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Abstract— In this note a new concept of force/position
control approach for holonomically constrained rigid body
systems is introduced. With this force control approach, the
forces of the mechanical constraints between the rigid bodies
as well as the forces of the constraints when the system’s end
effector interacting with the environment are to be directly
controlled to desired trajectories. Our force control strategy is
based on the use of a new dynamic model for constrained rigid
body systems that determines the equations of the mechanical
constraints between the elements of the constrained rigid body
system in closed form. Our controller for the rigid body system
during constrained motion ensures exponential position, end
effector contact force and mechanical force tracking, and
requires only position measurements.

I. INTRODUCTION

Many robotic tasks involve intentional interaction be-
tween the manipulator and the environment. Usually, the
end effector is required to follow in a stable way the edge
or the surface of a workpiece while applying prescribed
forces and torques. The need to handle complex contact
situations of robotic tasks requires control also of the
exchanged forces at the contact. An example is that of a
surface finishing task where the tool motion is specified in
the direction tangent to the piece, while along the normal
direction it is desired to exert a force of given value.

During interaction, the environment imposes constraints
on the geometric paths that can be followed by the manipu-
lator’s end effector. This situation is generally referred to as
constrained motion. Another kind of contact that involves
constrained motion is that between the links of the ma-
nipulator where the links are mechanically hinged. Indeed,
the manipulator can be regarded as a set of rigid bodies
(i.e., the links) that are subject to holonomically mechanical
constraints. These constraints act on the Cartesian behavior
of the manipulator and the resulting situation can be referred
to as Cartesian constrained motion.

The mechanical forces resulting from the Cartesian con-
strained motion of the manipulator could be indirectly
controlled by acting on the reference value of the position
of manipulator motion control system and (if present) on
that of the contact force control system. If it is desired to
accurately control the mechanical forces, it is necessary to
devise control schemes that allow directly specifying the
desired mechanical forces. This is the objective we are
trying to achieve by this work.
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In this note a new force/position control approach is for-
mulated. With this force control approach, the mechanical
force variables as well as the contact force variables are to
be directly controlled to desired trajectories. Direct control
of the mechanical forces essentially relates to the security
of the structure against the deformation and the damage,
and is motivated by the following: 1) Avoidance of high
values of these force variables because they may deform
or damage the articulations of the structure. For instance,
a manipulator task of driving a screw in a hole when a
hard end effector rotational motion can provoke reaction
forces whose effects lead to an increase of mechanical
forces that may damage the articulations of the structure. In
practice, this is the consequence of the fact that the natural
limit set by saturation of manipulator actuators is not well
defined. 2) A desired trajectory of the mechanical forces
can be considered as a nominal value via given optimal
behavior of the articulations. This is useful, for example,
to minimize the risque of damage in the structure during
fugitive problems of contact with the environment (hard
contact during the landing of an airplane).

Our presented force control strategy relies on the use of
a new dynamic model for holonomically constrained rigid
body systems (e.g., robot manipulators) introduced in [5].
This model is described in the Cartesian coordinate space
and gives a redundant dynamics of the system. With the
model formulation, we can for the first time explicitly de-
termine the equations of the mechanical constraints between
the elements of the rigid body system in closed form. In [5],
a useful discussion showed how the dimension of the state
of this model can be reduced by eliminating the redundancy
in the equations of motion, thus obtaining the reduced order
model of the Cartesian dynamics system.

In this note, we consider that the rigid body system’s end
effector is interacting with an infinitely stiff environment.
Such interaction is then modelled by holonomic (algebraic)
constraints imposed to the system’s generalized motion.
Based on the projection of the system dynamic equations
on a submanifold described by the algebraic equation of
constraints, it will be showed that the constrained motion
of the generalized dynamics system can be represented
by a reduced order model that facilitates the separation
design of position and force control strategies. Various
techniques for deriving the reduced order model have been
proposed in the literature. Here, we will use the reduced
order model introduced in [1]. Following the new concept
of force/position control approach discussed here, we next
design a position/force controller for the holonomically con-
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strained rigid body system during constrained motion that
does not require measurement of link velocity, end effector
contact force and mechanical force. Our control approach is
based on the high-pass filtering of link position information
to generate a velocity related signal. We prove exponential
position, end effector contact force and mechanical force
tracking using standard Lyapunov stability theory.

