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Abstract— This tutorial paper summarizes the application of
a variety of identification techniques to simulations of two
realistic chemical processes, a continuous stirred-tank reactor
(CSTR) and the Tennessee Eastman challenge process. Both
subspace identification methods (N4SID and CVA) and regression
techniques (PLS and CCR) are considered. Emphasis is placed on
the relative performance of the various identification methods, and
their strengths and weaknesses. Also, the use of these identification
methods in monitoring and fault detection is discussed.

In the CSTR case study, Dynamic ARX and FIR models
are identified using two regression techniques, PLS and CCR,
and the predictive error method. are compared with state-space
models identified using two subspace algorithms, CVA and N4SID.
The objective functions for PLS and CCR are shown to be
related. A comprehensive simulation study of the CSTR with
different characteristics and noise properties is used to compare the
identification methods. The results indicate that, if the time delay
structure is known or estimated accurately, the identified subspace
models tend to be more accurate than the models identified
using regression. The state-space models identified using the CVA
algorithm are especially accurate.

The Tennessee Eastman challenge process is a realistic simu-
lation of a chemical process that has been widely used in process
control studies. In this case study, several identification methods
are examined and used to develop MIMO models that contain
seven inputs and ten outputs. ARX and finite impulse response
models are identified using reduced-rank regression techniques
(PLS and CCR) and state-space models identified with prediction
error methods and subspace algorithms. For a variety of reasons,
the only successful models are the state-space models produced
by two popular subspace algorithms, N4SID and canonical variate
analysis (CVA). The CVA model is the most accurate. Important
issues for identifying the Tennessee Eastman challenge process and
comparisons between the subspace algorithms are also discussed.

Index Terms— Subspace system identification, multivariate re-
gression, industrial processes, monitoring, fault detection.

I. INTRODUCTION

A key requirement for many applications for advanced
control and monitoring techniques is an accurate process
model. Developing dynamic models based on fundamen-
tal physico-chemical relationships is often prohibitively
difficult for industrial applications due to, e.g., unknown
chemical reactions, poorly known or unknown Kkinetic
coefficients, etc. Thus, decades of research have been
devoted to developing models from empirical input-output
data.

Most industrial processes, and almost all found in the
chemical industry, are multivariable (that is, two or more
inputs and outputs), nonlinear and are constantly responding
to disturbances that are unmeasurable and occurring at un-
known times. Although almost all processes are nonlinear,
in practice linear models are commonly used for control
and monitoring. This practice is not entirely unjustified,
since several processes are operated within a localized
region, and the nonlinearities for many processes (e.g.,
refinery processes) are quite mild within this operating
region. The important issue for industrial processes is
therefore estimating a multivariable, linear model that is
appropriate for control and monitoring applications. The
word “appropriate” is rather subjective but reflects the
ability of the model to describe the system, and not just
fit the data — what Ljung [1] refers to as the difference
between system identification and curve fitting.

The field of system identification is quite mature. Pub-
lished in the late-1980°s, the textbooks of Box et al.
[2], Ljung [3] and Soderstrom and Stoica [4] contain
the fundamental theory for identifying discrete, stochastic,
linear models. Both books describe the necessary steps and
decisions for identifying empirical models: selecting the
model structure, the model order, and parameter estimation
method. For multi-input multi-output (MIMO) models,
these issues (in particular the model structure) are especially
challenging and generally left as a design parameter for an
“expert” to specify. Several researchers have since studied
strategies that systematically identify large-dimensional
models. A systematic methodology is particularly important
for, e.g., model predictive control applications, where
an expert in MIMO system identification is not always
available. This research compares methods that purport to
identify accurate linear models for multivariable systems
with little or no influence on the part of the user — a true
“black-box” model.

In the next section, the generic identification prob-
lem is presented, followed by a discussion of methods
from multivariable statistics and subspace algorithms for
identifying dynamic models. Then, several comprehensive
simulation studies are discussed comparing the techniques
and demonstrating a number of significant issues.
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II. IDENTIFYING LINEAR MULTIVARIABLE
MODELS

For this paper, linear, discrete-time, stochastic models are
of interest. The books by Ljung [3] and Soderstrom and
Stoica [4] are excellent references for the classical system
identification theory. A summary of the relevant issues is
presented within this section.

Identifying an empirical process model requires exciting
the process to collect experimental data, and using these
data for estimating a mathematical model. After the ex-
perimental data have been collected, the user makes three
important selections: whether to use a parametric or non-
parametric model, the model structure (i.e., the type of
model and the model order), and the method for estimating
parameters. All three factors have significant effects on the
identified model, and in the simulation section the relative
importance of each factor will be examined.

