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Abstract— This paper deals with the input-output decou-
pling problem with asymptotic stability for a class of linear
mechanical systems (with two inputs and two outputs), through
parallel connection with another mechanical system, called the
controller. The paper gives a procedure for the design of a
controller, which solves the above problem under some mild
sufficient conditions.

I. INTRODUCTION

The control of mechanical systems is one of the main
research topics in the systems and control field, in view of
the great variety of related applications, e.g., in the robotics
and aerospace areas. In recent years, the control of mechan-
ical systems has received renewed attention, mainly due to
the advances in the modelling and control of Hamiltonian
systems (see, e.g., [1], [2]). In this paper, the classical
problem of input-output decoupling is dealt with for a
class of two-input two-output multi-body linear mechanical
systems, with the requirement that the controller has to be
another mechanical system to be physically connected to
the given one (two terminal points of the controller are to
be glued to the actuated bodies). A similar approach (for
a control view point see [3]) is quite classical in vibration
control, where the possibility of reducing the vibrations of a
mechanical structure by connecting to it either mechanical
dampers or electric RLC circuits is called passive control.

With respect to the standard way of designing a con-
troller, constituted by a generic dynamical system taking as
input the available outputs of the system (often the whole
state), and giving as output the forces or torques to be
applied to the actuated bodies, the approach taken here has
two main differences: 1) the proposed controller has to be a
very special dynamical system, with a strong structure (this
limits severely the possible choices), 2) it is possible to use
non-causal controllers.

Many of the concepts used in this paper are inspired
by the classical tradition of studying mechanical systems
through the analogy with suitable electric circuits (see, e.g.,
[4]) and by the use of passivity concepts [5].

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider a linear mechanical system constituted by ideal
point bodies, linear springs and linear dampers, moving on
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a line. Let qi(t) be the position at time t ∈ R with respect to
an inertial reference frame of the i-th body, i = 1, 2, ..., n,
where n is the number of the bodies and let q(t) :=[

q1(t) q2(t) · · · qn(t)
]T

; let Mi ∈ R, Mi > 0, be
the mass of the i-th body, i = 1, 2, ..., n. When present,
let Ki,j ∈ R (Di,j ∈ R, Di,j ≥ 0) be the coefficient of
elasticity (the damping factor) of the spring (the damper)
possibly connecting the i-th body with the j-th one, i =
1, 2, ..., n, j = i + 1, ..., n; when present, let K0,i ∈ R

(D0,i ∈ R, D0,i ≥ 0) be the coefficient of elasticity (the
damping coefficient) of the spring (the damper) possibly
connecting the i-th body (i = 1, 2, ..., n) with the ground,
constituted by an infinitely massive body (numbered with
the index 0). Without loss of generality, in all the paper the
length at rest of all the springs will be considered null.

Notation 1: A > 0 (respectively, A ≥ 0) means that ma-
trix A is real, symmetric and positive definite (respectively,
semi-definite).

Let the system be described by the following ki-
netic and potential energies and by the following dis-
sipation function, respectively: T = 1

2 q̇
T B q̇ =

1
2

∑n
i=1 Miq̇

2
i , U = 1

2q
T H q = 1

2

∑n
i=1 K0,iq

2
i +

1
2

∑n
i=1

∑n
j=i+1 Ki,j (qi − qj)

2, F = 1
2 q̇

T D q̇ =
1
2

∑n
i=1 D0,iq̇

2
i + 1

2

∑n
i=1

∑n
j=i+1 Di,j (q̇i − q̇j)

2, where B
is the generalized inertia matrix which is diagonal and
positive definite (all the bodies have non-null mass), D is
symmetric and positive semi-definite, and H is symmetric
and positive semi-definite if all the springs have non-
negative coefficients of elasticity. Assume that the first
2 bodies are actuated by external forces u i(t), i = 1, 2,

and let u(t) :=
[

u1(t) u2(t)
]T

be the input of the
system. The relevant outputs of the system are both the
positions yq(t) =

[
q1(t) q2(t)

]T
of the first two bodies

and their velocities yv(t) =
[

q̇1(t) q̇2(t)
]T

. Letting

E ∈ Rn×2,E =
[

I2 0
]T

, the mechanical system is
then described by:

