
Abstract—An analysis of two most popular continuous 
sliding mode algorithms: the power-fractional sliding mode 
algorithm and a second order sliding mode algorithm known 
as the super-twisting is carried out in the frequency domain 
with the use of the describing function method. It is shown 
that in the presence of an actuator, the transient process 
converges to a periodic motion. Parameters of this periodic 
motion are analyzed. A few examples are considered to 
illustrate the obtained results. 

I. INTRODUCTION

ONTINUOUS sliding mode (SM) algorithms were 
developed as a means of mitigating the drawbacks of 

the discontinuous classical SM such as chattering 
phenomenon and infinite-time convergence. Two control 
algorithms that introduce a continuous control law with 
infinite gain known as “the power-fractional SM 
controller” (PFSM), which serves as a basis of the terminal 
SM concept, and “super-twisting” (ST) were proposed in 
[1,2] and [3] respectively1. Both utilize a continuous 
nonlinear function with infinite gain. The popularity of 
continuous SM algorithms can be illustrated by numerous 
publications devoted to the theory and applications of this 
idea [4-8]. 

It is known that the first order SM in systems with 
actuators of relative degree two or more is realized as 
chattering [9, 11]. It was proved in [12] that the same 
property is valid not only for relay type of SM control but 
also for other types of first-order discontinuous control 
algorithms (i.e. linear switched gains, etc.).  However, it 
has been a popular notion over the last decade that the 

1 There also exist other control algorithms the most popular of which is a 
finite gain continuous control in a boundary layer (saturation). However, 
this approach does not have some typical of the SM control features and 
for that reason is not considered in the present paper. 
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second-order SM control would offer chattering 
elimination due to finite-time convergence. Yet in [13], 
where a popular second-order SM algorithm known as 
“twisting” was analyzed, it was shown that the second-
order SM control also exhibits chattering in the presence of 
parasitic dynamics. The same “chattering-free” property 
has been associated with the continuous SM control 
algorithms. This conclusion was merely made from the 
continuity property of the control without analyzing the 
possible causes of chattering: presence of parasitic 
dynamics, delays and hysteresis in the nonlinear element. 
Since the algorithms to be analyzed in the paper involve a 
nonlinear function with infinite gain, which is a potential 
source of instability, those algorithms are likely to excite 
oscillations under certain conditions. The aim of this paper 
is to analyze the two above-mentioned algorithms, to show 
that the property of being “chattering-free” associated with 
the continuous SM algorithms is a misconception, to prove 
possible existence of periodic motions (chattering) in the 
systems with actuators driven by those algorithms, and to 
provide a methodology of assessment of parameters of 
those motions. 

Given the objective of the outlined analysis and the facts 
that the introduction of an actuator increases the order of 
the system, and a relatively “inconvenient” nonlinearity is 
present in the SM algorithm, the analysis of corresponding 
Poincare maps becomes very complicated. In this case the 
describing function (DF) method [14] becomes a good 
choice as a method of analysis, as it provides a relatively 
simple and efficient solution of the problem.  

The paper is organized as follows. At first the model of 
the system involving the PFSM algorithm is obtained. Then 
the DF model of the algorithm suitable for the frequency 
domain analysis is obtained. It is shown that a periodic 
motion occurs and the problem of finding the parameters of 
this periodic motion is considered. After that the same is 
done for the ST algorithm. Finally, a number of examples 
are considered.

II. POWER-FRACTIONAL SLIDING MODE CONTROL AND ITS 
DF ANALYSIS

PFSM control was proposed in [1, 2] as a continuous SM 
control algorithm. Let the plant (or plant plus actuator) be 
given by the following differential equations: 
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where A and B are matrices of respective dimensions, 
x Rn, y R1, y can be treated as either the sliding variable 
or the output of the plant. We assume that the plant is 
asymptotically stable, apart from some possible integrating 
terms, and is a low-pass filter. We shall also use the plant 
description in the form of a transfer function W(s), which 
can be obtained from the formulas (1) as follows: 

BAIC 1)()( ssW

The control law for PFSM is given as follows: 
pqytu /)(  (2) 

where >0, q and p are positive integers (p>q), p is odd. 
From (2), one can see that the control is a nonlinear 
function of the sliding variable y. Like in the case of the 
classical SM control, we assume that the sliding variable is 
a linear combination of the plant states and, therefore, the 
plant transfer function from control to sliding variable has 
relative degree one. The system under analysis can be 
represented in the form of the block diagram of the closed-
loop system as follows (we will assume that input f(t) 0
and therefore y(t)=- (t)):

Fig.1. Block diagram of the system with PFSM. 