A multivariable linear, stochastic model is written as a
linear difference equation of the form

Ny N3 Nc
y(k)y =Y Aiyk=i)+ Y Bu(k—i)+ Y Ce(k—i) (1)
i=1 i=0 i=0
where N4, Np and N are respectively the AR, X and MA
orders. The function A; is the pulse response function from
the past outputs to the present output y(k), and B; and C;
are the pulse responses from the past and present inputs
u(k) and noise e(k), respectively, to the present outputs.
These are all equivalently expressed as transfer functions
in the backshift operator.

Several cases are of particular interest. The finite impulse
response (FIR) model is where A; = 0 and C; = 0 and only
the model order Np is specified. Although the coefficient
matrices must be estimated, the FIR model is labeled “non-
parametric” because the FIR model acts as a function for
describing the system response to impulse input [4].

FIR models are frequently used because there are few
restrictions about the processes that can be modeled, are
estimated using least squares regression, and the FIR
structure is intuitive yet meaningful to control engineers.
The major disadvantage of FIR models is that the model
order can be quite large even for very simple models. This
is particularly true for MIMO models of stiff processes that
will have wide range of time constants. Additionally, for
high-order models with large input and output dimensions,
the estimates of B; can be poor due to a poorly conditioned
matrix of regressors.

Parametric models include autoregressive models with
exogenous inputs (ARX) where C; = 0, and autoregressive
moving average models with exogenous inputs (ARMAX)
where all of the coefficients A;, B; and C; are estimated. A
special case of the ARMAX model structure is the output
error (OE) structure, where C; = A;.

The ARMAX structure provides a flexible description of
the noise process and remains parsimonious. The difficulty
with identifying ARMAX models is (1) cannot be directly

written as a linear regression problem as before. This
paper assumes that the noise model is unknown. If it
were known, the noise model could act as a filter on the
residuals and linear regression used for estimating model
parameters [3]. Several estimation methods have been
proposed for estimating ARMAX models including pseudo-
linear regression, correlation methods (e.g., instrumental
variables), and more recently, subspace methods.
The subspace methods identify a state-space model,

x(t+1) =
y@® =

Ax(t) + Bu(t) + Gw(t) )
Cx(t) +v(t) 3)

where x is a (n, x 1) vector of state variables, w is the
(ny x 1) vector of state noise variables, v is the (n, x 1)
vector of measurement errors. The state and measurement
noise vectors are assumed to be uncorrelated with one
another and distributed as normal random variables with
covariance matrices Q and R, respectively. As described by
[7], [3], [8], a state-space model is parametrically equivalent
to the ARMAX model in (1). The state-space model can
be identified using nonlinear optimization and a prediction
error criterion, i.e., by using a prediction error method
(PEM). However, the structure of the state-space matrices
can be difficult to specify, and estimating the matrices
requires solving a nonconvex optimization problem. Hence,
the computational burden is large and there is no guarantee
of a global minimum, i.e., the identified model using PEM
may not converge to the “true” model even if the correct
model order is specified.

Choosing between parametric and nonparametric meth-
ods, and selecting the model order and structure (for both
the process and the noise model) both depend on the end use
of the model. For example, several model predictive control
software packages use non-parametric models [9]. Many
modern control and monitoring applications are developed
for state-space models. For multivariable FIR and ARX
models, estimating the model parameters requires methods
that are robust to a large degree of correlation among
the regressors. In the next section, multivariable statistical
methods for the regression problem are described. After
discussing the multivariable statistical methods, subspace
algorithms for identifying state-space models are described.

III. MULTIVARIABLE REGRESSION

For a linear relation between predicted variables, y, and

regressor variables, x, the i sample is,

(i) = B"x(i) + e(i) “4)

where y is dimension #,, x is dimension n, and the noise
e(i) is assumed to be uncorrelated in time, and normally
distributed with zero mean and constant covariance matrix
2. Additionally, x and y are both assumed to be mean-
centered. Equation (4) can be written for N measurements
of y and x as,

Y=XB+E 5
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where the rows of matrices Y (dimension N x ny), X
(dimension N X n,) and E contain the individual observa-
tions of y”, xT, and e”. The ordinary least squares (OLS)
estimate of B is,

Bors = (X" X)'(x™Y) (6)

The OLS normally assumes X = I. Generalized least
squares (GLS) [10] is appropriate for general £ # I. The
GLS solution is equivalent to scaling both x and y by pIP
thus, ¥ is known and invertible.

