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Abstract— We explore a systematic computational
approach to the feedback regulator synthesis problem
based on the “equation-free” timestepper methodology 
[2,3,4,5], where both the closed-loop dynamics linearization
and pole-placement objectives are simultaneously attained
in a single design step [1]. This is of particular interest in
the case of systems/ processes modeled via microscopic/
stochastic simulations (e.g. kinetic Monte Carlo) for which
coarse-grained, macroscopic models at the level we wish to 
control the behavior are not available in closed form.

I. INTRODUCTION

AN important assumption underlying the design of
linear or nonlinear controllers for macroscopic

problems is that explicit, reasonably accurate closed
form dynamical models of the systems are available.
Typically, such models arise in the form of conservation
equations (mass, momentum, energy balances) closed
through constitutive equations (e.g. the representation of 
viscous stresses for Newtonian fluids, or mass-action
chemical kinetics expressions). However, in
contemporary engineering problems, due to the
stochastic/microscopic nature of the available models,
and to nonlinear complexity, coarse-grained macroscopic
equations are often not available in closed form. Instead, 
in many situations, the level at which the physics
description may be available is a more detailed one: the
evolution rules are known in the form of molecular
dynamics, kinetic Monte Carlo, Markov-chain or hybrid
schemes. In these circumstances, conventional 

continuum algorithms cannot be used explicitly for
systems level analysis and controller design. Bridging
systematically the enormous gap between microscopic 
space and time scales of a complex physical/material
system and the macroscopic ones at which we want to
design and control the behavior is a grand challenge for
modeling and computation. Over the past few years we
have demonstrated that “coarse timesteppers”
[2,3,4,5,6,7], establish a link between traditional
continuum numerical analysis and microscopic/
stochastic simulation. This is a mathematics assisted
computational methodology, inspired from continuum
numerical analysis, system identification and large scale
iterative linear algebra, which enables microscopic-level
codes to perform system-level analysis directly, without
the need to pass through an intermediate, coarse-grained,
macroscopic-level, "conventional'' description of the
system dynamics. The backbone of the method is the
“on-demand” identification of the quantities required for
continuum numerics (coarse residuals, the action of
coarse slow Jacobians, eigenvalues, Hessians, etc).
These are obtained by repeated, appropriately initialized
calls to an existing time-stepping routine, which is 
treated as a black box. The coarse timestepper consists of
the following elements (for a more detailed discussion
see [2,3,4,5,6,7]:
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(a) a lifting operator, transforming a macroscopic
initial condition (typically zeroth- or first-order moments
of the microscopically evolving distributions) to one (or
more) consistent microscopic realizations,

(b) evolution of the microscopic realizations using the
microscopic simulator for an appropriately chosen short
macroscopic time T,

(c) a restriction operator, transforming the resulting
microscopic distributions back to the macroscopic
description
The key assumption is that deterministic, macroscopic,
coarse models exist and close for the expected behavior
of a few macroscopic system observables, yet they are 
unavailable in closed form. These observables (coarse-
grained variables) are typically a few low moments of
microscopically evolving distributions (e.g. surface
coverages, the zeroth moments of agent distributions on
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a lattice). 
In this paper we attempt to solve the following

problem: we assume that the model equations are not
explicitly available, but we do have a black box 
subroutine (either a legacy timestepper, or a microscopic
simulator) which, given the "macro"-state of the system

 at time tR,R unx k = kT reports the result of
evolving the system after a time horizon T : 

x .))(),((1)( kukk T x

We develop a systematic approach to the feedback
regulator synthesis problem based on the equation-free
timestepper methodology where both the closed-loop
dynamics feedback linearization and pole-placement
objectives are simultaneously attained in a single design
step [1] without being limited by the availability of an 
explicit dynamic model.

II. NONLINEAR FEEDBACK LINEARIZATION:
BACKGROUND

One of the most popular controller synthesis methods
involves the use of feedback in order to shape the
dynamic characteristics of the controlled system, by 
appropriately placing the closed-loop poles at desirable
locations on the complex plane (or equivalently,
assigning the closed-loop dynamic modes or time
constants). In the case of linear systems/processes, the
synthesis of pole-placing state feedback control laws
where the closed-loop eigenvalues (poles) are viewed as
tunable parameters, has been very popular due to its
intuitive appeal [9].  In the case of nonlinear systems, the
traditional approach in designing pole-placing state
feedback control laws is based on a local linearization of
the system dynamics around a reference steady state, and
the employment of linear design methods to attain the
pole placement objective. This approach however, offers
results of local validity that might lead to unacceptably
poor performance of the controller, even in the presence
of mild nonlinearities.  In order to overcome the 
limitations that arise from the application of linear
control methods to nonlinear systems, nonlinear
feedback control laws need to be derived that are capable
of directly coping with the process nonlinearities. In the
pertinent body of literature, two main model-based pole-
placing controller synthesis methods can be identified,
that are both rooted in the area of geometric control
theory [9]. The first one is the exact input/output (I/O) 
feedback linearization approach, where the introduction
of nonlinear state feedback induces linear I/O behavior
of the system of interest, by forcing the system's output
to follow a pre-specified linear and stable trajectory [9].