B q̈(t) + D q̇(t) + H q(t) = E u(t), (1)

yq(t) = ET q(t), (2)

yv(t) = ET q̇(t). (3)

Notice that det
(
B s2 + D s + H

)
is not the null func-

tion since B is non-singular. By Laplace transformation:

yq(s) = ET (B s2 + D s + H)−1E u(s),
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Fig. 1. The pictorial representation of the speed reducer.

yv(s) = ET (B s + D + H
1
s
)−1E u(s),

where yq(s) = L
{
ET q(t)

}
, yv(s) = L

{
ET q̇(t)

}
,

u(s) = L{u(t)}. In the following, the impedance matrix
Z(s) = ET (B s + D + H 1

s )−1E and the admittance
matrix Y(s) = Z−1(s) will be used repeatedly.

It is well known that a square rational matrix function
Z(s) is positive real (PR) if Re(Z(s)) is positive semi-
definite for all s having Re(s) ≥ 0; Z(s) is BIBO stable

if each entry Zi,j(s) =
Ni,j(s)
Di,j(s)

, with Ni,j(s) and Di,j(s)

being co-prime polynomials, is proper and its denominator
Di,j(s) has all the roots with negative real part; the system
(1), (2), (3) described by the impedance Z(s) is asymptot-
ically stable if all the roots of det(B s2 + D s + H) = 0
have negative real part.

Lemma 1: Since det(B s2 + D s + H) is not the null
function, if H is positive semi-definite, in addition to B and
D which are positive semi-definite as well, then the square

rational matrix function ET (B s + D + H
1
s
)−1E is PR.

Taking into account that, when it exists, the inverse of a
PR matrix is PR, under the hypotheses of Lemma 1, both
the impedance and the admittance of system (1), (2), (3)
are PR.

In this paper, the controller will not be a generic dy-
namical system taking as input yq(t) and/or yv(t) and
giving as output u(t), but, rather, the controller will be
another mechanical system having two terminal points to be
physically connected to the first two bodies of the system.
The connection can be either a direct one (i.e., the terminal
point is glued to the mass of the body) or through an (ideal)
speed reducer (e.g., an ideal gear reduction unit). The speed
reducer, represented schematically in Figure 1, is a two
terminal points object, without mass, friction and elasticity,
characterized by the transmission ratio r. Denoting by v i

and ui, i ∈ {a, b}, respectively, the velocity and the force
applied to the i-th terminal point of the speed reducer,
the equations describing its behaviour are vb = r va,
ub = 1

r ua. If qi, i ∈ {a, b}, denotes the position of the i-th
terminal point of the speed reducer, we have q b = r qa + c,
with c being an arbitrary constant that in this paper is
taken equal to 0, without loss of generality. In the special
case where r = 1, the speed reducer is equivalent to the
direct connection, whereas when r = −1, it corresponds
to inverting the velocity. In particular, if r1 and r2 are the
transmission ratios of the reducers used for the connection

(possibly, equal to 1), the controller is described by:

Bcq̈c(t) + Dcq̇c(t) + Hcqc(t) = 0, (4)

yc,q(t) = ET
c qc(t), (5)

with qc(t) ∈ Rnc ,Ec ∈ Rnc×2,Ec =
[

R 0
]T

, R =
diag(r1, r2), Bc diagonal and positive semi-definite, Dc

symmetric and positive semi-definite, Hc symmetric and
det(Bc s2 + Dc s + Hc) being not the null function. The
overall system is then described by the following equations:

Bq̈(t) + Dq̇(t) + Hq(t) = Eu(t) + Eλ(t), (6)

Bcq̈c(t) + Dcq̇c(t) + Hcqc(t) = −Ecλ(t), (7)

yq(t) = yc,q(t), (8)

where λ(t) is the vector of the Lagrange multipliers used
in order to take into account the equality constraint (8),
which represents the forces exchanged between the system
and the controller. Notice that, by eliminating the Lagrange
multipliers and using the equality constraint (8), the overall
system can be rewritten in the form (1), i.e., as an uncon-
strained mechanical system having n + nc − 2 degrees of
freedom. The input of the overall system (6), (7), (8) is still
u(t) and the relevant outputs are still yq(t) and yv(t). The
control problem studied in this paper is stated formally as
follows.

