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1. INTRODUCTION

Mathematical models describe the dynamic behavior of
a system as a function of time, and arise in all scientific
disciplines. These mathematical models are used for simula-
tion, operator training, analysis, monitoring, fault detection,
prediction, optimization, control system designs and quality
control.

System identification is the process of constructing mathe-
matical models of dynamical systems using measured data.
The identified models can be used for output prediction,
system analysis and diagnostics, system design, and control.
Identification of linear models has been well studied and
numerous frequency-domain and time-domain methods are
available [21]. Among the available time-domain methods,
subspace algorithms are an important class of algorithms
for identifying linear state-space models.

Subspace methods are naturally applicable to multi-input
multi-output (MIMO) systems and identify the system in
the state-space form. These methods are computationally
tractable and robust since they use QR factorization and
singular value decompositions. Another advantage of sub-
space algorithms is that no a priori information about the
system is needed, and thus they are widely applicable. Since
the number of user choices is small, the software is user-
friendly. All these factors make subspace identification a
valuable tool.

Overviews of linear subspace identification are presented
in detail in [5, 34, 45]. Detailed examination of subspace-
based identification of bilinear and linear parameter-varying
(LPV) systems is done in [36]. Subspace algorithms have
also been applied to numerous industrial and real-life ap-
plications ranging from glass tube manufacturing processes
to bridge dynamics. A few application-based papers are
[9], Sections 6.3 and 6.4 of [34] and [31]. Section 6.4
of [34] references several other interesting applications. In
this paper, we introduce the basic ideas behind subspace
algorithms to the uninitiated reader and provide an overview
of linear, time-varying, nonlinear and closed-loop methods.

The basic idea behind subspace is that the Kalman
filter state sequence can directly be estimated from the
input/output observations. Once the state estimates are avail-
able, the state space matrices are estimated using a linear
least squares fit. This is contrary to traditional identification

S. Lacy is with the Air Force Base, Albuquerque, New Mexico
H. J. Palanth, J. B. Hoagg and D. S. Bernstein are with the department

of Aerospace Engineering at the University of Michigan, Ann Arbor, MI
48109-2140. {hpalanth,hoagg,dsbaero}@umich.edu

methods, where the model is identified first and then the
states are generated using the identified model.

This paper is organized in the following way. Section 2
deals with the basic subspace algorithm for time-invariant
systems. A simplified proof of the fact that the state
sequence and/or the observability matrix of the dynamical
system can be determined directly from input-output data
is provided in Section 2.2. Variations of the basic algorithm
and implementation issues are covered in Sections 2.5-
2.7. In Section 3, we present some existing identification
algorithms for linear time-varying systems. Section 4 covers
the bulk of the existing subspace-based nonlinear identi-
fication algorithms including Hammerstein and nonlinear
feedback identification (Section 4.1), Hammerstein-Wiener
identification (Section 4.2), identification for Wiener sys-
tems (Section 4.3), linear parameter-varying system iden-
tification (Section 4.4) and bilinear system identification
(Section 4.5). A brief overview of identification of closed-
loop systems is presented in Section 5 and some illustrative
examples are presented in Section 6.

2. SUBSPACE IDENTIFICATION OF LINEAR

TIME-INVARIANT SYSTEMS

Consider the linear time-invariant system

xk+1 = Axk + Buk + wk, (2.1)

yk = Cxk + Duk + vk, (2.2)

with

E

[(
wp

vp

)(
wT

q vT
q

)]
=

[
Q S
ST R

]
δpq ≥ 0,

(2.3)
where x, w ∈ R

n, u ∈ R
m, y, v ∈ R

l, A ∈ R
n×n,, B ∈

R
n×m, C ∈ R

l×n, D ∈ R
l×m, Q ∈ R

n×n, S ∈ R
n×l

and R ∈ R
l×l. Here E is the Expected value and δ is

the kronecker delta. The identification problem can then be
stated as

Problem statement:
Given N consecutive measurements of inputs u and

outputs y, estimate the order n of the system and the system
matrices A, B, C, D, Q, R, and S.

2.1. Notation

Let i and j be user-defined integers such that i ≥ n and
j � i. Then we define the input block Hankel matrix as
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U0|2i−1
�
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0 u1 · · · uj−1

u1 u2 · · · uj

...
...

. . .
...

ui−1 ui · · · ui+j−2

ui ui+1 · · · ui+j−1

ui+1 ui+2 · · · ui+j

...
...

. . .
...

u2i−1 u2i · · · u2i+j−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.4)

=

(
U0|i−1

Ui|2i−1

)
=

(
Up

Uf

)
. (2.5)

Also, when partitioned differently

U0|2i−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0 u1 · · · uj−1

u1 u2 · · · uj

...
...

. . .
...

ui−1 ui · · · ui+j−2

ui ui+1 · · · ui+j−1

ui+1 ui+2 · · · ui+j

...
...

. . .
...

u2i−1 u2i · · · u2i+j−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.6)

=

(
U0|i

Ui+1|2i−1

)
=

(
U+

p

U−
f

)
. (2.7)

The subscript p denotes the ‘past’ and the subscript f
denotes ‘future’.

The output block Hankel matrices Y0|2i−1, Yp, Yf , Y +
p

and Y −
f are defined similar to equations (2.4)-(2.7) with u

replaced by y.
The extended observability matrix is

Γi
�
=

⎡⎢⎢⎢⎢⎢⎣
C

CA
CA2

...
CAi−1

⎤⎥⎥⎥⎥⎥⎦ . (2.8)

Under the assumption that (A,C) is observable, the ex-
tended observability matrix Γi has rank n (note that i ≥ n).

The state sequence Xi is

Xi
�
=

(
xi xi+1 · · · xi+j−2 xi+j−1

)
. (2.9)

And finally, the notation F/G represents the orthogonal
projection of the row space of F onto the row space of G.
Similarly F/HG denotes the oblique projection of the row
space of F along the row space of H onto the row space of
G. The procedure for computing the orthogonal projection
and the oblique projection are discussed in Sections 2.3 and
2.4, for more details see [5, 34].

The most important idea behind subspace algorithms is
that the state sequence Xi can be directly estimated as
an intersection (explained later) of the input and output
block Hankel matrices. In the next subsection, we provide a

simplified proof of why this is true for the case in which no
noise terms are present. And in the subsequent subsections
we will elaborate on the actual methodology for computing
the state sequence, the order of the system, and the state-
space matrices.

2.2. Deterministic Case

Here we consider a linear system without any unmea-
sured disturbances and noise terms

xk+1 = Axk + Buk, (2.10)

yk = Cxk + Duk. (2.11)

From (2.10) and (2.11), we can write

Y0|i−1 = ΓiX0 + HiU0|i−1 (2.12)

Yi|2i−1 = ΓiXi + HiUi|2i−1, (2.13)

where Hi ∈ R
li×mi is the lower block triangular Toeplitz

matrix and is defined as

Hi =

⎡⎢⎢⎢⎢⎢⎣
D 0 0 · · · 0

CB D 0 · · · 0
CAB CB D · · · 0

...
...

...
. . .