The standard OLS solution can be inaccurate if X7 X is
ill-conditioned. If there are collinearities within the matrix
X, the inverse of XTX does not exist. If there are large
interactions between X variables, the inverse may be poorly
conditioned, resulting in an inaccurate estimate of Bors.
Additionally, the OLS solution ignores any interactions
between the predicted variables, Y, treating each variable
independently. A number of methods have been proposed
for multivariable regression that are appropriate for high-
correlation in both the regressor and response matrices:
principal component regression (PCR), ridge regression,
curds & whey, canonical correlation regression (CCR)
and partial least squares (PLS). There are two different
PLS approaches: one that treats outputs independently
(“PLS1”) and one that incorporates correlation between
outputs (“PLS2”). This paper focuses on PLS2 and the
term “PLS” refers to the PLS2 algorithm. Several excellent
review articles analyze the various properties of these
regression methods [11], [12], [13]. The two methods of
interest in this paper are PLS and CCR because they are the
most commonly used techniques in the control engineering
literature.

The chemometric methods such as PCA, PCR, and PLS
were proposed to handle the large amounts of data that
were stored as part of the “information age”. These methods
identify the coefficient matrices by forming reduced-rank
matrices of the regressors and predictors. That is, correla-
tions and collinearities within the input or output matrices
can be used for accurately estimating B, unlike the ordinary
least squares (OLS) solution.

Canonical correlation regression is a related multivariate
statistical method derived as the maximum likelihood esti-
mate for the rank-deficient regression problem, i.e., when
the X and Y matrices may not be full-rank [14] [15].
The use of CCR for identifying dynamic FIR models were
examined in [16].

It has been shown [17] that PCA, PCR, PLS, and
CCA are all special cases of a generalized singular value
decomposition, where the weighting used in the SVD
determines the which computational procedure is used. This
considerably clarifies the relationship among these methods.
For PCA, PCR, and PLS, the weighting is chosen as a fixed
value for each. For CCA the weighting is determined by the
data itself and results in a maximum likelihood procedure
for any specified choice of rank. This plays a central role

in the subspace system identification methods discussed
below.

IV. SUBSPACE METHODS

Subspace identification methods are a recent development
in the system identification field. The canonical variate
analysis (CVA) algorithm was proposed by Larimore [17],
[19], [20], [21], and is based on the time series analysis
methods developed by Akaike [23], [24]. The N4SID
algorithm, developed by van Overschee and De Moor [25],
[26], is more closely related to engineering linear systems
theory. Both algorithms identify a stochastic state-space
model,

x(k+1)
y(k)

where x is the (n, x 1) vector of state variables, u is the
vector of measured inputs (n, x 1), and y is the vector of
measured outputs (n, x 1). For subspace algorithms, the
state vector has a very particular meaning which will be
described below. As mentioned earlier, any linear model
structure (e.g., ARX, ARMAX, OE) can be written as a
state-space model.

The derivation of subspace algorithms is rather com-
plicated compared with the traditional prediction error
methods. Furthermore, the different approaches used in
the derivations make comparing the subspace algorithms
a challenging task. The derivation of CVA is cast in a
mathematical statistics framework. The derivation of N4SID
uses geometric arguments and a system theoretic approach,
similar to realization theory.

For subspace algorithms, the state vector, x(k), is defined
to be a linear combination of past inputs and outputs,

Ax(k) + Bu(k) + Ke(k) @)
Cx(k) + Du(k) + e(k)

x(k) = Jp(k) ()
where,
p(k) = [u(k=1),..., u(k—N), y(k=1), ..., y(k=N)1" (9)

and p(k) is referred to as the “past” at sample k. The
dimension of the past is the number of lags, N. The state
vector, x(k), is computed from data, and is not specified a
priori. After J has been determined (as will be described
below) the state vector can be estimated by (8). The state-
space model matrices can then be estimated via linear least

squares regression,
A B x(k+1) x(k)
[é ] - va([ y(k) ’[uW>]>“m

_ x(k) x(k)
oot ([0 ][0 ])

The parameter estimation step of subspace algorithms can
vary, but all algorithms proceed in the same general fashion:
estimate the state vector from the “past”, and then estimate
the state-space matrices using “current” values for state,
input and output vectors.