Problem 1: Find, if any, a controller of the form (4),
(5) such that the overall system (6), (7), (8) is asymp-
totically stable and input-output decoupled (the latter be-
ing equivalent to be have a non-singular and diagonal
impedance/admittance matrix).

The overall system (6), (7), (8) will be called the
(mechanical) parallel connection of the system and the
controller: if Y(s) and Yc(s) are the admittances of the
mechanical system and of the controller, respectively, then
the admittance of the parallel connection is Yp(s) =
Y(s) + Yc(s). As for the impedance Zp(s) of the par-
allel connection, it can be easily seen that Zp(s) =
Z(s)

(
I + Z−1

c (s)Z(s)
)−1

, i.e. the parallel connection can
be seen as a feedback system from the output yv(t), in
which the transfer matrix of the controller is Z−1

c (s).
Notice that Z−1

c (s) is not necessarily proper; moreover,
we are interested in a controller whose inverse be the
impedance of a mechanical system, whence the classical
tools for designing a controller that guarantees input-output
decoupling with stability cannot be used.

If two systems having PR impedance matrices Z1(t) and
Z2(t) are connected in parallel, the impedance matrix of the
parallel connection is still PR. However, special care is to be
used when the property of interest is the asymptotic stability
of the system, which is stronger than the real positivity.

The following simple example shows that the parallel
connection of two asymptotically stable mechanical systems
needs not be asymptotically stable.

Example 1: Consider the mechanical system depicted in
Figure 2-(a), which is constituted by three bodies moving
on an horizontal line and connected by the springs having
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Fig. 2. The mechanical systems considered in Example1

positive coefficients of elasticity K0,1, K1,2 and K2,3, and
one damper having damping coefficient D0,1 > 0 as shown
in Figure 2-(a). With the proposed notations, the system can
be rewritten in the form (1), (2), (3), with

B =

⎡
⎣ M1 0 0

0 M2 0
0 0 M3

⎤
⎦ ,D =

⎡
⎣ D0,1 0 0

0 0 0
0 0 0

⎤
⎦ ,

H =

⎡
⎣ K0,1 + K1,2 −K1,2 0

−K1,2 K1,2 + K2,3 −K2,3

0 −K2,3 K2,3

⎤
⎦ ,

from which it is easy to compute the polynomial
det

(
B s2 + D s + H

)
and to check that it has all the roots

with negative real part for all positive D0,1.
Taking two identical systems as the one in Figure 2-

(a) and connecting them in mechanical parallel, the me-
chanical system depicted in Figure 2-(b) is obtained. Its
description as unconstrained mechanical system has q =[

q1 q2 q3 q4

]T
as position vector, and it can be

rewritten in the form (1), (2), (3), with

B =

[
2M1 0 0 0

0 2M2 0 0
0 0 M3 0
0 0 0 M3

]
,D =

[
2D0,1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

]
,

H =

[
2K0,1+2K1,2 −2K1,2 0 0

−2K1,2 2K1,2+2K2,3 −K2,3 −K2,3
0 −K2,3 K2,3 0
0 −K2,3 0 K2,3

]
,

from which it is easy to compute

det
(
B s2 + D s + H

)
= 2

(
M3s

2 + K2,3

)
p̂(s),

where p̂(s) is a polynomial having all the roots with

negative real part. The polynomial (1) has ±j
√

K2,3
M3

as
roots for any value of D0,1, which shows that the parallel
connection of two asymptotically stable mechanical systems
can be not asymptotically stable.

We recall the well known fact (see [6]) that, for mechani-
cal systems of the form (1), (2), (3), the stabilizability from
the input u(t) and the detectability from the output yv(t)

can be tested, respectively, by means of the following two
necessary and sufficient conditions:

rank
([

B s2 + D s + H E
])

= n,

∀s ∈ C, Re(s) ≥ 0, (9)

rank
([

B s2 + D s + H
s ET

])
= n,

∀s ∈ C, Re(s) ≥ 0. (10)

Remark 1: If det(H) �= 0, then the stabilizability and
detectability conditions (9), (10) are equivalent. As a matter
of fact, if det(H) �= 0, then rank