...
CAi−2B CAi−3B · · · · · · D

⎤⎥⎥⎥⎥⎥⎦ . (2.14)

From (2.12), we have

[
Y0|i−1

U0|i−1

]
=

[
Γi Hi

0 Imi

] [
X0

U0|i−1

]
(2.15)

and hence,

rank

[
Y0|i−1

U0|i−1

]
= rank

[
X0

U0|i−1

]
. (2.16)

Now, under the ‘persistent excitation’ assumption (i.e.
U0|i−1 is of full row rank, there is no intersection between
the row spaces of X0 and U0|i−1 and the state sequence X0

is of full row rank), we have

rank

[
Y0|i−1

U0|i−1

]
= mi + n. (2.17)

Similarly, it can also be shown that

rank

[
Yi|2i−1

Ui|2i−1

]
= mi + n, (2.18)

rank

[
Y0|2i−1

U0|2i−1

]
= 2mi + n. (2.19)

Next we can also relate Xi and X0 as

Xi = AiX0 + ∆r
i U0|i−1, (2.20)

where

∆r
i

�
=

[
Ai−1B Ai−2B · · · B

]
(2.21)
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is the reversed extended observability matrix. Assuming that
the model is observable and noting that i ≥ n, it follows
from (2.13) that

Xi =
[
−Γ†

iHi Γ†
i

] [
Ui|2i−1

Yi|2i−1

]
(2.22)

which implies that the row space of Xi is contained in the

row space of

[
Uf

Yf

]
. Similarly, from (2.20) and (2.12) we

can write

Xi = Ai
[

Γ†
iY0|i−1 − Γ†

iHiU0|i−1

]
+ ∆r

i U0|i−1

=
[

∆r
i − AiΓ†

iHi AiΓ†
i

] [
U0|i−1

Y0|i−1

]
, (2.23)

which implies that the row space of Xi is also contained in

the row space of

[
Up

Yp

]
.

Now, using the Grassmann’s dimension theorem ( [2]
Theorem 2.3.1) gives (under the assumption of persistant
excitations)

dim

(
row space

[
Up

Yp

]⋂
row space

[
Uf

Yf

])

= rank

[
Up

Yp

]
+ rank

[
Uf

Yf

]
− rank

⎡⎢⎢⎣
Up

Yp

Uf

Yf

⎤⎥⎥⎦
= (mi + n) + (mi + n) − (2mi + n) = n

Hence, we have shown that any basis for the intersection
between ‘past’ and ‘future’ represents a valid state sequence
Xi. There are several ways to compute the intersection of
matrices, one popular method is by computing the singular
value decomposition of stacked up matrix containing the
past and future block Hankel matrices. The state sequence
Xi+1 can be obtained analogously. Once the state sequence
is available, the system matrices are estimated in a least
squares step elaborated in Section 2.4.

2.3. Output-Only Identification

Consider the case in which there are no inputs uk, the
only signals that drive the equations are the noise terms wk

and vk. Although the signals wk and vk are not available,
identification of the state space matrices A, C, Q, S and
R can be performed from output only data. This scenario
arises in applications such as identification of the dynamics
of bridges or structures excited by ambient disturbances.
The system equations are thus

xk+1 = Axk + wk, (2.24)

yk = Cxk + vk. (2.25)

The LQ decomposition of the block Hankel matrix
Y0|2i−1 is computed and is partitioned as⎡⎣ Y0|i−1

Yi|i

Yi+1|2i−1

⎤⎦ =

⎡⎣ L11 0 0
L21 L22 0
L31 L32 L33

⎤⎦⎡⎣ QT
1

QT
2

QT
3

⎤⎦ (2.26)

Then the orthogonal projection Yf/Yp of the future output
space onto the past output space is

Oi
�
= Yf/Yp =

[
L21

L31

]
QT

1 . (2.27)

It can be shown that the matrix Oi is equal to the product
of the extended observability matrix and the Kalman filter
state sequence X̂i

Oi = ΓiX̂i. (2.28)

Similarly it can be shown that the projection Oi+1
�
=

Y −
f /Y +

p is equal to

Oi+1 = Γi−1X̂i+1 (2.29)

where Γi−1 is the matrix obtained by discarding the last l
rows from Γi. Now, the Kalman filter state sequence can be
computed by performing a singular value decomposition of
Oi. Once the estimates of the state sequence are available,
a linear least squares problem for estimating the state space
matrices A and C can be solved. The residuals from the
least squares problem are then used to estimate Q, S and
R. The details of the above procedure are presented in the
next subsection.

2.4. Complete Stochastic-Deterministic Case

Consider the complete equations for the linear system
(2.1) and (2.2). When there are no noise terms present,
i.e. when vk ≡ 0 and wk ≡ 0, the state sequence can
be determined by computing the intersection of the ‘past’

and ‘future’ data matrices,

[
Up

Yp

]
and

[
Uf

Yf

]
. In the

presence of unmeasured noise terms, we obliquely project
the row space of Yf along the row space of Uf onto the row

space of

[
Up

Yp

]
. Then we compute the state sequence by

computing a singular value decomposition of the projection
and retaining the first few dominant singular values.

First to compute the oblique projection, we partition the

LQ decomposition of

[
U
Y

]
as follows

⎡⎢⎢⎢⎢⎢⎣
U0|i−1

Ui|i

Ui+1|2i−1

Y0|i−1

Yi|i

Yi+1|2i−1

⎤⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎣
L11 0 0 0 0 0
L21 L22 0 0 0 0
L31 L32 L33 0 0 0
L41 L42 L43 L44 0 0
L51 L52 L53 L54 L55 0
L61 L62 L63 L64 L65 L66

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

QT
1

QT
2

QT
3

QT
4

QT
5

QT
6

⎤⎥⎥⎥⎥⎥⎥⎦
(2.30)

Now, the oblique projection Oi is

Oi = Yf /
Uf

[
Up

Yp

]
, (2.31)

= LUp L11Q
T

1 + LYp

[
L41 L42 L43 L44

] ⎡⎢⎢⎣
QT

1

QT
2

QT
3

QT
4

⎤⎥⎥⎦ ,

(2.32)
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where

[
LUp

LUf
LYp

] ⎡⎢⎢⎣
L11 0 0 0
L21 L22 0 0
L31 L32 L33 0
L41 L42 L43 L44

⎤⎥⎥⎦
=

[
L51 L52 L53 L54

L61 L62 L63 L64

]
. (2.33)

Similarly the projection Y −
f /

U
−
f

[
U+

p

Y +
p

]
denoted by Oi+1

is

Oi+1 = L
U

+
p

[
L11 0
L21 L22

] [
QT

1

QT
2

]
(2.34)

+L
Y

+
p

[
L41 L42 L43 L44 0
L51 L52 L53 L54 L55

] ⎡⎢⎢⎢⎢⎣
QT

1

QT
2

QT
3

QT
4

QT
5

⎤⎥⎥⎥⎥⎦ ,

(2.35)

where

[
LU+

p
LU−

f
LY +

p

]
⎡⎢⎢⎢⎢⎣

L11 0 0 0 0
L21 L22 0 0 0
L31 L32 L33 0 0
L41 L42 L43 L44 0
L51 L52 L53 L54 L55

⎤⎥⎥⎥⎥⎦
=

[
L61 L62 L63 L64 L65

]
. (2.36)

Under the observations that:

1) the process noise wk and measurement noise vk are
uncorrelated with the inputs uk,

2) the inputs uk are persistently exciting of order 2i, i.e.
the block input Hankel matrix U0|2i−1 is of full row
rank,

3) the sample size goes to infinity: j → ∞,
4) the process noise wk and the measurement noise vk

are not identically zero,

it has been shown that the oblique projection Oi is equal
to the product of the extended observability matrix Γi and
a sequence of Kalman filter states

Oi = ΓiX̂i. (2.37)

1) Order Determination and State Estimates: The order
of the system can be determined by examining the singular
values of the matrix Oi. In the absence of noise terms, there
will be only n non-zero singular values of Oi. However,
when noise terms are present, there will generally be more
than n non-zero singular values of Oi. In this case the
dominant singular values are retained, the rest are ignored,
and the order of the system is estimated as the number of
dominant singular values.