II. RIGID BODY DYNAMIC MODEL

We briefly introduce here our dynamic model for con-
strained rigid bodies. A detailed development of this latter
can be found in [5]. Consider a system Br of r intercon-
nected rigid bodies. Let q = col[q1, · · · , qn] be a possible
choice of generalized coordinates and n the number of
degrees of freedom. Let pCi ∈ R

3 be the vector of linear
position of the i-th rigid body expressed in the base frame.
Let φCi ∈ R

3 be the vector of three rotational Euler angles
of the i-th rigid body with respect to the base frame. Then,
the Cartesian kinematic motion of the system Br can be
described in terms of the vector of Cartesian coordinates

π = col[pC1 , . . . , pCr , φC1 , . . . , φCr ] ∈ R
6r . (1)

Let ṗCi
∈ R

3 and ωCi
∈ R

3 be the vectors of linear and
angular velocities of the center of mass of the i-th rigid body
expressed in the base frame. Let the constant mCi denote
the mass of the i-th rigid body. Let ICi

Ci
∈ R

3×3 correspond
to the constant inertia tensor of the i-th rigid body relative to
its center of mass expressed in a frame attached to the rigid
body by the center of mass. Let RCi

= RCi
(φCi

) ∈ R
3×3

be the rotation matrix expressing the orientation of the i-
th rigid body frame with respect to the base frame. Let
T (φCi) ∈ R

3×3 be the transformation matrix relating the
angular velocity of the i-th rigid body to the time derivative
of Euler angles, that is ωCi = T (φCi) φ̇Ci . We will collect
all the vectors ṗCi and φ̇Ci , for i = 1, . . . , r, in ν :=
π̇ = col[ṗC1 , . . . , ṗCr

, φ̇C1 , . . . , φ̇Cr
] to obtain the vector

of Cartesian velocities of Br.
Based on the definitions above, we introduce the “Carte-

sian inertia matrix”

M(π) = F(π)�M F(π) ∈ R
6r×6r (2)

with

M = block-diag{mC1I3, · · · ,mCrI3, I
C1
C1

, · · · , ICr

Cr
} (3)

R(π) = block-diag {RC1(φC1), · · · , RCr (φCr )} (4)

Tφ(π) = block-diag {T (φC1), · · · , T (φCr )} (5)

F(π) = block-diag
{
I3r, R(π)�Tφ(π)

}
(6)

where M ∈ R
6r×6r is constant symmetric positive definite,

R(π) ∈ R
3r×3r has full rank for all π, Tφ(π) ∈ R

3r×3r has
full rank for all π through the fact that T (φCi) ∈ R

3×3,
for i = 1, . . . , r, has full rank for certain sequences of
elementary rotations of Euler angles φCi . Hence, M(π)
is symmetric and positive definite for all π.

Then, our dynamic model for the system Br is

M(π) ν̇ + Ṁ(π, ν) ν − N(π, ν) + v = τ + τc (7)

with

N(π, ν) =
1
2

6r∑
i=1

6r∑
j=1

∂mij(π)
∂π

νi νj (8)

v = col [−mC1go, · · · ,−mCrgo, 03r×1] (9)

where mij is the generic element of M(π), τ ∈ R
6r

is the vector of Cartesian forces and torques, τc ∈ R
6r

is the vector of forces and torques corresponding to the
holonomically mechanical constraints between the different
rigid bodies of Br , and go ∈ R

3 is the gravity acceleration
vector in the base frame.

In words, (7) without the term of constraint τc gives the
dynamics of a set of r free rigid bodies whose elements
can reach any position in space. By taking into account
the term of constraint τc we obtain a nonreduced-order
(i.e., redundant) dynamics for the holonomically constrained
rigid body system Br. On the other hand, the holonomic
constraints between the elements of the system Br allow
eliminating s out of 6r =: m coordinates of the redundant
dynamics (7). With the remaining n = m − s coordinates,
it is possible to determine the minimal configuration of Br.
Those coordinates which have already been defined as the
vector q are the nonredundant generalized coordinates and n
is the number of degrees of freedom of the holonomically
constrained system Br. Consequently, the Cartesian kine-
matic motion of the system Br with n degrees of freedom
and s holonomic constraints can be described by equation
of the form

π = π(q(t)) . (10)

By differentiating the equation above with respect to
time, we obtain the Cartesian kinematics equation of the
system

ν =
(

∂π(q)
∂q

)�
q̇ =: J (q) q̇ (11)

where the “Jacobian matrix” J (q) of dimension (m × n)
has full-column rank, globally with respect to q. Note that,
from the system kinematics equation (11), we also have

q̇ = J †(q) ν (12)

where J †(q) is any left pseudo-inverse of the Jacobian
matrix J (q).