([
B s2 + D s + H

])
is

maximum for s = 0, and therefore we can assume without
loss of generality that s �= 0; under such an assumption,

rank
([

B s2 + D s + H
s ET

])
=

rank
([

B s2 + D s + H
ET

])
=

rank
([

B s2 + D s + H E
])

.
Remark 2: Considering again the parallel connection de-

scribed in Example 1, it can be easily verified that also
the properties of stabilizability and detectability have been

lost. As a matter of fact, for ŝ =
√

K2,3
M3

, we have

rank
([

B ŝ2 + D ŝ + H E
])

= 3 < 4. On the other
hand, the simple system depicted in Figure 2-(a) is reach-
able and observable, whence stabilizable and detectable;
therefore, it is clear that also the structural properties of
stabilizability and detectability can be lost by the mechan-
ical parallel connection.

The goal of this paper is to find a controller having
admittance matrix Yc(s) such that the overall system is
input-output decoupled and asymptotically stable. The next
three lemmas recall important facts that will be useful in
the proof of the main result. The first one (see also [7]) is
concerned with the possibility of stabilizing a mechanical
system — having PR impedance Z(s) — by connecting
the two actuated bodies with the ground by means of
two identical dampers having damping coefficient equal to
D > 0. Such a connection (which is practically equivalent
to using a derivative control law) can be seen as the parallel
connection of the given mechanical system and of the con-
troller with singular Bc constituted by just the two dampers,

having admittance matrix Yc(s) =
[

D 0
0 D

]
= Z−1

c (s).

Therefore, such a parallel connection has the following
impedance matrix Zp(s) = Z(s)(I + D Z(s))−1.

Lemma 2: If D > 0 and Z(s) is PR, then Zp(s) =
Z(s)(I + D Z(s))−1 is BIBO stable. If the stabilizability
and detectability conditions (9) and (10) hold, then the
parallel connection having Zp(s) as impedance matrix is
asymptotically stable.

The second intermediate result is concerned with the
possibility of rendering PR the impedance matrix of a
mechanical system by connecting the two actuated bodies
with the ground by means of two identical springs having
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a positive and sufficiently high coefficient of elasticity K .
Such a connection (which is practically equivalent to using
a proportional control law) can be seen as the parallel
connection of the given mechanical system and of the
controller with singular Bc constituted by just the two

springs, having admittance matrix Yc(s) =
[

K
s 0
0 K

s

]
=

Z−1
c (s). Moreover, the description of the parallel connection

in the form (1), (2), (3) has the same B and D matrices
of the given mechanical system, whereas for its matrix Hp

we have:

Hp = H + diag
(
K, K, 0, ..., 0︸ ︷︷ ︸

n−2 times

)
. (11)

The following lemma, gives a necessary and sufficient
condition for the impedance matrix of the mechanical
system to be PR.

Lemma 3: If B > 0, D ≥ 0 and the stabilizability and
detectability conditions (9) and (10) hold, then ET (B s +

D + H
1
s
)−1E is PR if and only if H ≥ 0.

As for the possibility of rendering matrix Hp positive
definite through an appropriate choice of K , a necessary
and sufficient condition is given by the following lemma
(see [8]).

Lemma 4: The matrix Hp in (11) can be rendered posi-
tive definite with a suitable choice of K if and only if the
matrix H22 ∈ R(n−2)×(n−2) obtained by removing the first
two rows and columns of H is positive definite. Moreover,
if H22 > 0, then there exists K̄ ≥ 0 such that Hp > 0 for
all K > K̄ .

III. MAIN RESULT

Now, in order to design a controller solving Problem 1,
consider the pictorial representation of the given mechanical
system as a non-directed graph having n + 1 vertices, one
for each body-mass and one for the ground, and one edge
for each spring and damper. The following assumption can
be made without loss of generality.

Assumption 1: Assume that the graph associated with the
given mechanical system is connected.

Denote by X1 the set of the vertices (masses) that are
connected by a path of the graph with the vertex corre-
sponding to M1 after removing the vertices corresponding
to M2 and the ground, and all the edges connecting such
vertices. Symmetrically, define X2 by removing M2, the
ground and the relevant edges. Let S12 = X1 ∩ X2, S1 =
X1 \{X1 ∩ S12} and S2 = X2 \{X2 ∩ S12}. Let n1, n2 and
n3 be the cardinalities of S1, S2 and S12, respectively.