Once the order of the system is estimated, the Kalman
filter states X̂i can be recovered from the singular
value decomposition of Oi. For example, let the sin-
gular value decomposition of LUp

[
L11 0 0 0

]
+

LYp

[
L41 L42 L43 L44

]
be

LUp

[
L11 0 0 0

]
+ LYp

[
L41 L42 L43 L44

]
=

[
U1 U2

] [
S1 0
0 S2

] [
V T

1

V T
2

]
. (2.38)

where S1 contains the dominant singular values and S2 are
the singular values to be neglected. Then from (2.32), (2.37)
and (2.38), we have

Γi = U1S
1/2
1 , (2.39)

and

X̂i = Γ†
iOi = S

1/2
1 V T

1

⎡⎢⎢⎣
QT

1

QT
2

QT
3

QT
4

⎤⎥⎥⎦ . (2.40)

Similarly X̂i+1 can be computed as Γ†
i−1Oi+1, where Γi−1

is the matrix obtained by discarding the last l rows of Γi.
2) State-Space Matrices: Once the state sequence is

obtained, the system matrices can be solved for as a least
squares problem[

Xi+1

Yi|i

]
=

[
Â B̂

Ĉ D̂

] [
Xi

Ui|i

]
. (2.41)

The residuals of the above least squares solution are then
used to calculate the noise covariances Q̂, Ŝ, and R̂. It
should be noted here that the state sequence and the state-
space matrices can be estimated to only within a basis
transformation of the actual matrices. Hence the estimated
states cannot be ascribed any physical significance.

2.5. Additional Variations

Several variants on the above algorithm exist. First, we
note that the oblique projection Oi can be weighted left and
right by user defined weighting matrices W1 ∈ R

li×li and
W2 ∈ R

j×j respectively, which must satisfy the following

conditions: W1 is full rank and the rank of

[
Up

Yp

]
W2

is equal to the rank of

[
Up

Yp

]
. Furthermore, one can

distinguish between two classes of subspace identification
algorithms. The first class uses the state estimates X̂i (the
right singular vectors of W1OiW2) to find the system matri-
ces. The algorithm in Section 6.2 belongs to this class. The
second class of algorithms uses the extended observability
matrix Γi (the left singular vectors of W1OiW2) to first
determine estimates of A and C and subsequently of B;D
and Q;S;R. In fact, the three subspace algorithms (N4SID
[33], MOESP [42] and CVA [18]) all start from W1OiW2

[5, 34] with a specific choice of weighting matrices W1

and W2 for each of the algorithms. The weightings are
summarized in Table 1. From this table is clear that the
algorithm described above is the N4SID algorithm (W1 =
Ili and W2 = Ij).

All of the algorithms in Table I first calculate an oblique
projection Oi, followed by an SVD of the weighted matrix
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Acronym W1 W2

N4SID Ili Ij

CVA
(
limj→∞

1
j [(Yf /Uf )(Y f/Uf )T]

)−1/2

Π
U⊥

f

MOESP Ili Π
U⊥

f

TABLE I

THIS TABLE DEFINES VARIATIONS OF VARIOUS SUBSPACE

IDENTIFICATION ALGORITHMS.

W1OiW2. The first two algorithms, N4SID and CVA, use
the state estimates X̂i (the right singular vectors) to find the
system matrices, while MOESP is based on the extended
observability matrix Γi (the left singular vectors). The
matrix U⊥

f in the weights of CVA and MOESP represents
the orthogonal complement of the row space of Uf .

2.6. Implementation

The basic subspace algorithm and its variants have been
incorporated into several commercial software for system
identification [5]. In most of the softwares, choice of the
parameters i and j is automated so there are no user choices
(for the advanced user, an option to change some of the
parameters is provided). Hence these software implementa-
tions are easy to use.

• The System Identification Toolbox in Matlab [24],
developed by Prof. L. Ljung (Linköping, Sweden):
http://www.mathworks.com/products/sysid/

• The system identification package ADAPTx [20] of
Adaptics, Inc, developed by Dr. W. E. Larimore:
http://www.adaptics.com/

• The ISID-module in Xmath, developed by dr. P.
Van Overschee and Prof. B. De Moor and li-
censed to ISI Inc. (now Wind River), USA:
http://www.windriver.com

• The software packages RaPID and INCA of IPCOS
International: http://www.ipcos.be

• The package MACEC, developed at the department
of Civil Engineering of the K.U.Leuven in Belgium:
http://www.kuleuven.ac.be/bwm/macec/

• Products of LMS International:
http://www.lms-international.com

Other public domain software includes SLICOT
(http://www.win.tue.nl/niconet/NIC2/slicot.html), the SMI
toolbox of the Control Laboratory at the T.U.Delft
(http://lcewww.et.tudelft.nl/ verdult/smi/) and the
Cambridge University System Identification Toolbox
(http://www-control.eng.cam.ac.uk/jmm/).

2.7. Notes

• The state-space matrices calculated in 2.41 and the
estimated state-sequence X̂i can be guaranteed only to
within a basis transformation of the actual state-space
matrices and the state-sequence respectively. So there

exists a nonsingular matrix T such that

A = TÂT−1, B = TB̂,

C = ĈT−1, D = D̂, Xi = TX̂i.

• It is often difficult for the user to verify whether the
inputs satisfy all of the assumptions. But in cases
where the user is able to perform experiments on the
system with inputs of his/her choice, it is better to
choose inputs with high frequency content to have a
better chance of being persistently exciting. In partic-
ular signals with low frequency content like sinusoids
and constants should be avoided.

• One often mentioned disadvantage of subspace meth-
ods is the fact that these methods do not optimize
a maximum likelihood cost function. The reason for
this is that, contrary to input-output models (transfer
matrices), we cannot formulate a likelihood function
for identifying state space models, that also leads
to an amenable optimization problem. Nevertheless,
subspace identification algorithms provide surprisingly
good approximations of linear models, but there is still
a lot of ongoing research on how the identified model
relates to a maximum likelihood formulation.Yet, it is
our experience that subspace algorithms often tend to
give very good linear models for real world data sets.

• Bias in inputs can be a concern when data is obtained
from sensors that are not calibrated. This can be
handled by using an additional artificial input with
value 1 at all time steps. Consider

xk+1 = Axk + B(uk − u0) + wk

yk = Cxk + D(uk − u0) + vk

where uk is the measured inputs, while uk −u0 is the
actual inputs to the system with u0 a constant. The
above equations can be rewritten as

xk+1 = Axk +
[

B −Bu0
] [

uk

1

]
+ wk,

yk = Cxk +
[

D −Du0
] [

uk

1

]
+ vk.

Thus, a bias in inputs can be translated into an
additional artificial scalar input 1. Notice here that u0

is a vector, whereas 1 denotes a scalar.
• Subspace algorithms can be easily modified to accom-

modate for missing data points. In the Hankel matrices
(2.4), the columns containing the missing data points
are removed (the corresponding columns from Y0|2i−1

are also removed) and the rest of the procedure is
carried out without any modifications. This will yield a
state sequence with jumps where the data is missing. In
the least squares step (2.41), care is taken to not include
the states at the jump (because x̂k+1 will correspond
to a time step before the jump and x̂k will correspond
to a time step after the jump). The same procedure
can also be used when data from several different
experiments performed at different times are available.
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The time between the experiments can just be regarded
as missing data (even if it is several days).