This approach directly generalizes the linear result of 
placing the closed-loop poles at the system zeros and at a 
set of pre-specified values and is restricted within the

class of minimum-phase systems. However, it should be
pointed out, that regulation and/or stabilization of a
system/process is understood in terms of forcing the
system state to return to the design steady state (if driven
away from it in the presence of disturbances) and not in
terms of regulating a specific output at a given set point
value (or output tracking).
The second approach is the geometric exact feedback
linearization approach, realized by the following two-
step design procedure [9]: as a first step, a simultaneous
implementation of a nonlinear coordinate transformation
and a state feedback control law is proposed, in order to
transform the original nonlinear system to a linear and
controllable one. The second step involves the
employment of well-established linear pole-placement
techniques for the transformed linear system.  However,
the geometric exact feedback linearization approach is
based on a set of very restrictive conditions, that can
hardly be met by any physical system [9].

III. COARSE TIMESTEPPERS AND FEEDBACK
LINEARIZATION WITH POLE PLACEMENT IN ONE STEP: THE

APPROACH

Consider the discrete time, autonomous nonlinear coarse
system

))(),((1)( kukk xx , : Rn x R Rn (1)

where x Rn denotes the state vector, accessible through 
measurement, u R is the control variable and  is a 
smooth function. Without loss of generality, it is
assumed that x=0 is the reference operating point
(equilibrium point/coarse steady state) of (1), that
corresponds to u=0, that is (0, 0) = 0.
The proposed methodology aims at simultaneously (in a 
single step) implementing a nonlinear coordinate
transformation z = S(x) coupled with a nonlinear state 
feedback control law u , where c is an 
arbitrary constant row vector (a design parameter of the
proposed method) that induce the desired linear closed-
loop dynamics z(k + 1) = A z(k) in the transformed
variables. Notice, that A is the fundamental matrix of the
closed-loop dynamics whose eigenvalues represent the
inverses of the desirable closed-loop time-constants
assigned by the proposed regulator, thus dictating the
dynamic modes and speed under which regulation is
performed. As shown in [1], the above design objective
can be translated into a system of nonlinear functional
equations (NFE’s) that need to be satisfied by the
unknown transformation map S(x):

)(xcScz

S( (x, -c S(x) ) ) = A S(x)
S(0) = 0    (2)

The initial condition S(0) = 0 reflects the fact that
equilibrium properties must be preserved under the
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transformation. It can be shown [1] that the above
system of NFE’s admits a unique locally analytic and
invertible solution z = S(x) in a neighborhood of x=0.
This single-step nonlinear regulator design approach
allows us to circumvent the restrictive conditions
associated with the first step of the classical exact
feedback linearization method [9].
Remark 1: Notice that any fixed set-point tracking
problem can be reformulated as a regulation problem
such as the one under consideration.
Remark 2: The proposed feedback linearizing
controller presupposes the availability of the full state 
vector for on-line measurements. The dual problem of 
designing an equation-free nonlinear observer that
reliably reconstructs the unmeasurable states and induces
linear error dynamics is feasible and currently being
investigated by the authors.
From a practical point of view, the way to proceed when
we have no explicit equations, is the following:

(a) Write the desired transformation vector S(x) as 
a power series expansion around the operating
point of up to order p due to the underlying
analyticity, i.e. write S(x) as S(x; h), where
h Rn is the vector of the power series
coefficients. For example for a 2-dimensional
problem S(x) S( ) can be written as:21, xx
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(b) Discretize the domain of the state-space in 
points (i.e. create a mesh of 

N points in the state-space where a numerical
solution of the feedback linearization problem
is sought).

NNNN nx...x 21

(c) Calculate the values h of the unknown
coefficients of S(x; h) by solving the nonlinear
least squares problem of the form:
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Quasi_Newton optimization methods as the
Broyden, Fletcher, Goldfarb, Shamo (BFGS)
method and/or a line search method (direct
method) [8] can be used to minimize the above
expression. The required (for the optimization

code) values of ’s are evaluated through
the timestepper for each point x

)(hGi

i in the mesh.
This nonlinear optimization problem can be 
solved in an iterative manner (by initially
guessing a solution h0 and repeatedly calling the 
timestepper until convergence is attained).

It should be emphasized that microscopic simulators
can be treated naturally in such a discrete time context, 
using the concept of the coarse timestepper. The one-step
feedback linearizing controller is designed to stabilize
the system’s expected coarse behavior and assign the
desirable set of time-constants to the controlled process,
sidestepping the derivation of closed-form equations for
this behavior (but assuming that such equations exist and
close at the current level of description) [2,3,4,5,6,7].