A. Reduced Order Model

By substituting (12) in the system Cartesian kinematics
equation (11), the holonomic constraints between the el-
ements of Br can be explicitly defined by the following
equations

P (q) ν :=
(
Im − J (q)J †(q)

)
ν = 0m×1 . (13)

Among the m constraint equations (13), only s = m−n
equations are independent [5]. Moreover, there may exist
several sets of these (m − n) independent equations, for
a given left pseudo-inverse matrix J †(q). Let F (q) ∈
R

(m−n)×m be the matrix given by a possible choice of
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(m−n) linearly independent rows of the constraint matrix
P (q) and suppose that F (q) has full-row rank, globally for
q or at least locally in a neighbourhood of the operating
point. The matrix F (q) can then be expressed in terms of
the constraint matrix P (q) as

F (q) = S P (q) (14)

where S ∈ R
(m−n)×m is a selecting matrix of the constraint

vector P (q) ν. For example, if the (m − n) first rows of
P (q) are linearly independent we can select these rows to
construct F (q) and then the selecting matrix S becomes

S = [Im−n 0(m−n)×n] . (15)

Hence, the equations of the constraints between the el-
ements of the constrained rigid body system Br can be
defined by the reduced form

F (q) ν = 0(m−n)×1 . (16)

Following the principle of virtual work, the vector of
Cartesian constraint forces τc can be expressed in terms
of a ((m − n) × 1)-vector of Lagrangian multipliers λc as

τc = F (q)� λc . (17)

Differentiating (16) with respect to time and solving (7)
for ν̇, the force multipliers λc are

λc = Y (q)(M(π)J̇ (q, q̇)q̇ +Ṁ(π, ν) ν−N(π, ν)+v− τ)
(18)

with

Y (q) =
(
F (q)M−1(π)F (q)�

)−1
F (q)M−1(π) (19)

where (11) and the fact that F (q)J (q) = 0 have been used.
From (7) and (17)-(19), the “weighting matrix” K(q) :=

(I − F (q)�Y (q)) of the Cartesian forces vector τ in the
dynamics (7) is so that K(q)F (q)� = 0. That is K is
a projection operator that filters out all Cartesian forces
lying in the range of the transpose of the reduced constraint
matrix F (q). These correspond to Cartesian forces that tend
to violate the imposed Cartesian space constraints. On the
other hand, even though all generalized positions q can be
expressed by means of a suitable Cartesian position vector
π, there exist Cartesian positions π in R

m which cannot
be expressed by means of q. Then, the obtained Cartesian
positions π are supposed to be in a subset Ωπ of R

m.
To eliminate the Cartesian constraint forces τc and there-

fore reduce the dimension of the constrained system (7),
it suffices to use the system Cartesian kinematics equation
(11) in the dynamics (7) and premultiply on both sides of
(7) by J (q)�. Hence, the Cartesian constraint forces τc are
eliminated owing to the fact that J (q)�τc = 0, and thus
the reduced order model of the constrained system Br is

given by the following equation

J (q)�M(π)J (q)︸ ︷︷ ︸
D(q)

q̈ +

J (q)�
(
M(π)J̇ (q, q̇) q̇ + Ṁ(π, ν)J (q) q̇ − N(π, ν)

)
︸ ︷︷ ︸

C(q,q̇)q̇

+ J (q)�v︸ ︷︷ ︸
g(q)

= J (q)�τ︸ ︷︷ ︸
e

(20)

where the generalized matrices and vectors D(q), C(q, q̇)
and g(q) are now given by jacobian-type expressions. Also,
J (q)�τ = e gives the relationship between the Cartesian
forces vector τ and the generalized forces vector e. It is
worth noting that N(π, ν) of (8) can be written as O(π, ν) ν
with several choices of the matrix O(π, ν) among them
there exists one which renders the matrix Ḋ(q, q̇)−2C(q, q̇)
skew-symmetric.