3. LINEAR TIME-VARYING SYSTEMS

3.1. Arbitrarily Time-Varying Systems

In [44] for an arbitrary time-varying system, the row
space of the observability matrix is estimated using a QR
factorization followed by a singular value decomposition
similar to the ones in section 2.3. However, here the
observability matrix is different for each time step. So the
block Hankel matrices defined in section 2.1 cannot be used
since they include data points from different time steps. To
deal with this problem, an ensemble of input-output data is
used. The ensemble data set has to be collected when the
system exhibits the same time-varying behavior. With this
ensemble data set, the block Hankel matrices are defined in
a different way. Using these block Hankel matrices, the row
space of the observability matric can be estimated using a
QR factorization of the block Hankel matrices followed by
a singular value decomposition. For details see [44].

Subspace identification for switching systems is devel-
oped in [30]. Although several of the steps in the algorithm
are derived from the basic subspace identification algorithm,
neither the state sequence nor the observability matrix is
computed. Instead the Markov parameters of the system
are computed directly from the available data, and thus this
algorithm cannot be considered a true subspace algorithm.

3.2. Periodically Time-Varying Systems

In the case of periodic systems [14] lifting can be used
to express the system as a set of p time-invariant systems,
where p is the period of the system. For example, consider
the system

xk+1 = Akxk + Bkuk + wk, (3.1)

yk = Ckxk + Dkuk + vk. (3.2)

The matrices Ak, Bk, Ck and Dk have the same dimen-
sions as A, B, C and D respectively in (2.1) and (2.2), but
now the matrices are periodic with a period p, i.e. for all k,

Ak = Ak+p, Bk = Bk+p, Ck = Ck+p, Dk = Dk+p. (3.3)

Now, a time-invariant representation of the periodic linear
system (3.1) and (3.2) can be obtained in a standard way
[25]. Once k = κ is fixed, the time-invariant system that
maps xκ to xκ+p can be written as the period-mapped
system

x̄k+1[κ] = Ā[κ]x̄k[κ] + B̄[κ]ūk[κ], (3.4)

ȳk[κ] = C̄[κ]x̄k[κ] + D̄[κ]ūk[κ]. (3.5)

For example, the system matrices associated with the
period-mapped system with κ = 1 can be written as:

Ā[1] = ApAp−1 · · ·A1

B̄[1] =
[

ApAp−1 · · ·A2B1 Ap · · ·A3B2 · · · ApBp−1 Bp

]

C̄[1] =

⎡⎢⎢⎢⎣
C − 1
C2A1

.

.

.
CpAp−1 · · ·A1

⎤⎥⎥⎥⎦

D̄[1] =

⎡⎢⎢⎢⎢⎢⎣
D1 0 · · · 0

C2B1 D2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

Cp−1Ap−2 · · ·A2B1 Cp−1Ap−2 · · ·A3B2 · · · 0
CpAp−1 · · ·A2B1 CpAp−1 · · ·A3B2 · · · Dp

⎤⎥⎥⎥⎥⎥⎦
Note that a state sequence of the periodic-mapped system

is a subsequence of the periodic system, i.e.

x̄k[κ] = xκ+pk (3.6)

and the augmented input and output vectors ūk[κ] and ȳk[κ]
are created by stacking up the input and output vectors uk

and yk, respectively:

ūk[κ] =

⎡⎢⎢⎣
uκ+pk

uκ+pk+1

· · ·
uκ+p(k+1)−1

⎤⎥⎥⎦ (3.7)

ȳk[κ] =

⎡⎢⎢⎣
yκ+pk

yκ+pk+1

· · ·
yκ+p(k+1)−1

⎤⎥⎥⎦ (3.8)

Therefore the linear periodic time-varying system (3.1) and
(3.2) can be written as a set of p time-invariant equations
given by (3.4) and (3.5) with κ = (1, 2, . . . , p). Now
defining the state sequence X[κ] as

Xi[κ] =
[

xκ+ip xκ+(i+1)p · · · xκ+(i+j−1)p

]
,

(3.9)

the state sequence can be calculated as described in section
2.3 for κ = (1, 2, . . . , p). Once the state sequences are
calculated, the state-space matrices can be calculated from
the system of linear equations[

Xi[κ + 1]
Yi[κ]

]
=

[
Aκ Bκ

Cκ Dκ

] [
Xi[κ]
Ui[κ]

]
(3.10)

where

Ui[κ] =
[

uκ+ip uκ+(i+1)p · · · uκ+(i+j−1)p

]
,

Yi[κ] =
[

yκ+ip yκ+(i+1)p · · · yκ+(i+j−1)p

]
.

This procedure involves computing p+1 state sequences,
singular value decompositions and LQ decompositions
which might be expensive for large p. In [14], a procedure
for calculating Xi[κ + r] for r = (1, . . . , p) based on the
singular value decomposition of Xi[κ] is presented. This
procedure substantially reduces the computational load of
calculating p + 1 state sequences.

Note: In [14], page 297, equation 27, the expression for
X[κ + r] for 1 ≤ r ≤ p − 1 is misprinted. The actual
expression should read

X[κ + r] = Ũ
T

qb[κ, r]Ũ
T

12[κ, r]Ũ [κ, r](1 : pi(lu + ly), :)Sa[κ, r]Ṽ
T

V
T

b [κ]

1 ≤ r ≤ p − 1
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4. NONLINEAR SYSTEMS

Nonlinear identification is an increasingly active research
area. The most common model structures are the Hammer-
stein, Wiener, nonlinear feedback, and combined Hammer-
stein/nonlinear feedback models shown in Figure 1, Figure
2, Figure 3, and Figure 4. These models involve the inter-
connection of a single linear block and a single nonlinear
block. Identification with these model structures has been
widely considered, see, for example, [1, 3, 11–13, 23, 27, 35,
43, 47] . A point that has not been stressed is the fact that
nonlinear identification with the Wiener model structure
is significantly more difficult than identification with the
Hammerstein structure. The reason for this difficulty is the
fact that identification of a nonlinear map is more tractable
when a measurement of the input to the map is available.

Other model structures include linear parameter-varying
systems and bilinear systems. These models structures can-
not be written as the interconnection of a static nonlinearity
and linear dynamics. Subspace identification with these
model structures is more difficult and require substantial
modifications of linear subspace model identification algo-
rithms. Nonetheless, these problems have been considered
and solutions to these identification problems exist [36, 37,
39, 40]. A good overview of these methods can be found in
[36].

The Hammerstein nonlinear/feedback model can be
viewed as a realization of a nonlinear system. Accordingly,
the representation of the nonlinearities is not unique, and
thus it is not possible to uniquely identify the nonlinear
maps [35]. The identified maps could differ by a scaling
coefficient or a bias from the real nonlinearity.

� NH
� LH

�u z y

Fig. 1. Hammerstein Model

� LW
� NW

�u z y

Fig. 2. Wiener Model

�� �
− LNLF

�

NNLF

�
�

z yu

Fig. 3. Nonlinear Feedback Model

��� NH
�

− LHNLF
�

NNLF

�
�

z yu

Fig. 4. Hammerstein Nonlinear Feedback Model

Subspace-based Hammerstein identification algorithms
are considered in [11, 15, 35, 43]. In view of the fact that
nonlinear identification is facilitated by the availability of

inputs, a general formulation of nonlinear identification
in this setting is considered in [15] using a subspace
identification algorithm [26, 34] along with a given basis
expansion for the nonlinear maps. The function expansion
is chosen to be linear in the parameters, which allows the
nonlinear identification problem to be recast as a linear
identification problem with generalized inputs. The multi-
variable capability of subspace identification algorithms is
essential to this approach by allowing an arbitrary number
of generalized inputs.

