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Abstract – The state dependent Riccati equation was 
originally developed for the continuous time systems. In 
the paper the optimality of a discrete time version of 
the State Dependent Riccati Equation is considered. 
The derivation of the optimal control strategy is based 
on the Hamiltonian optimal solution for the non-linear 
optimal control problem. The new form of the Discrete 
State Dependent Riccati Equation with a correction 
tensor is derived. The prediction of the future 
trajectory is used in the derivation. 

1. INTRODUCTION 

 In recent years a number of papers based on the 
State-Dependent Riccati Equation (SDRE) method 
emerged. It was reported [1] that the SDRE method has 
many practical advantages over other non-linear design 
methods. The method involves an approximation and 
gives, a suboptimal locally stabilizing solution of the 
infinite horizon minimization problem of a quadratic (in 
control) cost-function, subject to non-linear differential 
constraints [2]. For scalar systems the solution of the 
SDRE yields an optimal solution [3]. For systems of higher 
order the optimality of the solution is determined by the 
state-dependent parameterization of the system matrix [4]. 
The proper choice of that parameterization may be 
difficult, if not impossible, since that may require the 
solution of Hamilton-Jacobi-Bellman equation.  
The stability issue for the SDRE method has recently 
attracted interest. The local stability at the origin of the 
closed loop system results from the stabilizing properties 
of the solution of Algebraic Riccati Equation. 
Unfortunately, so far, one of the most efficient methods of 
assessing the stability of the SDRE controller is by 
simulation. Recent work in the field of stability analysis 
[6,7,8] for the SDRE method gives conditions that are 
difficult to check, or impose requirements that are difficult 
to fulfill.  
The previous derivation of the discrete form of the SDRE 
controller with the focus on analysis of the sampling period 
time is given in [9]. The receding horizon control 
philosophy, used in connection with the SDRE was 
previously presented in [10] for a continuous time systems.

In this paper, the discrete version of the SDRE method is 
analyzed. The attention is focused on the optimality of the 
solution. The discrete SDRE is not guaranteed to give an 
optimal solution of the minimization of the performance 
index. The method of recovering optimality will be 
described. This may also be seen as an alternative to the 
numerical optimization for the finite horizon problems. 
Similar approach for predictive control was described in 
[11]. This paper will concentrate on the SDRE formulation.

The rest of the paper is organized as follows: Section 2 
introduces discrete time version of the Discrete-time SDRE 
method. Section 3 gives a short description of the 
predictive DSDRE extension, in section 4 the derivation of 
the optimal discrete time controller is presented and the 
Optimized DSDRE controller is introduced. Section 5 
contains a simulation example. 

2. DISCRETE TIME SDRE METHOD 

 The SDRE method was originally developed for 
continuous time systems [2], [3]. The solution is a direct 
result of adopting the linear continuous time optimal 
control methods that are based on the algebraic Riccati 
equation [12]. Thus, the theory that is well established for 
linear systems may be used in the context of non-linear 
systems.  
The attention is focused here on linear and non-linear 
discrete time systems. For the linear discrete time systems 
the control minimizing an infinite horizon quadratic 
performance index is given by the solution of the Discrete 
Algebraic Riccati Equation (DARE). In a similar to the 
original SDRE manner the methodology employing the 
solution of the DARE may be used for non-linear discrete 
time systems [5]. The non-linear discrete time system is 
given by the following difference equation: 

( ) ( )1n n n nx f x B x u+ = + (1) 

The model is re-arranged and the state-dependent form of 
the system is obtained: 

( ) ( )1n n n n nx A x x B x u+ = + (2) 
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 An assumption on point-wise controllability must be made 

here, i.e. ( ) ( )( )n n
x

A x B x∀  is controllable. The cost 

function to be minimized is given by the following 
expression:  

{ }1

2
T T

n i i i i
i n

J x Q x u Ru
=

∞
= +∑

(3) 

The sub-optimal solution of the minimization problem of 
(3) is obtained by solving the Discrete-time State 
Dependent Riccati Equation. If the analytical solution 
exists the equation is solved once and the non-linear 
feedback control law may be employed. Otherwise, the 
equation is solved at each sampling instant numerically. It 
may also be possible to employ some form of the gain 
scheduling. The discrete-time state dependent Riccati 
equation is given by the following equation: 