Let us apply the DF method [14] to this closed-loop 
nonlinear system and find under which conditions a 
periodic motion may exist in this loop. Find the DF of the 
nonlinearity (2) as the first harmonic of the periodic control 
signal divided by the amplitude of y(t) – in accordance with 
the definition of the DF. 
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where a is the amplitude of the input to the nonlinearity  
and  is the frequency of y(t) (the output is assumed to be 
y(t)=asin t). Applying this formula to the nonlinearity 
given by (2) derive the formula of the DF of PFSM. 
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where  is gamma-function [15]. The minus sign of (2) is 
attributed to the negative feedback and not accounted for in 
formula (3). The integral (3) can be evaluated numerically. 
For example, if q=1 and p=3 the formula of the DF can be 

written as follows: 
3

2
159.1 aN . (4) 

One can see from (3) and (4) that N(a) is a real function. 
For that reason, the negative reciprocal of the DF coincides 
with the negative part of the real axis on the complex plane. 
A periodic solution can be found as a point of intersection 
of the Nyquist plot of the actuator-plant-sliding surface 
combination and of the negative reciprocal DF (of (3) or 
(4)), which corresponds to the solution of the harmonic 
balance equation [14]: 

1)()( aNjW  (5) 
The frequency corresponding to this point would, 

obviously, be the same as in the relay type of the SM 
control, as the negative reciprocal of the DF for the ideal 
relay also coincides with the negative part of the real axis. 
However, the amplitudes of the oscillations would be 
different in those two cases. Thus, a periodic motion may 
occur in the system with PFSM if the combined relative 
degree of the actuator, plant and sliding surface is three 
and higher, as in this case the Nyquist plot of the linear 
part intersects the negative part of the real axis. Stability of 
this periodic motion can easily be verified via the use of 
Loeb criterion [14,16]. For this type of nonlinearity, a 
stable periodic solution would correspond to the Nyquist 
plot of the plant intersecting the real axis from below. 

Let us compare the amplitudes of possible periodic 
motions in the system with PFSM and in the system with 
the relay nonlinearity. For a steady periodic motion, we can 
write the condition of the balance of the amplitudes as 
follows: 

1)()( aNjW .
This equation applies to both: the relay control and the 

PFSM. Since the frequency of the periodic solution  is the 
same in both cases the value of the DF should be the same 
for the relay control and the PFSM control. Taking into 
account that the DF for the relay control is given by the 
following formula: )/(4 acN R , where c is the amplitude 
of the relay, the amplitudes of the oscillations in the system 
with the relay control and the PFSM are related as follows 
(for q=1 and p=3):

3
2

159.14
PFSM

R
a

a
c  (6) 

where aR is the amplitude of y(t) in a periodic motion for 
the relay control, aPFSM is the amplitude for the PFSM. 
Assuming that c=1, =1, from (6), we can obtain: 

3
2

099.1 PFSMR aa  (7) 
One can see from (7) that the amplitude of a periodic 

motion (chattering) in the PFSM can be higher or lower 
than the corresponding amplitude in the relay control – 
depending on the value of the magnitude of the frequency 
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response )( jW  of the linear part at the frequency 
corresponding to the phase response –180°. However, for 
small amplitudes of chattering (if inequality 

1)( jW holds) it follows from (7) that the amplitude 
of chattering for PFSM is smaller than the one for the relay 
control. Two examples of analysis of the PFSM control are 
presented in Table 1 below. 

III. SUPER-TWISTING ALGORITHM AND ITS DF ANALYSIS

A. DF of super- twisting algorithm 
The super-twisting algorithm is used for the plants with 

relative degree one. The control u for the super-twisting 
algorithm is given as a sum of two components [3]: 
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where , and s0 are design parameters. In the formula for 
u2,  is suggested to be within the range from 0 to 1. The 
typical values would be 0.5 and 1. With  being 1, the 
second component of the control u2(t) becomes a linear 
function of the output y at small departures )( 0sy :

yysignyu )(2 , and the system can be analyzed 
as a conventional relay system. 

The system under analysis can be represented in the form 
of the block diagram as follows: 

Fig.2. Block diagram of the system with the super-twisting algorithm. 

With the square root nonlinearity ( =0.5) the DF 
formula can be derived as: 
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where ay is the amplitude of variable y, ay s0 (that is 
considered the most important range of the amplitude 
values for the analysis of the steady state) and  is the 
gamma-function. 