4.1. Hammerstein and Nonlinear Feedback Systems

Consider the nonlinear discrete-time system

xk+1 = Axk + F (uk, yk), (4.1)

yk = Cxk + G(uk), (4.2)

where xk ∈ R
n, uk ∈ R

m, yk ∈ R
p, A ∈ R

n×n, C ∈
R

p×n, F : R
m × R

p → R
n, and G : R

m → R
p. The

functions F and G can be written in terms of their scalar-
valued components as

F (u, y) =

⎡⎢⎣ F1(u, y)
...

Fn(u, y)

⎤⎥⎦ , G(u) =

⎡⎢⎣ G1(u)
...

Gp(u)

⎤⎥⎦ , (4.3)

where, for all i = 1, . . . , n, Fi : R
m × R

p → R and, for
all i = 1, . . . , p, Gi : R

m → R. By defining

z
�
= N(u, y)

�
=

[
F (u, y)
G(u)

]
, (4.4)

the system (4.1), (4.2) can be illustrated as in Figure 5,
where N : R

m × R
p → R

n+p and L represents the linear
system

xk+1 = Axk +
[

In 0
]
zk, (4.5)

yk = Cxk +
[

0 Ip

]
zk, (4.6)

where zk
�
= N(uk, yk) is viewed as an unmeasured, exoge-

nous input to L.

�
N � L ��

u z y

y

Fig. 5. Nonlinear System with Measured-Input Nonlinearities

The main feature of the model (4.5), (4.6) is the fact
that all of the inputs to N are measured. Therefore, the
model (4.1), (4.2) includes the Hammerstein and nonlinear
feedback models shown in Figure 1 and Figure 3. However,
(4.1), (4.2) does not encompass the Wiener system shown
in Figure 2.

Next, we assume that the components Fi and Gi can be
expanded in terms of basis functions f1(u, y), . . . , fq(u, y),
g1(u), . . . , gr(u), and h1(u), . . . , hs(u) as

F (u, y) =

[ ∑ q
i=1

bf1ifi(u, y) +
∑ s

i=1
bh1ihi(u)

.

.

.∑ q
i=1

bfnifi(u, y) +
∑ s

i=1
bhnihi(u)

]
, (4.7)

G(u) =

[ ∑ r
i=1

dg1igi(u) +
∑ s

i=1
dh1ihi(u)

.

.

.∑ r
i=1

dgpigi(u) +
∑ s

i=1
dhpihi(u)

]
. (4.8)

2326



The functions hi are the basis functions that are common to
both F and G. Defining f : R

m×R
p → R

q, g : R
m → R

r,
and h : R

m → R
s by

f(u, y) =

⎡⎢⎢⎣
f1(u, y)

.

.

.
fq(u, y)

⎤⎥⎥⎦ , g(u) =

⎡⎢⎢⎣
g1(u)

.

.

.
gr(u)

⎤⎥⎥⎦ , h(u) =

⎡⎢⎢⎣
h1(u)

.

.

.
hs(u)

⎤⎥⎥⎦ ,

it follows from (4.7) and (4.8) that

F (u, y) = Bff(u, y) + Bhh(u), (4.9)

G(u) = Dgg(u) + Dhh(u), (4.10)

where Bf
�
= [bfij ] ∈ R

n×q , Bh
�
= [bhij ] ∈ R

n×s, Dg
�
=

[dgij ] ∈ R
p×r, and Dh

�
= [dhij ] ∈ R

p×s. Thus (4.1), (4.2)
can be written as

xk+1 = Axk + Bff(uk, yk) + Bhh(uk), (4.11)

yk = Cxk + Dgg(uk) + Dhh(uk), (4.12)

or more compactly as

xk+1 = Axk + B

[
f(uk, yk)

g(uk)
h(uk)

]
, (4.13)

yk = Cxk + D

[
f(uk, yk)

g(uk)
h(uk)

]
, (4.14)

where

B
�
=

[
Bf 0 Bh

]
, D

�
=

[
0 Dg Dh

]
. (4.15)

As a special case of the system shown in Figure 5, we
can consider the Hammerstein system

xk+1 = Axk + F (uk), (4.16)

yk = Cxk + G(uk), (4.17)

where now the function F depends only on the input u. In
the case that F and G are represented by a common set of
basis function h1, . . . , hs, it follows that

z =

[
F (u)
G(u)

]
=

[
B
D

]
h(u), (4.18)

where B = Bh ∈ R
n×s and D = Dh ∈ R

p×s. Hence
(4.16), (4.17) become

xk+1 = Axk + Bh(uk), (4.19)

yk = Cxk + Dh(uk). (4.20)

The goal of the nonlinear identification problem is to
construct models of both L and N given measurements
of (uk, yk) over the interval 0 ≤ k ≤ �. The signal
z is assumed to be unavailable. However, when h(u) is
approximated by ĥ(u) and B,D are approximated by B̂, D̂,
then the computed signal

ẑ
�
=

[
B̂

D̂

]
h(u), (4.21)

is available as the input to L.

Basis-function Selection

With the basis functions fi(u, y), gi(u), hi(u) specified,
subspace identification algorithms [26, 34] can be applied
directly to the system (4.5), (4.6) with the computed signal ẑ
playing the role of the exogenous input. This is the approach
developed in [15]. However, the choice of basis functions
remains the main difficulty.

The above approach requires a fixed set of basis functions
to represent the nonlinear mapping. For nonlinear mappings
of several inputs, the curse of dimensionality requires an
excessively large number of basis functions. In addition,
the subspace identification algorithm identifies only the
coefficients of the basis functions, not the basis functions
themselves. Hence, without prior knowledge of the form
of the nonlinear mappings, it may be necessary to employ
a large number of basis functions, rendering the problem
numerically intractable.

To address these issues, two techniques for iteratively
refining the basis function representation of nonlinear map-
pings that are functions of measured inputs are given in
[28].

The first technique uses selective refinement to improve
the representation of the nonlinear functions. By applying
a singular value decomposition to the input matrix, the
dominant nonlinearities are identified for the chosen set
of basis functions. Next, a random collection of basis
functions is introduced to improve the representation of the
dominant nonlinearities. Iteration of these steps constitutes
the selective refinement process.

The second algorithm optimizes a fixed set of basis func-
tions by means of a BFGS quasi-Newton optimization code.
The representation of the nonlinear map is systematically
improved by modifying the basis functions rather than by
including additional basis functions. A subspace identifica-
tion algorithm is used to identify the linear dynamics for
a chosen set of basis functions representing the nonlinear
functions. For that particular set of state space matrices, the
basis functions are then optimized using a quasi-Newton
optimization algorithm.

Both techniques are flexible in their implementation. For
example, arbitrary basis functions such as polynomials,
splines, sigmoids, sinusoids, or radial basis functions can
be used. Both approaches can be used to identify nonlinear
maps of multiple arguments and with multiple outputs.

We now illustrate abovementioned approaches for the
Hammerstein case (4.19), (4.20).