In this way, the n degrees of freedom of the given system
can be partitioned into 5 sets, represented pictorially in
Figure 3, with n = n1+n2+n3+2. In Figure 3, the spring
labeled by K1 represents a set of springs with possibly
different coefficients of elasticity, each one connecting a
different mass of the set S12 with M1 (K1 can be understood
as the vector of such coefficients of elasticity); the same

M1 M2

S12S1 S2

K1

K12

D12

D1 K2 D2

K3 D3

K4

K5

D4

D5

K6 D6

K7

D7

Ka Da Kb Db

Fig. 3. Decomposition of the given system. For space reasons springs and
dampers are depicted in different directions, but the reader should imagine
all the motions as horizontal.

happens for the springs labeled by K2, ...,K7 and the
dampers labeled by D1, ...,D7. Furthermore, not all such
springs and dampers need to be actually present, since the
case when a spring is missing can be considered by letting
its coefficient of elasticity be equal to zero, and similarly
for the dampers (but for each i ∈ {1, 2, 4, 6} either D i or
Ki �= 0).

The proposed controller is a nc-degrees of freedom me-
chanical system, with nc = n3+2, constituted by a copy of
the masses M1 and M2, whose coordinates will be denoted
by qc,1 and qc,2, respectively, and all the masses contained
in the set S12, with (i) all the springs and dampers that in the
given system connect such masses with each other and with
the ground, (ii) two additional dampers having damping
coefficient D > 0 connecting the bodies with coordinates
qc,1 and qc,2 with the ground and (iii) two additional springs
with sufficiently high coefficient of elasticity K connecting
the same two bodies with the ground. Such a coefficient
of elasticity is to be chosen sufficiently high as detailed
in the subsequent proof of Theorem 1. Moreover, a speed
reducer characterized by r = −1 is to be used to connect
the body having coordinate qc,2 with the second body of
the given system, whereas the body having coordinate q c,1

is to be glued with the first body of the system. In this way,
the matrix R used in the description of the controller is
R = diag (1,−1). In order to give the main result of the
paper, let Σ1 denote the SISO mechanical system obtained
from the given one by fixing to the ground the mass M 2, and
removing the masses in S2 and all the springs and dampers
directly connected with the removed masses so to obtain a
system with n1 + n3 + 1 degrees of freedom, having input
u1 and output y1. Symmetrically, define Σ2 by fixing M1

and removing all the masses in S1, with the relevant springs
and dampers, so to obtain a system with n2+n3+1 degrees
of freedom, having input u2 and output y2.

Theorem 1: Under Assumption 1, if (i) the matrix H22

defined as in Lemma 4 is positive definite, (ii) Σ1 and Σ2
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are reachable, then there exists K̄ ≥ 0 such that for each
K > K̄ the mechanical parallel connection of the given
system with the proposed controller is asymptotically stable
and input-output decoupled.

Proof: Consider the admittance matrices of the system
and of the controller

Y(s)=
[

Y11(s) Y12(s)
Y12(s) Y22(s)

]
, Yc(s)=

[
Yc,11(s) Yc,12(s)
Yc,12(s) Yc,22(s)

]
.

Since u1(s) = Y11(s)v1(s) + Y12(s)v2(s), it follows that
Y12(s) is the transfer function from the velocity v2(t) of the
second body to the force u1(s) acting on the first body as
a consequence of the imposed v2(s), when v1(s) = 0, i.e.,
when the first body is rigidly fixed to the ground. Hence,
looking at the pictorial representation in Figure 3, it is clear
that Y12(s) is due only to the spring and damper possibly
connecting M1 with M2 and to the masses belonging to
S12, their interconnections, and the springs and dampers
connecting them with M1, M2 and the ground. Such a
subsystem is exactly replicated in the controller, and, due
to the speed reducer with r = −1 used to connect the
second mass of the controller, we have Yc,12(s) = −Y12(s).
This shows that the mechanical parallel connection of the
system and the controller has a diagonal admittance matrix,
since Yp(s) = Y(s) + Yc(s). In order to show that the
overall system is asymptotically stable and has a non-
singular admittance matrix, consider the following slight
modification of the overall system that is totally equivalent
to the proposed one. Rather than connecting the two bodies
having coordinates qc,1 and qc,2 with the ground by means
of two springs having coefficient of elasticity K , it is
possible to use four springs having coefficient of elasticity
K
2 , two of them connecting the bodies with coordinates q c,1

and qc,2 with the ground. This amounts to have a modified
system with admittance matrix