For an arbitrary value of the power  in (8) and the 
amplitude ay s0, the formula of the DF of such nonlinear 
function can be given as follows: 
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The DF of the first component of the super-twisting 

algorithm can be written as follows: 

ja
N

y

14
1

which is a result of the cascade connection of the ideal 
relay with the DF equal to 4 /( ay) [14] and the integrator 
with the transfer function 1/s (for the harmonic signal the 
Laplace variable s can be replaced with j ). Taking into 
account both control components, the DF of the super-
twisting algorithm can be written as: 

yy aja
NNN 1128.114

21 . (11)

Let us note that the DF of the super-twisting algorithm 
depends on both: the amplitude and the frequency values. 
The parameters of the limit cycle can be found via the 
solution of the complex equation (5). The negative 
reciprocal of the DF is given by the following formula:

.
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The function –1/N is a function of two variables: the 
amplitude and the frequency. It can be depicted as a 
number of plots representing the amplitude dependence, 
with each of those plots corresponding to a certain 
frequency. The frequency range that is of interest lies 
below the frequency corresponding to the intersection of 
the Nyquist plot and the real axis. The plots of function 
-1/N are depicted in Fig. 3. The plots 1,2,3,4 correspond to 
four different frequencies, with the following relationship: 

1> 2> 3> 4. Each of those plots represents the 
dependence of the DF on the amplitude value. 

Function –N-1(ay) (where =const) has an asymptote at 
ay , which is the horizontal line –j1.1329 /( 2 ).  Also, 
it easy to show that 2/))(arg(lim 1

0 y
a

aN
y

.

B. Existence of the periodic solutions 
 The solution of the harmonic balance equation (5) can 

be iterative with possible application of various techniques.  
However, complex equation (5) with two unknown 
variables: ay and  can be reduced to one real equation 
having only one unknown variable  as follows. Write 
equation (5) in the form of )()( 1 jWaN y , where 

N(ay) is given by (11): 
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Fig.3. Plots of function -1/N; 1> 2> 3> 4.

Considering the real part of both sides we can obtain: 

)(Re1128.1 1 jW
a y

Express ay from the above equation and substitute this 
value in the equation, which can be obtained by 
considering the imaginary parts of the previous complex 
equation. Finally, one equation with one unknown variable 

 can be obtained as follows: 

.0
)(Re

1128.1
)(

14)(
2

11 jWjImW
(13)

Once equation (13) has been solved the amplitude ay can 
be computed as follows: 

)(
14
1 jImW

a y . (14)

Therefore, if a periodic motion occurs its parameters can 
be found from (13) and (14). Existence of a periodic 
solution can be proven via analysis of function (13). 

Proposition 1. If relative degree of the plant is two or 
higher and the plant does not have double zero poles there 
always exists at least one periodic solution of the system 
with the super-twisting algorithm.

Proof: At first prove the Proposition 1 for the plant of 
relative degree 3 and higher. Let the plant be dynamics of 
relative degree three or higher. It follows from the formula 
of the DF of the algorithm (11) that the periodic solution 
should always be looked for within the frequency range 
that corresponds to – /2 and –  of the phase characteristic 
of the plant (see also Fig. 3). Denote frequency 1 being 
the frequency where the phase characteristic of the plant is 
- /2 (assuming that there is only one such 
frequency): 2/)(arg 1jW  ( 1  can be - if the plant 
transfer function is integrating - has a zero pole). Similarly 

denote frequency 2 being the frequency at which the 
phase characteristic of the plant is – )(arg 2jW .
Both frequencies are finite (except the case of an 
integrating plant). Find the following two limits of function 

( ) (13): ( +)=-  and ( -)= . The signs are 
different. Function ( ) is continuous within the range 

( 1; 2) that follows from (13). Therefore, within the 
specified range, there is at least one solution of equation 
(13).

Assume now that relative degree of the plant is 2. In this 
case, we can define frequency 1  in the same manner as 
before but frequency 2 becomes infinite. Let us write the 
asymptotical representation of the plant transfer function 
for high-frequency inputs in the polynomial form:  

01
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Then substituting j  for s we have  
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Therefore, between 1 and 2 there always exists a 
certain frequency , which provides a solution to equation 
(13). This completes the proof. 

Remark. It is important that the point of the intersection 
is located in the third quadrant of the complex plane. 
Therefore, if the transfer function of the plant (or plant plus 
actuator) has relative degree higher than one a periodic 
motion may occur in such a system. For that reason, if an 
actuator of first or higher order is added to the plant with 
relative degree one driven by the super-twisting controller 
a periodic motion may occur in the system. From Fig. 3, it 
also follows that the frequency of the periodic solution for 
the super-twisting algorithm is always lower than the 
frequency of the periodic motion in the system with the 
classical first order SM relay controller, because the latter 
is determined by the point of the intersection of the Nyquist 
plot and the real axis. 

