 1
z= < 2 11 >y+n (15)
which gives
271 = 2y1+y2+0.1
2 = 2y2—|—1.1y2+0.2 (16)

Suppose that the actual samples of the signals are given

BN

The samples of the sensor output for this case are given

by,
[ ] 281
T | T 290

a7)

(18)
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Let us now present three examples to analyze the effect
of quadratic and non-quadratic penalty functions. The fol-
lowing initial values are used to begin the solution search
in all three optimization problems.

yo:|:

Case 1: Minimization of Quadratic Error Function

=)=l

(28.1—2y1 —y2)* +(29.0 — 2y; — 1.1y2)R20)

19)

—100
—1000

2

minJ
Y12

The optimal solution is,

« | 9.55

Y71 9.00
Case 2: Minimization of Quadratic Error Function with
Quadratic Penalty

mo = [2]-C3)B

min/J,
(28.1=2y; —y2)? +(29.0 = 2y; — L.1y2)> +0.1 (12 +y,?)

2L

+0.1 (12 +y22)

The optimal solution is,

‘. { 11.0196 ] 22)

5.9384

Case 3: Minimization of Quadratic Error Function with
Non-quadratic Penalty

2
i _ | 2 1 Vi 05 05
et = H[ 2 } < 211 >|:y2 }H +0.1 (1] +1y29)

The optimal solution is,

(23)

. [ 10.0379
= | 8.0687

Clearly, with non-quadratic cost function, more accurate
results are attained.

B. Simulation Example 1

To illustrate performance of the proposed scheme, we
present a simulation example in this section. Consider the
measurement of a signal shown in Figure 11 through a non-
linear sensor whose input-output characteristic is depicted
in Figure 13. The distorted sensor output is shown in Figure
12.

The different performance indices formulated in the pre-
vious section are optimized to obtain an estimate of the
original signal.

‘Sensor Outout Before Lov Pass Fillering (v)

05 06 o7 08 08 01 0z 03 o4 o5
‘‘‘‘‘‘‘ ) tmal(s)

Fig. 11. Signal to be measured Fig. 12. Sensor Output Before
Low Pass Filtering, w
Fig. 13. Nonlinear Sensor Fig. 14. Signal Recovered
by Optimizing Quadratic Error
Function, J;,
Jo = lle=F HAT {5}l 24)
N
Jo = Nle=F HAF{ON I+ 25 (25
i=1
1 u 0.5
Iy = Nle=F HATLO)IH + 240 X 9™ (26)
i=1

where N is the number of samples of signal, y.

Figures 14, 15 and 16 show the signals recovered by
optimizing the error function J,, quadratic cost function J,,
and non-quadratic cost function J,,, respectively. A simple
comparison with the actual data clearly demonstrates that
the signal obtained with non-quadratic criteria is the closest
to the actual data.

SignalFcovere by Optimizing Quadratic Cost Funcion " SignalFocouored by Optinizng Non-auacatic Cost Functon,

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Fig. 15. Signal Recovered
by Optimizing Quadratic Cost
Function, J,,

Fig. 16. Signal Recovered by
Optimizing Non-quadratic Cost
Function, J,

C. Simulation Example 2

We present another example to demonstrate the perfor-
mance of the proposed scheme. The signal to be measured
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is shown in Figure 17. We use the same nonlinear sensor
as in the previous example. The distorted sensor output is
shown in Figure 18.

Signal 0 bo measurod

o1 02 05 04 05 08 o7 08 09 1 % o1 0z 03 o4

05 05 o7 08 08 1
timel(s) tmelfs)

Fitbrod Signal rcovered by Quadratic Ciera

Fitorad Signalrecoverod by Non-quadratc Citra

Fig. 21. Signal Recovered by
Quadratic Criteria (J4, )(after
filtering out insignificant fre-
quency components)

Fig. 22. Signal Recovered
by Non-quadratic Criteria, (J,,,)
(after filtering out insignificant
frequency components)

Fig. 17. Signal to be measured

Fig. 18. Signal Output Before

Low Pass Filtering

The following performance indices are derived to esti-
mate the actual signal.

N

Jp = lle=F HATF ) +2 2y @D
i=1
N

Iy = le=Z AT {0+ A Y 1yil"" (28)
i=1

where N is the number of samples of signal, y and A, and
An are weights on quadratic and non-quadratic penalties
respectively.

The signal recovered by minimizing the quadratic criteria
Jy, is shown in Figure 19. Figure 20 shows the signal
recovered by optimizing the non-quadratic criteria J,,. By
filtering out the low strength or insignificant frequency
components, we obtain signals shown in Figures 21 and
22, which are the solutions to the quadratic and non-
quadratic criteria respectively. Clearly, the signal obtained
using the non-quadratic criterion is more accurate than that
of quadratic performance index.

Fecovered Snal vsing uadratc Groa Recovered Signal using Non—quactatic Crieria

Fig. 19. Signal Recovered
by Optimizing Quadratic Cost
Function, J,,

Fig. 20. Signal Recovered by
Optimizing Non-quadratic Cost
Function, J,,

V. CONCLUSIONS

A new signal recovery scheme that eliminates or reduces
the distortion caused by ill-posed sensor nonlinearity is pro-
posed. We have discussed some of the advantages in using a
non-quadratic performance index in place of the traditional

quadratic criterion. When the nonlinear sensory operation
characterized by the sensor nonlinearity is ill-posed, the
traditional signal recovery schemes fail to produce accu-
rate results. We have derived a new technique that can
improve the accuracy of the recovered signal by utilizing the
characteristics of non-quadratic criteria. The numerical and
simulation experiments suggest that the proposed method is
a valuable tool to solve the ill-conditioned problem posed.
Further research is needed to guarantee its usage and to
identify its limitations.

The proposed scheme appears to be extremely useful
in compensating the effects of singular nonlinear sensory
operations to a certain extent, which is currently done by
expensive ad-hoc signal conditioning techniques. Though
the main benefit of the technique is the increased accuracy
in sensor readings, the implementation of this recovery
scheme would eliminate the need for the expensive signal
processors, which would be a tremendous economic benefit.
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