Ȳ(s) = Y(s) +
[

K
2 0
0 K

2

]
=

[
Ȳ11(s) Y12(s)
Y12(s) Ȳ22(s)

]

and a modified controller with admittance matrix

Ȳc(s) = Yc(s) −
[

K
2 0
0 K

2

]
=

[
Ȳc,11(s) Yc,12(s)
Yc,12(s) Ȳc,22(s)

]
.

The asymptotic stability and the non-singularity of Yp(s)
will be proven for the modified system. Now, assume
that the overall system is written in the form (1),
with matrices Bp, Dp and Hp replacing matrices B,
D and H, and with the overall state vector given by
qp =

[
q1 q2 qT

3 qT
3c qT

4 qT
5

]T ∈ Rn+n3 , q3 ∈
Rn3 ,q3c ∈ Rn3 ,q4 ∈ Rn1 , and q5 ∈ Rn2 , with q3, q4

and q5 being the coordinates of the bodies in S12, S1

and S2, respectively, and q3c the coordinates of the bodies
that constitute the controller, apart from the two having
coordinates qc,1 and qc,2 (such coordinates disappear from
the overall description since qc,1 = q1 and qc,2 = −q2).

Matrix Hp has the following form:

Hp =

⎡
⎢⎢⎣

2H1+K 0 H13 H13 H14 0
0 2H2+K H23 −H23 0 H25

HT
13 HT

23 H3 0 0 0

HT
13 −HT

23 0 H3 0 0

HT
14 0 0 0 H4 0

0 HT
25 0 0 0 H5

⎤
⎥⎥⎦ , (12)

where H1 and H2 are scalar, H3 ∈ Rn3×n3 , H4 ∈ Rn1×n1 ,
and H5 ∈ Rn2×n2 . It is clear that if the matrix H22

of the given system, H22 = blockdiag (H3,H4,H5), is
positive definite as guaranteed by condition (i), then the
corresponding matrix for the parallel connection, given by
Hp,22 = blockdiag (H3,H3,H4,H5) is definite positive
too; hence, by Lemma 4, the coefficient K can be chosen
as K = K0 sufficiently high so to guarantee that Hp > 0.
By choosing

K > 2K0 + 2 max{H1, H2}, (13)

the asymptotic stability of the parallel connection can be
proven through Lemmas 2 and 3, by showing that the overall
system is stabilizable and detectable. In the following,
it will be shown that, under condition (ii), the overall
system is actually reachable and observable. First, notice
that the system Σ̄1 obtained by adding to Σ1 a spring with
coefficient of elasticity K

2 that connects its mass M1 with
the ground is reachable if Σ1 is reachable. Notice also that,
in view of Remark 1, system Σ̄1 is also observable if its
matrix H is non-singular. By using the same symbols as
above, the matrix H of system Σ̄1 is given by

H̄1 =

⎡
⎣ H1 + K

2 H13 H14

HT
13 H3 0

HT
14 0 H4

⎤
⎦ ,

which, by Shur complements, is positive definite if

H1 +
K

2
− H13H−1

3 HT
13 − H14H−1

4 HT
14 > 0. (14)

By using Shur complements on Hp with K = K0, which
is positive definite, one obtains

2H1 + K0 − 2H13H−1
3 HT

13 − H14H−1
4 HT

14 > 0, (15)

2H2 + K0 − 2H23H−1
3 HT

23 − H25H−1
5 HT

25 > 0. (16)

Taking into account that H4 > 0, condition (15) and (13)
obviously imply condition (14), thus showing that Σ̄1 is
observable. The same considerations hold for Σ̄2 obtained
similarly from Σ2, thus showing that also Σ̄2 is reachable
and observable. Now, consider the pictorial representation
of Σ̄1 reported in Figure 4.