B. Contact with the Environment

We assume that the end effector of the rigid body system
Br is now under interaction with an infinitely stiff environ-
ment with no friction. Then, the motion is constrained to a
smooth (n − k)-dimensional submanifold defined by

ψ(q) = 0k×1 (21)

where ψ : R
n → R

k is at least twice continuously differ-
entiable, and k is the number of the holonomic constraints.
By taking into account the effects of these holonomic
constraints into the generalized dynamics (20), the motion
equations of the system Br become

D(q) q̈ + C(q, q̇) q̇ + g(q) = J (q)�τ + τq (22)

where τq ∈ R
n is the vector of generalized constraint forces.

It is worth noting that the presence of the term of
constraint τq in the generalized dynamics (20) leads to
another term τ�

q that will be added to the dynamics (7).
This term τ�

q results from the generalized constraints (21)
on the Cartesian variables π and can be defined such that
J (q)�τ�

q := τq . Interestingly enough, the presence of this
term in the dynamics (7) does not affect the expression of
the Cartesian constraint forces τc of (17).

For solvability of the constraints equation (21) and there-
fore the determination of the overall reduced order model
of the system Br, the following assumptions are required:

Assumption 1 Given q := col[qr1 , qr2 ] with qr1 ∈ R
n−k

and qr2 ∈ R
k. Assume that there exists an operating region

Ωq ⊆ R
n defined as Ωq := Ωqr1 × Ωqr2 , where Ωqr1 is a

convex subset of R
n−k and Ωqr2 is an open subset of R

k. We
also assume the existence of a function s : Ωqr1 → R

k twice
continuously differentiable such that ψ(qr1 , s(qr1)) = 0, for
all qr1 ∈ Ωqr1 . Under these conditions, the vector qr2 can
be uniquely defined by the vector qr1 such that qr2 = s(qr1),
for all qr1 ∈ Ωqr1 . �
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Assumption 2 We assume that the system’s end effector
is always on the constraint surface during closed-loop
operation. This means that, under Assumption 1, the state
trajectory q(t) ∈ Ωq , for all t ≥ 0. �

Note that under Assumption 1, we can partition the
matrix Jq(q)� := ∂ψ(q)/∂q as Jq(q) = [Jqr1 (q) Jqr2 (q)],
where Jqr1 (q)� := ∂ψ(q)/∂qr1 , Jqr2 (q)� := ∂ψ(q)/∂qr2 ,
and Jqr2 (q) ∈ R

k×k never degenerates in the set Ωq .
By choosing qr1 as the independent variables, we can

express the generalized velocities q̇ in terms of the inde-
pendent velocities q̇r1 as

q̇ = H(q) q̇r1 (23)

where

H(q) =

(
In−k

−J−1
qr2 (q)Jqr1 (q)

)
(24)

which has full rank for all q ∈ Ωq .
Following the principle of virtual work, the vector of

generalized constraint forces τq can be expressed in terms
of a (k × 1)-vector of Lagrangian multipliers λq as

τq = Jq(q)�λq . (25)

The force multipliers λq of dimension (k × 1) can be
eliminated by solving (22) for q̈ and substituting it into the
second time derivative of (21) to obtain

λq = Z(q)
(
Cλ(q, q̇)q̇r1 + g(q) − J (q)�τ

)
(26)

with

Z(q) =
(Jq(q)D−1(q)Jq(q)�

)−1 Jq(q)D−1(q) (27)

Cλ(q, q̇) = D(q)Ḣ(q, q̇) + C(q, q̇)H(q) (28)

where (23) and the fact that Jq(q)H(q) = 0 have been
used.

C. Overall Reduced Order Model

We present here the reduced order model of the holonom-
ically constrained rigid body system Br during constrained
motion with the environment. Both the Cartesian mechani-
cal constraints beween the rigid bodies and the generalized
constraints resulting from interaction of the end effector
with the environment are to be considered to derive this
model. To that end, differentiating (23) for q̈ with respect to
time and substituting it into (22) and then premultiplying the
resulting equation on both sides by H(q)�, we obtain the
overall reduced order model of the two constrained motion
of Br as

D�(q) q̈r1 + C�(q, q̇) q̇r1 + g�(q) = H(q)�J (q)�τ (29)

with

D�(q) = H(q)�D(q)H(q) (30)

C�(q, q̇) = H(q)�Cλ(q, q̇) (31)

g�(q) = H(q)�g(q) (32)

where the generalized constraint forces τq are eliminated by
using the fact that Jq(q)H(q) = 0.