> o
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The calculation of the matrix J distinguishes the var-
ious subspace algorithms from one another. In the CVA
approach, J is derived from the canonical loadings [18]
between the future outputs conditional on the future inputs
(i.e., removing the effect of future inputs) and the past [17].
In the N4SID approach, J results from a series of geometric
arguments (or linear algebraic arguments) based on a set
of matrix equations for the evolution of a linear system.
Asymptotically the key step for calculating J can be written
as a weighted singular value decomposition (SVD) [27],

svd(WOWs) = [U; U] [ o s ] [ ' ] (an
where W) and W, are weighting matrices, and © is an
oblique projection of the future outputs along future inputs
on the past inputs and outputs. J is calculated from the
lower dimensional subspace defined by U, S;, and V; (the
details are explained fully in [25]). In the N4SID algorithm,
W1 = W, = I. For the CVA algorithm, W, and W, are
defined so that J is the matrix of canonical variates for the
past inputs and outputs.

The scaling for CVA is particularly noteworthy because
it results from the maximum likelihood (ML) solution
of a constrained rank regression problem for multivariate
regression [17], exactly like CCR. When applied to time
series data, an ML procedure incorporates the correct
delay structure of the regression coefficients (i.e., the
precise structure of the ARMAX polynomials). In CVA,
this unknown shift structure is not explicitly imposed, but
several simulation studies demonstrate the accuracy of CVA
to be essentially equal to the ML solution [5]. A formal
proof for this phenomena was recently given by Larimore
[22]. ML accuracy permits the computation of confidence
bands on model accuracy and precise tests of hypotheses
concerning the model structure: e.g., detecting the presence
of bias or trends, feedback, and delays. Near ML accuracy
in quite small sample sizes has also been demonstrated in
a number of complex systems by Larimore [5].

In principle different subspace algorithms could identify
equivalent state-space models if scaled appropriately. How-
ever, other important differences exist among the subspace
algorithms: the numerical procedure for calculating the
state-space matrices, determining the dimension of the past
(N in (8)) and selecting the model order. Larimore has
shown that the CVA weighting can identify models that
are nearly equivalent to prediction error methods (PEM),
which require that the exact model structure be known a
priori.

Ideally, the model order corresponds to the number of
singular values in (11) that are greater than zero, or some
very small value, e. For N4SID, the order is selected by the
user, usually by looking for a “knee” in the plot of singular
values vs. model order, or where the singular values fall
below a specified critical value. Frequently there is more
than one knee, or no knee at all. For CVA, the model
order is selected via Akaike’s Information Criteria (AIC),

TABLE I
CSTR Results for Closed-loop Identification

Method RZ(y1) (%) R*(») (%)
PLS-FIR 727 846
PLS-ARX 86.4 89.6
CCR-FIR 84.0 88.0
CCR-ARX 86.3 89.6
N4SID 81.4 85.7
CVA 87.1 90.3
ARX 81.9 822
PEM 87.3 90.4

a statistical method for hypothesis testing. The singular
values (or equivalently, the canonical correlations) can also
be used for order selection and hypothesis testing.
Subspace algorithms provide simple and fast methods for
identifying a MIMO state-space model. The calculations
are non-iterative and computationally efficient. Thus a rich
model structure can be identified without the need of
optimization or an expert in system identification.

V. PROCESS IDENTIFICATION COMPARISONS

In Juricek et al. [31], two simulation examples were used
extensively to compare regression and subspace methods.
The first example was a continuous stirred-tank reactor
(CSTR) with a first order reaction rate A — B [33]:

dCA F EA
LA (C-Cu)—k A e, (2
o V(Co 4) oeXP< RT> 4 (12)
dT F —AH E4
— = —(Ty-T k - 13
dr y o=+ 2C, OeXp< RT) (13)
+ ua (T, T)
pC,V

The concentration of A, C4, and the temperature, T are
measured variables. The manipulated variables are the
jacket temperature, Ty, and flowrate, F.

In [31], extensive simulations were done for a number of
simulation models using various identification methods. A
typical result is shown in Table I for the case of a closed-
loop simulation model. The R? measure of model fit for
each of the outputs y; and y, is shown, and it is seen that
the best are PEM and CVA with N4SID, ARX and PLS-FIR
the worst. Extensive comparisons were also made looking
at empirical frequency response functions that are much
more descriptive of the accuracy of the various parametric
modeling methods.

A second example in [31] was the “quality control”
example from Dayal and MacGregor [16], given by:

x(1) = K(q—1>([017 (Z]u(m o Of]wm)
1 0
0

y@) = 1 1 x(1) + v(1) (14)
1 02
02 1
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where K(g7') = 02¢7/(1 —0.8¢7"). Because of the
collinearity between outputs, a reduced-rank method is
necessary. Two simulations were performed:

1) w(?) =0, or an output error process.
2) w(t) € N(O,Q), or an ARMAX process.