1) Selective Refinement Algorithm: To begin, consider

an initial set of basis functions ĥ1, . . . , ĥŝ with ĥ
�
=[

ĥ1 · · · ĥŝ

]T
and let (Â, B̂, Ĉ, D̂) denote an estimate

of (A,B,C,D) provided by the subspace identification
algorithm. Next, consider the singular value decomposition
of

[
B̂
D̂

]
written in standard notation as[

B̂

D̂

]
= ÛΣ̂V̂ . (4.22)
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Then, we retain the ν largest singular values in Σ̂ to obtain
the approximation Σ̂ ≈ Σ̂0 = L̂0R̂0, where rank Σ̂0 = ν
and the matrices L̂0 ∈ R

(n+p)×ν and R̂0 ∈ R
ν×s have full

column rank and full row rank, respectively. The retained
ν largest singular values can be incorporated into either L̂0

or R̂0, yielding the approximation

[
B̂

D̂

]
ĥ(u) = ÛΣ̂V̂ ĥ(u) ≈ ÛΣ̂0V̂ ĥ(u)

= ÛL̂0R̂0V̂ ĥ(u)=

[
B̂0

D̂0

]
ĥ0(u), (4.23)

where the matrix
[

B̂0

D̂0

]
�
= Û L̂0 ∈ R

(n+p)×ν and ĥ0(u)
�
=

R̂0V̂ ĥ(u) satisfying ĥ0 : R
m → R

ν is a column vector
consisting of ν scalar-valued nonlinear functions. The mo-
tivation for this procedure is to retain only ν scalar-valued
nonlinear functions each of which is a linear combination
of ŝ basis functions. Since ν << ŝ, the ν scalar-valued
components of ĥ0 can be viewed as dominant nonlineari-
ties, while the choice of ν reflects the rank of the nonlinear
mapping [ F

G ] . Hence the number of dominant nonlinearities
is effectively the rank of the nonlinear map.

To refine the mapping ĥ0 we repeat the above procedure

with a new set of basis functions ĥ′
1, . . . ĥ

′
ŝ′ with ĥ′ �

=[
ĥ′

1 · · · ĥ′
ŝ′

]T
, where ĥ′

1, . . . , ĥ
′
ν are chosen to be the

ν components of ĥ0, and ĥ′
ν+1, . . . ĥ

′
ŝ′ are chosen randomly.

Repeating the above procedure yields a new estimate ĥ′
0 and

the approximation[
B̂′

D̂′

]
ĥ′(u) ≈

[
B̂′

0

D̂′
0

]
ĥ′

0(u), (4.24)

where B̂′, D̂′ are the estimates of B and D obtained from
the subspace identification algorithm at the current iteration.
Note that the components of the dominant nonlinearity
ĥ′

0 are now linear combinations of ŝ + ŝ′ basis functions.
However, the number of scalar components is fixed at ν.

2) Basis Function Optimization Algorithm: In the basis
function optimization algorithm we optimize a fixed set
of basis functions instead of introducing additional basis
functions. A convenient choice of basis functions is radial
basis functions because of the ease of programming and
the ability to handle multi-dimensional inputs. Radial basis
functions are of the form

f(u) = e−α‖u−c‖2
2 , (4.25)

where α determines the spread of the function and c decides
the center of the function. For nonlinear identification, we
optimize a set of radial basis functions with respect to the
parameters α and c and identify the linear dynamics using
a subspace identification algorithm. By optimizing a fixed
set of basis functions, a more accurate representation of the
nonlinear mapping is obtainable with a smaller number of
basis functions than is possible with the selective refinement
algorithm.

The identification error is defined to be the mean square

error at the output yk given by

E(α, c) =
1

2

l∑
k=1

(yk − ŷk)2, (4.26)

where yk and ŷk are the desired and actual outputs of the
identified Hammerstein system, and l is the length of the
data set.

Now, writing ŷk in terms of Â, B̂, Ĉ and D̂, (4.26)
becomes

E(α,c) =
1

2

l∑
k=1

(yk−ĈÂkx̂0

−

k−1∑
i=0

ĈÂk−i−1B̂ĥ(ui)−D̂ĥ(uk))2. (4.27)

Using a set of s radial basis functions for ĥ(u) equation
(4.27) becomes

E(α,c)= 1
2

l∑
k=1

⎛⎜⎜⎜⎜⎝yk−ĈÂkx̂0−

k−1∑
i=0

ĈÂk−i−1B̂

⎡⎢⎢⎢⎢⎣
e−α1‖ui−c1‖

2
2

...
e−αs‖ui−cs‖

2
2

⎤⎥⎥⎥⎥⎦

−D̂

⎡⎢⎢⎢⎢⎣
e−α1‖uk−c1‖

2
2

...
e−αs‖uk−cs‖

2
2

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠

2

. (4.28)

The gradient of E(α, c) with respect to the parameters
αj and cj can be calculated as

∂E

∂αj
=(yk−ŷk)

l∑
k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−

k−1∑
i=0

ĈÂk−i−1B̂

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

∂
∂αj

e−αj‖ui−cj‖
2
2

...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−D̂

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

∂
∂αj

e−αj‖uk−cj‖
2
2

...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(4.29)

and

∂E

∂cj
=(yk−ŷk)

l∑
k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−

k−1∑
i=0

ĈÂk−i−1B̂

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

∂
∂cj

e−αj‖ui−cj‖
2
2

...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−D̂

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

∂
∂cj

e−αj‖uk−cj‖
2
2

...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (4.30)
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Since

∂

∂αj

e
−αj‖u−cj‖2

2 = −e
−αj‖u−cj‖2

2‖u − cj‖
2

2,

∂

∂cj

e
−αj‖u−cj‖2

2 = −e
−αj‖u−cj‖2

2αj

[
2c

T
j − 2u

T
]

,

the gradients (4.29) and (4.30) can be evaluated.
By computing these gradients, a BFGS quasi-Newton

optimization code is used to optimize the basis function
parameters. Since the state space matrices and the basis
function parameters cannot be estimated simultaneously,
basis-function optimization and state space model identi-
fication are done alternately. First, an initial set of basis
functions is chosen, and then the linear dynamics are iden-
tified using a subspace identification algorithm. Once the
state space matrices are available, the set of basis functions
is optimized. For the optimized set of basis functions, the
linear dynamics is identified again, and so on.

4.2. Hammerstein-Wiener Systems

For identifying a Hammerstein-Wiener system, a two
step procedure can be employed [29]. In the first step the
Hammerstein subsystem is identified. Once a Hammerstein
model has been identified, the output nonlinearity can be
estimated by solving a standard linear least squares prob-
lem. Let v̂ ∈ R

p be the output of the Hammerstein model.
Assuming that the output nonlinearity can be expressed as
a basis expansion, a set of r basis functions

f(v̂) =

⎡⎢⎣ f1(v̂)
...

fr(v̂)

⎤⎥⎦ ,

can be used, where f : R
p → R

r and fi : R
p → R.

The above basis functions can either be fixed or can be
optimized using a gradient-based scheme. Now, a least
squares problem of the form

y = NW (v) ≈

r∑
i=1

λifi(v̂) = Λf(v̂), (4.31)

can be considered, where y is the measured data and Λ =[
λ1 · · · λr

]
is the coefficient matrix. Thus, the least

squares solution can be calculated as

Λ = yf(v̂)T
(
f(v̂)f(v̂)T

)−1
(4.32)

This two-step procedure is not necessarily optimal. How-
ever, for the SISO case, with some assumptions on the
output nonlinearity, there are results which show that iterat-
ing procedures yields convergence to the correct model [1].
Recently a direct approach to identify Hammerstein-Wiener
systems using least squares support vector machines (LS-
SVM) is being considered in [10].