The following properties will be useful in the subsequent
control development and stability analysis.

Property 1 [2] The matrix D�(q) is symmetric and positive
definite for all q ∈ Ωq . Moreover, it can be bounded as
follows

m1‖x‖2 ≤ x�D�(q)x ≤ m2(‖q‖)‖x‖2 ∀x ∈ R
n−k (33)

where m1 is a known positive scalar constant and m2(‖q‖)
is a known positive nondecreasing scalar function. �

Property 2 [4] For a suitable choice of C�(q, q̇), we have
that for all q ∈ R

n the matrix Ḋ�(q, q̇)−2C�(q, q̇) is skew-
symmetric. �

III. CONTROL DESIGN AND STABILITY

A. Control Problem

We define the control problem we solve in this note as
follows. Suppose that only Cartesian/generalized positions
are available for measurements. Defining the position and
force tracking errors as π̃ := π−πd, τ̃q := τq−τqd and τ̃c :=
τc−τcd, where πd(t), τqd(t) and τcd(t) stand for the desired
values of the positions, generalized and Cartesian constraint
forces, respectively. Then, we seek for a dynamic control
law τ = τ(t, π, q, p), ṗ = φ(t, p, q) such that π̃(t), τ̃q(t)
and τ̃c(t) converge to zero exponentially fast. The desired
values πd(t), τqd(t) and τcd(t) are supposed to satisfy the
following assumptions:

Assumption 3 The desired trajectory πd(t) is C2 and with
its time derivative up to order 2 are bounded. �

Assumption 4 The desired trajectory πd(t) ∈ Ωπ for all
t ≥ 0. This means that πd(t) = π(qd(t)) and νd(t) =
J (qd(t)) q̇d(t) for a given consistent values of qd(t), q̇d(t).
A consistent value qd(t) is chosen into Ωq where the
generalized constraint equation ψ(qd(t)) = 0 is satis-
fied. Furthermore, the desired generalized and Cartesian
constraint forces satisfy τqd(t) = Jq(qd(t))�λqd(t) and
τcd(t) = F (qd(t))�λcd(t) for all t ≥ 0, where λqd(t) and
λcd(t) are the desired values of the independent generalized
and Cartesian constraint forces, respectively. �

Because only n − k independent position variables, k
independent generalized force variables and m − n inde-
pendent Cartesian force variables need to be controlled, the
control objective above can be achieved by forcing to zero
exponentially fast the independent position, generalized and
Cartesian force tracking errors

e := qr1 − qr1
d (34)

λ̃q := λq − λqd (35)

λ̃c := λc − λcd (36)

where qr1
d (t) is the desired value of the independent posi-

tions. From Assumption 3, qr1
d (t) is C2 and with its time
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derivative up to order 2 are bounded. Then, there exists
ζd > 0 such that

max {‖qr1
d (t)‖, ‖q̇r1

d (t)‖, ‖q̈r1
d (t)‖} ≤ ζd . (37)

As for many works in the field, we will introduce a
control law which allows to control the generalized posi-
tions and constraint forces separately. Thus, we consider
the decoupling control law τ of the form

τ = J †(q)�H†(q)�e1+J †(q)�Jq(q)�e2+F (q)�e3 (38)

where e1 ∈ R
n−k, e2 ∈ R

k, e3 ∈ R
m−n are to be defined

in the subsequent development control, and H†(q) is a left
pseudo-inverse of H(q).