IV. SIMULATION RESULTS: APPLYING COARSE
NONLINEAR FEEDBACK LINEARIZATION TO A KMC MODEL

The proposed approach is evaluated through the use of
a coarse time-stepper based on kinetic Monte Carlo
models of simple surface reaction schemes for the
simplification of the dynamics of NO oxidation by H2 on
Pt and Rh surfaces. The simplified deterministic mean
field model is given by:

xxuxx
dt
dx 2)1()1(   (4)

where x is the coverage of adsorbed NO,  is a rate 
constant for NO adsorption,  is the rate constant for NO 
desorption, and u is the reaction rate constant.
Simulation results were obtained at:  = 1,  = 0.01; u is 
the bifurcation parameter (and, in our scheme, the
control variable).  Here we work with a kinetic Monte
Carlo (stochastic) version of this heterogeneous catalytic
reaction; for the stochastic simulations based on the
mechanism whose mean field description is (4), the
values of the number of available sites (system size), say 
Nsize, and Nrun, the number of realizations, were chosen
here to be 1002 and 100, respectively. At this point we
should remind the reader that the Monte Carlo model is
considered as a “black box” coarse timestepper x(k+1) = 

(x(k), u(k)). The time horizon was set to T=0.1s. The
coarse Jacobian and the coarse eigenvalues are estimated
by wrapping a computational superstructure like
Newton’s method as a shell around the coarse
timestepper. The coarse identified model (Jacobian and
right hand-sides) is then used for tracing the solution
branch by coupling to a pseudo-arc-length condition.
The corresponding coarse bifurcation diagram exhibits
two regular turning points (at u 3.96 and u  26)
(figure 1). What we want here is to derive a nonlinear
feedback control law based on the above approach, to 
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stabilize the timestepper at the open-loop unstable
stationary state  ( =0.5559, =4).  To implement the
above procedure and conform to the theory presented
earlier we have used deviation variables defined as

0x 0u

4 4.2

(

(a)

3.8 3.9 4.1 4.3 4.4 4.50.4

0.45

0.5

0.55

(b)

Fig. 1. (a) Bifurcation diagram of the kMC model, obtained by the 
coarse timestepper, (b) blow up of the diagram near the equilibrium of 
interest; solid lines correspond to stable steady states while the dotted 
ones correspond to unstable steady states.

0xxx  and , while A now is a scalar 
chosen as 0.8 (a measure of the desirable speed of 
regulation). Here the variable x was discretized into 25
equally spaced points in [–0.1 0.1] and the unknown
transformation S(x) was derived numerically in the
following two ways:

0uuu

(a) analytically: by expanding S(x) in a second order
power series of the form
substituting  into  and then
expanding the right hand side  in a 3rd order Taylor
series around the equilibrium (0,0). The values of the
unknown coefficients a

2
21 0.5aa)( xxxS

))(),( kuk)(xSu x

1,2 are then obtained by equating

the series terms of the same order of both sides of
NFE’s (2).
(b) using the “black-box” timestepper approach:  by

solving the optimization problem as appearing in (3) for
each timestepper.

x
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x Fig. 2. S(x) as computed analytically (solid line) and using the 
proposed methodology using the black-box coarse KMC timestepper
(dotted line). 
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Fig. 3.  Transients of S(k+1)=0.8 S(k), corresponding to the desired
closed loop dynamics, (solid lines) and  S(x(k)) as obtained when
applying the control law on the coarse KMC timestepper
(dotted lines). 

)(xSu

Figure 2 shows the computed S(x) while figure 3
illustrates responses resulting from the desired closed
loop dynamics z(k + 1) =S(k+1)= 0.8 z(k)=0.8 S(k)
(dotted lines) and that of the numerically obtained
transformation S(x) when applying the control law 

on the coarse timestepper (solid ones) .)(xSu

Figure 4 shows the closed loop responses (after feedback
linearization is attained through the approach described
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above) of both the deterministic model and the kinetic
Monte Carlo version of model (1) starting from different
initial conditions. The feedback linearizing
transformation was found by minimizing (2) using the
BFGS method.

V. CONCLUSION

In the present study it was demonstrated that the
performance of the proposed equation-free single-step
feedback linearization method and the associated 
computational/algorithmic approach is quite satisfactory.
Furthermore, this study represents a first promising
research attempt suggesting that equation-free methods
may play a useful role in designing coarse-grained
nonlinear controllers for problems modeled by atomistic
or stochastic simulators, and nanoscale systems in
particular.
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Fig. 4 (a) Transient response for 0.1 initial perturbation of the state
variable from equilibrium. (b) Transient response for 0.2 initial
perturbation of the state variable from equilibrium, (c) Transient
response of the control variable for 0.2 initial perturbation of the
state variable from equilibrium (lower ones correspond to –0.2
perturbation). Dotted lines correspond to the deterministic timestepper.
Solid ones to kMC with Nsize=100and Nruns=10.
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