It is clear that the admittance of Σ̄1, which coincides with
Ȳ11(s) can be decomposed as Ȳ11(s) = Ȳ11,R(s)+Ȳ11,L(s),
where Ȳ11,R(s) corresponds to the force that is due to
the inertia of M1 and all the masses in S12 (the part of
the system on the right of point A in Figure 4), whereas
Ȳ11,L(s) corresponds to the force due to the masses in S1

(the part of the system on the left of point A in Figure 4).
The term Ȳ11,R(s), which is the term that is duplicated by
the proposed (modified) controller, is a non-proper rational
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Fig. 4. The subsystem Σ̄1.

function, since it contains the inertia of mass M1, whereas
Ȳ11,L(s) is a proper transfer function (possibly not strictly
proper); the proofs of these facts can be made easily
through the electric circuit analog to the mechanical system
Σ̄1 (see [4]) or by simple algebraic manipulations in the
Laplace domain. Obviously, a wholly similar decomposition
Ȳ22(s) = Ȳ22,R(s) + Ȳ22,L(s) holds for the admittance of
Σ̄2, where Ȳ22,R(s) corresponds to S12 and Ȳ22,L(s) to S2.
The admittance matrix of the parallel connection is

Yp(s) =
[

2 Ȳ11,R(s)+Ȳ11,L(s) 0

0 2 Ȳ22,R(s)+Ȳ22,L(s)

]
=:

[
Yp,1(s) 0

0 Yp,2(s)

]
.

In view of the diagonal structure of Yp(s), the overall
system is reachable and observable if the sum of the degrees
of the numerators of the diagonal elements of Yp(s) (the
denominators of the diagonal elements of Zp(s) = Y−1

p (s))
is equal to 2(n+nc−2) = 2(2n3 +n1+n2 +2) (i.e., twice
the number of the degrees of freedom of the overall system).
Now, since Σ̄1 is reachable and observable, the degree of
the numerator of Ȳ11(s) is 2(n1 + n3 + 1). Moreover,
since Ȳ11(s) and Yp,1(s) are linear combination of the
same two rational functions Ȳ11,R(s) and Ȳ11,L(s), with
different non-null coefficients, and Ȳ11,R(s) and Ȳ11,L(s)
have different relative degree, it follows that also the degree
of the numerator of Yp,1(s) is 2(n1 + n3 + 1). In the same
way, it can be seen that the degree of the numerator of
Yp,2(s) is 2(n2 + n3 + 1), thus completing the proof of
the asymptotic stability. Finally, it is clear that both Yp,1(s)
and Yp,2(s) are not zero, whence Yp(s) and Zp(s) are non-
singular.

In the following example, the procedure for the design
of the controller is illustrated for a non-trivial mechanical
system.

Example 2: Consider the mechanical system depicted in
Figure 5-(a), where n = 5, Mi > 0, D1,3 > 0, and Ki,j >
0. The relevant sets for the design of the controller are
S12 = {M3}, S1 = {∅} and S2 = {M4, M5}; the resulting
controller, with nc = 3, is depicted in Figure 5-(b), with
K, D > 0. The overall system, i.e., the mechanical parallel
connection of the system and the controller, is depicted in
Figure 5-(c). As for the values of K that guarantee that
Hp > 0, it can be seen that K̄ = 0, whence, any positive

qc1
qc2

q1
q2

q1=qc1
q2

qc2= - q2

(a)

(b)

(c)

u1 u2

u1 u2

M1

M1

2M1

M3

M3

M3

M3

M2

M2

M2

M2

M4 M5

M4 M5

-1

-1

D13

D13

D13

D13

K01

2 K01+K

K

K

K13

K13

K13
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K23

K23

K23

K23

K24

K24

K25

K25

K45

K45

K01+K

D

D
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Fig. 5. The mechanical system, the controller and their parallel connec-
tion, considered in Example2.

value of K can be chosen. With the method proposed in
Example 1, it can be verified that the overall system is
asymptotically stable for any K, D > 0.

IV. CONCLUSIONS

In this paper the problem of input-output decoupling has
been dealt with for linear mechanical systems under the
requirement that the controller is another mechanical system
to be physically connected to the given one. The problem
has been solved for two-input two-output systems, under
some weak conditions on the structural properties of the
system.

Further work will be devoted to the case of m-inputs and
m-outputs, and to nonlinear mechanical systems.
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