The measurement noise v(¢) was uncorrelated with w(z) and
was normally distributed, v(¢) € N(0, R) with covariance
matrix R chosen to provide a signal-to-noise ratio of
approximately three for each output.

The results of the simulation studies in [31] provide
more evidence that the subspace methods, particularly
CVA, are very adept at producing parsimonious models
that are quite robust to different noise processes. However
the quality control example demonstrates that subspace
methods are particularly sensitive to time delays, and that
FIR and ARX models could be more accurate when time
delays are not specified. Although the accuracy of any
identified model will improve if time delays are known,
time delay estimation methods, such as that provided by
the ADAPTy software [36], are especially important for
subspace methods.

It was shown that the estimated regressor matrices and
the objective functions for the CCR and PLS methods
are asymptotically equivalent if scaled appropriately. For
dynamic models, the scaling issue is further complicated
by the presence of the noise process. For FIR or ARX
model identification, these simulation results and those
of previous studies [16], [31] suggest that the choice of
CCR or PLS could depend on the input excitation and the
frequency range of interest, because CCR remains sensitive
to variation at high frequencies.

VI. TENNESSEE EASTMAN CHALLENGE PROCESS

A detailed study of CVA identification of the Tennessee
Eastman process is given in Juricek et al. [30]. The
Tennessee Eastman Challenge Process (TE) was published
by the Tennessee Eastman Company [34] as a process
simulation for academic research. By academic standards,
the problem is quite large: it contains 41 measured variables
and 12 manipulated variables. Based on a real chemical
process, the TE produces two products (labeled G and H)
from four reactants (labeled A, C, D and E). An explicit
mathematical representation of the process is not given;
instead the simulation is distributed as purposely convoluted
FORTRAN code [35]. In addition to the process description,
the problem statement defines process constraints, 20 types
of process disturbances, and six operating modes corre-
sponding to different production. In order to define a process
model that was large, but manageable, seven inputs and ten
outputs were selected for the simulation study.

The Tennessee Eastman Challenge Process was used to
compare dynamic models identified using the CVA, N4SID
and ARX methods. Although the TE is a nonlinear system,
linear models for the base operating mode were reasonably
accurate for most of the seven inputs and ten outputs that
were included in the model. Comparisons of actual and

predicted responses are shown in Fig. 1 from ug to y3 for
prediction horizons of 1, 15, and oo, and in Fig. 2 at a
prediction horizon of 15 for two other input-output pairs,
us to y4 and u7 to y;. The models identified by the CVA
algorithm were particularly accurate, and should be well-
suited for model-based control and monitoring applications.
In general, the set of MISO ARX models was less accurate
than the CVA model, but better than the N4SID state-space
model, as indicated by the R? values for two validation
data sets. Compared with a set of MISO ARX models,
the single state-space model identified by CVA was more
accurate and simpler to interpret. For example, the statistical
properties of the noise and the modes of the system are
easier to analyze using the single state-space model than
seven ARX models. Although the subspace algorithms are
related by the generalized singular value decomposition,
using the N4SID algorithm with the CVA weighting did
not produce the same state-space model as the CVA model
that was identified using the ADAPTx software [36].

VII. PROCESS MONITORING AND FAULT
DETECTION

A very brief summary of the use of subspace methods in
fault detection is given in this section. A model identified
using CVA can use several methods for fault detection.
Three methods are investigated in Juricek et al. [32],
the first based on Kalman filter residuals for the CVA
model, the second based on canonical variable residuals.
In addition, a third method is proposed that uses the
local statistics approach [29] for detecting changes in
the canonical variable coefficients. The proposed methods
use multivariable versions of the classical Shewhart and
CUSUM control charts. Thus while the statistics are non-
traditional, they still use standard SPC charts and “SPC
thinking”; i.e., alarm limits and limit violations have their
usual meanings.

The major motivation for developing the proposed
method is sensitivity. That is, slow-developing process
changes can go undetected using standard, residual-based
detection methods. The “local statistics” approach allows
detecting changes in parameters, and the proposed method
makes use of the parametric changes for detecting process
changes.

The detection methods are evaluated using three sim-
ulation examples; the examples consider the effects of
feedback control, process nonlinearities, and multivariable,
serially correlated data. The simulations consider several
types of common, process faults including sensor faults,
load disturbances, and process changes. The simulation
results indicate that the local approach provides a very
sensitive method for detecting process changes, which are
difficult to detect using either the Kalman filter or canonical
variable residuals.
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