C. Stability of periodic solution.
Proposition 2. If the following inequality holds then the 

periodic solution given by formula (13) is locally stable: 

0
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Proof: To investigate the local stability of the solution of 
(13), we consider the system transients due to small 
perturbations of this solution when ay is quasi-statically 
varied to (ay+ a). As in the proof of Loeb criterion [14, 
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16], we assume that the harmonic balance equation still 
holds for slight perturbations, so that a damped oscillation 
of the complex frequency j +( +j ) corresponds to 
the modified amplitude (ay+ a):

1))(())(,( jjWjjaaN y ,
 (16) 
where the DF N(ay, ) is given by formula (11). The 
nominal solution is determined by zero perturbations: 

= = a=0. Considering the variations around the 
nominal solution defined by  and ay, following the proof 
of the Loeb criterion for the stability of the periodic 
solution let us find the conditions when =  / a is 
negative. Write an equation for the amplitude perturbation 

a. For that purpose take the derivative of (16) with respect 
to a as follows: 
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Take derivatives of N and W considering them composite 
functions: 
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Solving (17) for 
ad

d
j

ad
d  with account of (18) 

and (19) we can obtain an analytical formula. Considering 
only the real part of this formula we obtain (15). This 
completes the proof. 

IV. EXAMPLE OF ANALYSIS AND COMPARISON OF 
RESULTS

Example. Let the plant be given by the following equations: 

21 xx

auxxx 212

21 xxy

and the actuator by: uuu aa01.0 . Carry out analysis of 
periodic motions in the systems with the super-twisting 
controller if the parameters of the algorithm are given as: 

=0.5, =0.8, =0.6.  The transfer function W(s) of the 
actuator-plant can be derived from the original equations 
as:

1
1

101.0
1)( 2 ss

s
s

sW . (20)

Equation (13) has a solution: =66.16s-1. The amplitude 
ay can be computed with the use of formula (14): 
ay=2.33 10-4. Now let us check the stability condition of 

this periodic solution. The value of 
ad

d  found as per (15) 

is –3.267 104. Therefore, the periodic solution is locally 
stable and corresponding periodic motion exists in the 
system. 

The graphical illustration of the application of formula 
(5) to the analysis of the periodic motion is presented in 
Fig. 4. The plot –N-1(ay) is drawn for the frequency of the 
periodic motion =66.16s-1 obtained above. 

It is clearly seen in the Fig. 4 that the point of 
intersection exists and the asymptotic behavior of the 
functions is in accordance with the above analysis. 

Fig.4. Negative reciprocal of DF –N-1(ay) and the Nyquist plot W(j ).

The frequency of the periodic motion obtained as a result 
of the simulation is sim=64.96s-1, which matches very 
well the result of the DF analysis. 

Some other examples of analysis are presented in 
Table 1. The actuator transfer function is denoted as Wa(s),
the plant transfer function as Wp(s), and the transfer 
function from the plant input to the sliding variable is 
denoted as W (s). As a result, the transfer function of the 
linear part W(s) is the product of Wa(s) and W (s).

 One can see that the results of the DF analysis very well 
match the results of the simulations. Also, the following 
properties are observed. A periodic motion occurs if the 
combined relative degree of the actuator and of the plant is 
higher than one. The frequency of the periodic motion in a 
system driven by the super-twisting controller is lower than 
the frequency of the periodic motion in the classical first 
order relay control – the fact that was predicted by the 
above analysis. The amplitudes of the chattering reflect the 
relationship between the frequency of the periodic motion 
and the decreasing character of the amplitude frequency 
response W(j )  of the actuator-plant.  
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V. CONCLUSION

Two most popular continuous sliding mode algorithms: 
the power-fractional SM and a second order SM algorithm 
known as super-twisting are analyzed in the frequency 
domain with the use of the describing function method. It is 
shown that if the combined relative degree of the actuator 
and plant is higher than two (for the power-fractional SM) 
or one (for the super-twisting) a periodic motion may occur 
in the system. Algorithms of finding the parameters of the 
periodic motions are presented. A few examples of analysis 
are presented. 
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TABLE I 
RESULTS OF COMPUTING AND SIMULATIONS

 Super- 
twisting 

controller
( =0.5)

Super-
twisting 

controller
( =0.5)

First order SM 
controller

First order SM 
controller

PFSM
(q/p=0.333)

PFSM
(q/p=0.333)

Plant Wp(s)
1

1
2 ss
s

1
1

2 ss
s

1
1

2 ss
s

1
1

2 ss
s

1
1

2 ss
s

1
1

2 ss
s

Actuator
Wa(s) 101.0

1
s 101.00001.0

1
2 ss 101.0

1
s 101.00001.0

1
2 ss 101.0

1
s 101.00001.0

1
2 ss

W (s) apWW apWW apWW apWW apWW apWW

  (DF 
analysis)

66.16 55.18 Infinite 100.00 Infinite 100.00 

(simu-
lations) 

64.96 54.14 Converging to 
infinity 

99.26 Converging 
to infinity 

99.67

Amplitudes 
of output 
chattering

2.33e-4 4.81 e-4 0 1.27 e-4 0 1.24 e-6 
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