4.3. Wiener Systems

While the literature on non-subspace Wiener-system
identification is extensive [3, 12, 13, 16, 17, 23, 27, 47], these
papers generally rely on the assumption that the output
nonlinearity is one-to-one. Under this assumption, the iden-
tification problem can be treated as a Hammerstein system
whose inputs and outputs are, respectively, the outputs and
inputs of the original system. Several of the subspace-based
Hammerstein identification algorithms have been extended
to the Wiener case when the output nonlinearity is one-
to-one and invertible. There have also been attempts at
subspace-based Wiener system identification without any
invertibility assumption on the output nonlinearity [46, 49].
Both these methods are direct (does not involve iterative
procedures), however, [46] assumes that the inputs uk is
a Gaussian random sequence and the nonlinearity has a
parallel structure. [49] extends the work of [46] to the
closed-loop case.

4.4. Linear Parameter-Varying Systems

Identification of linear parameter-varying systems is dealt
with in [36, 39]. The model structure is of the form

xk+1 = A0xk +
[

A1 A2 · · · As

]
(pk ⊗ xk)

+B0uk +
[

B1 B2 · · · Bs

]
(pk ⊗ uk) + Kvk

(4.33)

yk = Cxk + Duk + vk (4.34)

where pk ∈ R
s contains the additional varying parameters

that are measured and ⊗ denotes the Kronecker product.
In this case the Hankel matrices are more complex and
include the Kronecker product of the varying parameters
pk and the inputs uk and the Kronecker product of pk

and the outputs yk. The states are obtained using a similar
procedure, but the proof that the state sequence can be
obtained directly from these matrices, is more involved in
this case as can be expected. One thing to note here that
the definition of persistent excitation now extends to p as
well. In other words, the persistency of excitation condition
involves combinations of the inputs u and p, instead of the
inputs in the case of the linear time-invariant case.

The basic subspace identification method for LPV sys-
tems is cumbersome in practice. The number of rows in
the Hankel matrices grow exponentially with the order
of the system, hence the amount of memory required to
compute the QR factorization becomes high. However [37,
39] present techniques for modifying the algorithm to make
it numerically more efficient.

4.5. Bilinear Systems

Bilinear models are a special case of LPV systems in
which the varying parameters are the inputs uk itself.
Although this case includes an additional term containing
the Kronecker product of uk with itself, the coefficient
of this term can be set to zero. Subspace methods for
bilinear systems were developed in [7, 8, 36, 38, 40] and
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later generalized to LPV systems [39]. In [36, 40], MIMO
bilinear systems of the form

xk+1 = Axk + F (uk ⊗ xk) + Buk + wk, (4.35)

yk = Cxk + Duk + vk, (4.36)

are considered. The matrix F is first partitioned as F =[
F1 F2 · · · Fm

]
, where Fi ∈ R

n×n. Then each Fi

is written as
Fi = F

(1)
i C + F

(2)
i C̃ (4.37)

with C̃ ∈ R
(n−l)×n such that

[
CT C̃T

]
. Using the

above decomposition (4.35) is written as

xk+1 = Axk +
[

B F (1) −F
(1)
D

] ⎡⎣ uk

uk ⊗ yk

uk × uk

⎤⎦
+F

(2)

C̃
(uk ⊗ xk) − F (1)(uk ⊗ vk) + wk (4.38)

where

F (1) =
[

F
(1)
1 F

(1)
2 · · · F

(1)
m

]
F

(1)
D =

[
F

(1)
1 D F

(1)
2 D · · · F

(1)
m D

]
F

(2)

C̃
=

[
F

(2)
1 C̃ F

(2)
2 C̃ · · · F

(2)
m C̃

]
(4.39)

The term due to (uk ⊗ xk) is then neglected and the error
due it shown to have zero mean and for the special case
F

(2)

C̃
= 0, the error is zero.

Now, using the augmented input vector

⎡⎣ uk

uk ⊗ yk

uk ⊗ uk

⎤⎦,

the identification algorithm consists of the following three
steps:

1) Estimating the system order and the matrices A and
C. For this step, the augmented input vector is used
and past input and output values are used as instru-
ment variables to eliminate some remaining nonlinear
terms and estimate the extended observability matrix
using a QR factorization and a singular value de-
composition similar to section 2.3. From this matrix,
consistent estimates of A and C are obtained.

2) Estimating matrices B and D. A least squares prob-
lem which is linear in B and D can then be formu-
lated and solved to obtain consistent estimates of B
and D.

3) Estimating the matrix F . This is done by solving
a nonlinear least squares problem. A good initial
estimate is obtained from the rewritten system in step
one.

For this algorithm, the set of assumptions involve a few
additional assumptions. The assumptions are

• The signals uk, vk and wK are zero mean Gaussian
white noise sequences.

• The sequence uk is statically independent of the se-
quences vk and wk.

• The eigenvalues of the matrix A and the matrix A ⊗
A +

∑m
i=1 E[[uk]2i ]Fi ⊗ Fi have magnitudes less than

one. This is a sufficient condition for the state to be
wide sense stationary.

• The pair A,C is observable for the linear system
A,B,C,D constructed from the bilinear system. This
implies that the bilinear system is also observable.

• The matrix C has full row rank.

5. CLOSED-LOOP SYSTEMS

In practice it is often necessary to perform identification
experiments on systems operating in closed loop. This is
especially true when open loop experiments are not possible
due to an unstable plant, undesirable open-loop behavior,
or bad open-loop performance. These considerations are
important for an expensive industrial process or machinery.
In [22], open loop algorithms are shown to yield biased
estimates. This is due to the fact that the noise terms vk and
wk are generally correlated in the closed-loop case. System
identification from closed loop data is thus a relevant topic.

There have been several attempts to apply open loop
subspace methods as it is to closed-loop systems. Some
algorithms such as the CVA [19] is claimed to work well
even in a closed-loop environment.

Explicit closed-loop identification algorithms have also
been developed [22, 32, 41, 48]. In [32] a closed-loop frame-
work shown in Figure 6 is considered. A limited number
of Markov parameters of the controller C are assumed
known and the measurements of uk and yk are assumed
available. In [48] an extension of [32] is developed. The
scenario considered here is shown in Figure 7. Although
the controller C is assumed to be unknown, measurements
of signals rk, uk and yk are assumed to be available. In all
of the above methods, the plant is a linear time-invariant
system. However, [49] considers closed-loop identification
of a Wiener system.
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Fig. 6. Closed-Loop Framework I
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Fig. 7. Closed-Loop Framework II

6. EXAMPLES

6.1. Example 1: Linear Model of Dryer System Data with
Pulsed-Width-Modulated Input

This example is based on 850 time steps of SISO data for
a dryer system with pulse-width-modulated input. The data
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set was obtained from the web site [6]. For this example
linear subspace identification using the N4SID command in
Matlab was used. Figure 8 shows the input data. The data
fit is shown in Figure 9.