Then, the system model (29), (26) and (18) in closed-loop
with the control law (38) becomes

D�(q) q̈r1 + C�(q, q̇) q̇r1 + g�(q) = e1 (39)

λq = Z(q)
(
Cλ(q, q̇)q̇r1 + g(q) − H†(q)�e1

) − e2 (40)

λc = Y (q)
(
M(π)J̇ (q, q̇) q̇ + Ṁ(π, ν) ν − N(π, ν)

+v − J †(q)�H†(q)�e1 − J †(q)�Jq(q)�e2

) − e3 .(41)

Assumption 5 In order to facilitate the control development
and stability analysis, we will assume that the elements of
the equations (39), (40) and (41) are all bounded provided
that q, q̇ ∈ Ln

∞. �

B. High-Pass Filter Approach

We will design a position controller based on the use of a
filter that generates a velocity tracking error-related signal,
to compensate for the need for velocity measurements.

1) Filter Formulation:: The filter is given by the follow-
ing dynamic relationship [2]

ṗ = −kα(k + 1)p + (−kkβ + kα + kαk + kαk2)e (42)

ef = −ke + p (43)

with state p ∈ R
n−k, input e ∈ R

n−k, output ef ∈ R
n−k

and initial conditions p(0) = ke(0). The filter gains kα, kβ

are scalar positive constant and k is to be defined later.

C. Position Controller

We will first develop the open-loop position tracking error
dynamics. We start by obtaining the dynamics for the high-
pass filter output ef . To that end, we differentiate (43) with
respect to time and substitute (42) for ṗ to obtain

ėf = −kė−kα(k+1)p+(−kkβ+kα+kαk+kαk2)e . (44)

After solving for p from (43) and substituting the resulting
expression into (44), we obtain the dynamics for ef as

ėf = −kαef − kη + kαe (45)

where the filtered tracking error term η is defined as

η = ė + kαef + kβe . (46)

From (46), it can be shown that the dynamics of e is

ė = −kβe + η − kαef . (47)

To develop the open-loop dynamics for η, we take
the time derivative of (46) and premultiply the resulting
expression by D�(q) to yield

D�η̇ = D�(q̈r1 − q̈r1
d ) + kαD�ėf + kβD�ė (48)

where the argument of D�(q) has been dropped for sim-
plicity and (34) has been used. Using (39) for D�q̈

r1 , (45)
for ėf and (47) for ė into equation above we obtain

D�η̇ = −D�q̈
r1
d − C� q̇r1

d − g�(q) − C�ė + e1 + kαD�

.(−kαef − kη + kαe) + kβD�(−kβe + η − kαef ) (49)

where q̇r1 has been replaced by q̇r1
d + ė in accordance with

the time derivative of (34). Now, adding and subtracting the
feedforward term Xd(qr1

d , q̇r1
d , q̈r1

d ) defined as

Xd = −D�(qd) q̈r1
d − C�(qd, q̇d) q̇r1

d − g�(qd) (50)

to the right-hand side of (49), substituting (47) for ė, and
then rearranging the resulting expression in an advantageous
manner, we have the final representation for the open-loop
dynamics of η as follows

D�η̇ = X + e1 + Xd − kkαD�η − C� η (51)

where the state disturbance variable X is defined as

X = −D�q̈
r1
d − C�q̇

r1
d + kβD�(−kβe + η − kαef )

−g�(q) − Xd + k2
αD�(e − ef ) + C�(kβe + kαef ) . (52)

Using [3, Lemma B.1], Assumption 5, and (37), it is
straightforward to show that ‖X‖ can be upper bounded as

‖X‖ ≤ ρo(ζd, ‖z‖)‖z‖ =: ρ(‖z‖)‖z‖ (53)

where ρ(‖z‖) is some positive, non-decreasing, scalar func-
tion, and z is defined as

z = col[ef , e, η] . (54)

Based on the structure of (51) and the subsequent stability
analysis, we propose the following position controller

e1 = −Xd + kef − e . (55)

After substituting (55) into (51), we have the closed-loop
dynamics for η as

D�η̇ = −C�η + X − kkαD�η + kef − e . (56)

Theorem 1 The state trajectories of the dynamics (45),
(47) and (51) in closed-loop with the controller (55)
converge to zero exponentially fast. More precisely,
let k = (1/m1kα)(1 + kn2) such that kn2 >
(1/λ3)ρ2((λ2(‖q(0)‖)/λ1)1/2‖z(0)‖), we then have for all
t ≥ 0

‖z(t)‖ ≤
(

λ2(‖q(0)‖)
λ1

)1/2

‖z(0)‖ e(−λ4t) (57)
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where λ1 := min{1, m1}, λ2(‖q‖) := max{1,m2(‖q‖)},
λ4 := β/λ2(ζd + (λ2(‖q(0)‖)/λ1)1/2‖z(0)‖), λ3 :=
min{kα, kβ , 1} and β is some positive constant. �

For the sake of space constraints, the proof of this
theorem is not presented here and is given in [6].