6.2. Example 2: Periodic Linear System
In this example taken from [14], a system is constructed

as described by (3.1) and (3.2) with period p = 3 and with
system matrices and with system matrices

[
A1 B1

C1 D1

]
=

⎡⎣ 1 1 0
0 2 1
1 0 0

⎤⎦ (6.1)

[
A2 B2

C2 D2

]
=

⎡⎣ 1
5

1 0
0 2

5
1

2 0 0

⎤⎦ (6.2)

[
A3 B3

C3 D3

]
=

⎡⎣ 3 1 1
0 1 2
1 1 0

⎤⎦ (6.3)

The inputs and noise were chosen to be similar to the
ones in the original paper. A plot of the the output y and
the output of the identified model ŷ is shown in Figure 10.
The dynamics of any regular periodic linear system may
be adequately described bye the eigenvalues of its periodic
map Π = Ap · · ·A2A1. The eigenvalues of the period map
of the above system are Λ(Π) = { 4

5 , 3
5} The eigenvalues of

the period map Π̂ = Â3Â2Â1 of the identified system are
Λ(Π̂) = {0.8004, 0.5994}.

6.3. Example 3: Linear Parameter-Varying System
Here we consider a system of the form (4.33) and (4.34)

with s = 1 and with the following values of the state-space
matrices

⎡⎣ A0 B0

A1 B1

C D

⎤⎦ =

⎡⎢⎢⎢⎢⎣
0.1 −0.4 0
0.7 0.2 0.22

0.1 0 2
0 −0.35 0.1

1 −2 0

⎤⎥⎥⎥⎥⎦ . (6.4)

The signals pk, uk and vk were all chosen to be qhite noise
sequences. The eigenvalues of A0 are (0.15 ± 0.5268i),
while the identified eigenvalues are (0.1500 ± 0.5271i).

6.4. Example 4: Hammerstein System with Scalar Input
For this example we consider a Hammerstein system

whose linear dynamics are given by the discrete-time simple
harmonic oscillator

A =

[
0 1

−(ω2T 2
s + 1) 2

]
, B =

[
0

T 2
s

]
,

C =
[

1 0
]

, D = 0,

where ω = 0.7 and Ts = 0.1, with input nonlinearity
N(u) = u2. A total of 1000 data points are used for the
identification, and both algorithms were used.

For the selective refinement algorithm, we choose 11
radial basis functions to initialize the algorithm and include
10 random radial basis functions at each subsequent itera-
tion. A total of 2000 iterations are performed, of which 12
are accepted as determined by the data fit decrement. The
dominant nonlinearity, involving 131 radial basis functions,
is shown in Figure 11.

The basis functions optimization algorithm is employed
with sines and cosines and 15 of each are used. The linear

system order is specified as 2, and a single dominant
nonlinearity is retained at each iteration. The data fit is
shown in Figure 12 and the dominant identified nonlinearity
is shown in Figure 13.

6.5. Example 5: Hammerstein System with Scalar Input and
Rank-2 Nonlinearity

This example is a Hammerstein system based on the
discrete-time simple harmonic oscillator of Example 4 cas-
caded with the low pass filter 1+z−1

230−228z−1 . The scalar input
is taken to be a white noise signal with input nonlinearities

f(u) =
[

u3 e−u
]
.

The 3rd-order system has the realization

A =

⎡⎣ 0.9913 1 0
0 0 0.9901
0 −0.995 1.9802

⎤⎦ , B =

⎡⎣ 0 0
0 1

0.01 0

⎤⎦ ,

C =
[

0.0087 0.0043 0
]

, D =
[

0 0
]

.

A total of 1000 data points are used for the identifi-
cation, and the basis function optimization algorithm is
implemented with radial basis functions. 15 radial basis
functions are used to initialize the algorithm and a total
of 10 iterations are performed. The subspace identification
algorithm identified a 3rd-order system.

The data fit is shown in Figure 14, and the corresponding
dominant nonlinearities involving 15 radial basis functions
are shown Figure 15 and Figure 16. These nonlinearities
provide estimates of the input nonlinearities u3 and e−u,
respectively.

6.6. Example 6: Nonlinear Feedback System with Scalar
Input

For this system we consider the nonlinear feedback
system

y(k + 1) = 1
2 sat(yk) + uk,

with uk chosen to be a white noise signal for k =
1, . . . , 1000. Using 11 radial basis functions to initialize
the identification and with 5 additional radial basis func-
tions introduced at each iteration, 100 selective refinement
iterations are performed of which 5 are accepted based on fit
error decrement. The final estimated nonlinearity in Figure
17 is thus a linear combination of 36 radial basis functions.

6.7. Example 7: Hammerstein Modeling of Cylinder Wake
System

The data set for this example is associated with the
Cylinder Wake Benchmark Experiment developed at the
U.S. Air Force Academy [4]. The system input for the
experiment is the commanded vertical displacement of the
cylinder, while the output is the measured velocities in the
x and y directions at a specified downstream location. Data
are available for a total of 600 time steps.

The basis function optimization algorithm is used with a
set of 11 radial basis functions, and a total of 15 iterations
are performed. The subspace algorithm identifies a 5th-order
linear system. The data fit for the y velocity components is
shown in Figure 18.
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6.8. Example 8: Hammerstein-Wiener Model of Space
Weather System

This example is based on data used for space weather
prediction. The input data set was measured by the NASA
Advanced Composition Explorer (ACE) spacecraft and in-
cludes the three components of the magnetic field vector,
the solar wind speed, solar wind proton density, and tem-
perature. The system output is ground-based magnetometer
data from Thule, Greenland.

The Hammerstein-Wiener identification algorithm de-
scribed [29] is used for this example. The linear inputs
to the model are density, By, Bz , and Bt, whereas the
inputs entering through the Hammerstein nonlinearly are
BtVx sin4(θ/2) and the sinusoid with a period of one
day. Here By and Bz are the y and z components of
magnetic field measured by ACE satellite respectively, Bt =√

B2
y + B2

z , Vx is the x-component of the solar wind speed

and θ
�
= a cos Bz/Bt. Figure 19 shows the output of the

identified Hammerstein-Wiener model. Here only data to
the left of the black vertical line is used for identification.
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Fig. 8. Example 1: Pulse-width-modulated input data for the dryer
example.
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Fig. 9. Example 1: Data fit for the dryer system.
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Fig. 10. Example 2: True output y and the output of the identified
model ŷ. Data to the left of the vertical line were used for identification
and the right of the vertical line is prediction using the identified model.
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Fig. 11. Example 3: True (u2) and identified input nonlinearities
for second-order Hammerstein system with scalar input and rank 1
nonlinearity using selectively refined radial basis functions.
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Fig. 12. Example 3: Data fit for second-order Hammerstein system
with scalar input and rank 1 nonlinearity using optimized sines and
cosines.
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Fig. 13. Example 3: True (u2) and identified input nonlinearity
for second-order Hammerstein system with scalar input and rank 1
nonlinearity using optimized sines and cosines.
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Fig. 14. Example 4: Data fit for third-order Hammerstein system
with scalar input and rank 2 nonlinearity using optimized radial basis
functions.
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Fig. 15. Example 4: True (u3) and identified input nonlinearities
for third-order Hammerstein system with scalar input and rank 2
nonlinearity using optimized radial basis functions.
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Fig. 16. Example 4: True (e−u) and identified input nonlinearities
for third-order Hammerstein system with scalar input and rank 2
nonlinearity using optimized radial basis functions.
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Fig. 17. Example 5: Identified feedback nonlinearity for first-order
nonlinear feedback system using selective refinement with radial basis
functions.
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Fig. 18. Example 7: y-direction data fit for Cylinder Wake
Benchmark Experiment using 5th-order model and a rank 2 input
nonlinearity.
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Fig. 19. Example 8: Measured and predicted data of the Thule
magnetometer using a Hammerstein-Wiener model identified in
the second step. Data to the left of the vertical line are used for
identification, while right part is prediction using the identified
model.
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Fig. 20. Magnified view of the prediction region in Figure 19
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