Remark 1 As a direct implication of Theorem 1 that ve-
locity tracking error goes to zero exponentially fast. Indeed,
from the fact that e(t), ef (t) and η(t) go all to zero expo-
nentially fast and by applying the triangular inequality to
(47) we have that ė(t) will also go to zero exponentially fast.

D. Forces Controller

1) Generalized Force Controller:: We start by rewriting
the equation of the generalized constraint forces (40) as

λq = W (q, q̇) − Z(q)H†(q)�e1 − e2 (58)

where the term W (q, q̇) is defined as

W = Z(q)Cλ(q, q̇) q̇r1 + Z(q) g(q) . (59)

Based on the structure of (58), we propose the general-
ized force controller as

e2 = −Z(q)H†(q)�e1 − λqd + Wd (60)

where the feedforward term Wd(qd, q̇d) is defined as

Wd = Z(qd) Cλ(qd, q̇d) q̇r1
d + Z(qd) g(qd) . (61)

Then, the generalized constraint forces model (58) in
closed-loop with the controller (60) becomes

λ̃q = W − Wd . (62)

Based on the observations used to prove (53), the term on
the right-hand side of (62) can be upper bounded as

‖W − Wd‖ ≤ ρ1(ζd, ‖z‖) ‖z‖ + ρ2(ζd, ‖z‖) ‖ė‖ (63)

where ρ1(ζd, ‖z‖) and ρ2(ζd, ‖z‖) are some positive, non-
decreasing, scalar functions. Using the stability result of
Theorem 1 and Remark 1, exponential convergence to zero
of the generalized force tracking error λ̃q follows.

2) Cartesian Force Controller:: The equation of the
Cartesian constraint forces (41) can be rewritten as

λc = −Y (q)J †(q)�H†(q)�e1 − Y (q)J †(q)�Jq(q)�e2

+ Q(q, q̇) − e3 (64)

where the term Q(q, q̇) is defined as

Q = Y (q)(M(π)J̇ (q, q̇) q̇ + Ṁ(π, ν) ν − N(π, ν) + v) .
(65)

Based on the structure of (64), we propose the Cartesian
force controller as

e3 = −Y (q)J †(q)�H†(q)�e1 − Y (q)J †(q)�Jq(q)�e2

+Qd − λcd (66)

when the feedforward term Qd(qd, q̇d) is defined as

Qd = Y (qd)
(
M(πd)J̇ (qd, q̇d) q̇d

+Ṁ(πd, νd) νd − N(πd, νd) + v
)

(67)

where we recall that the desired values πd and νd are given
as πd = π(qd) and νd = J (qd) q̇d.

Then, the Cartesian constraint forces model (64) in
closed-loop with the controller (66) becomes

λ̃c = Q − Qd . (68)

Based on the same observations above, the term on the
right-hand side of (68) can be upper bounded as

‖Q − Qd‖ ≤ ρ3(ζd, ‖z‖) ‖z‖ + ρ4(ζd, ‖z‖) ‖ė‖ (69)

where ρ3(ζd, ‖z‖) and ρ4(ζd, ‖z‖) are some positive, non-
decreasing, scalar functions. Using the stability result of
Theorem 1 and Remark 1, exponential convergence to zero
of the Cartesian force tracking error λ̃c follows.

E. Simulation Results

Due to space constraints, the results of simulation are
omitted here and given in [6].

IV. CONCLUSION

We have introduced a new concept of force/position
control approach for holonomically constrained rigid body
systems. With this control approach the forces of the me-
chanical constraints between the elements of the mechanical
constrained rigid body system as well as the forces of the
constraints when the system’s end effector interacting with
the environment are directly controlled to desired trajecto-
ries. We proposed a controller for the constrained rigid body
system during constrained motion with the environment that
exhibits exponential position, end effector contact force and
mechanical force tracking. The controller was based on
exact knowledge of the system model and required only
position measurements.
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