( ) 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

T T
n n n n n

T
n n n n n n

P x A x P x P x B x

R B x P x B x B x P x A x Q
−

⎡= −⎣
⎤× + +⎥⎦

(4)

The non-linear control action is computed from the 
following expression: 

( ) ( )( ) ( )
1

n n n

T T

n n n n n n n

u K x

K B x P B x R B x P A
−

= −

= +

(5)

The solution of DSDRE for the system (1) subject to (3)
results in a locally stabilizing control. The optimality of the 
solution depends on the form of the state-dependent 
parameterisation (2) and in general the solution is sub-
optimal. 

3. DISCRETE TIME SDRE WITH PREDICTED 
TRAJECTORY 

 The DSDRE method employs the Discrete 
Algebraic Riccati Equation solution that is based on the 
matrices of the state-space model (2) frozen at the current 
state. This implies that the system will remain fixed at the 
current operating point in the future. It represents a severe 
approximation, since this is true only for the system in 
steady state at the origin.  
If the system is controllable the state may be driven 
sufficiently close to the origin in a finite number of steps. It 
is important to make sure that the DSDRE method is 
capable of stabilizing the system. The stability issues are 
analyzed in [6,7,8]. If those methods cannot be applied it is 
quite common for non-linear systems that the stability is 
evaluated though simulation. 

The non-linear system (1) is time invariant. However, the 
matrices in the state-dependent linear parameterization (2) 
are not. The matrices are implicit functions of time through 
the dependence on state. With the knowledge of the future 
trajectory the non-linear system may be approximated by a 
linear time varying system [5]. The future trajectory may 
be obtained with the state feedback gain obtained in the 
previous iteration and the system model. The state 
feedback drives the system (1) to the origin after a finite 
number of steps. The minimization of the cost function 
may be split in two parts: 

{ }

{ }
1

2

11

2

1

2

n N
T T

n i i i i
i n

J

T T
i i i i

i n N

J

J x Q x u R u

x Q x u Ru

+ −

=

∞

= +

= +

+ +

∑

∑

(6)

Assume that within the control horizon N the state of the 
system is driven to the origin. The solution of the DSDRE 
at the origin minimizes 2J  part of the cost function (6). 
The state of the system from the initial to the origin 
evolves in time therefore the state dependent model 
matrices also change. The discrete algebraic Riccati 
equation solution at the origin n NP +  is used as a boundary 
condition for the time-varying optimal control problem for 
the finite horizon part solution. That is based upon the 
time-varying approximation of the non-linear system. This 
requires the following Riccati equation: 

( )
1 1

1

1 1

( ) ( )

( ) ( ) ( ) ( )

T T
i i i i i

T
i i i i i i

P A x P P B x

R B x P B x B x P A x Q

+ +

−
+ +

⎡= −⎣
⎤× + +⎥⎦

(7)

The equation is iterated from 1i n N= + −  using the 
solution of the DSDRE ( )n N n NP P x+ +=  at the origin (or 

steady state with 0n Nx + = ) given by equation (4). The 

iterations of  (7) are terminated at 1i n= + .  
The state feedback gains are given by the following 
expression: 
   

( ) ( )( ) ( )
1

1 1

n n n

T T

n n n n n n n

u K x

K B x P B x R B x P A
−

+ +

= −

= +

(8)

 The idea behind this control strategy is similar to the dual 
mode control solution for predictive algorithms [14]. The 
following algorithm may be employed to refine the 
DSDRE method and obtain the feedback gain matrix. The 
receding horizon technique is employed. 
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Algorithm 1
1. Use the state feedback gains for the finite 

horizon N computed in previous iteration and 
simulate the closed loop system with the model 
(1) starting from the current state nx . This 
provides prediction of the state trajectory. 

2. The solution of the Riccati equation (4) is 
calculated at the origin. The state-dependent 
model of the system is time invariant there. 

3. Within the finite horizon the state dependent 
matrices are calculated along the prediction of 
the state trajectory. This results in the linear 
time varying model that is an approximation of 
the non-linear system. 

4. Within the finite horizon N the equation (7) is 
iterated and the 1...n N nP P+ +  are computed. Based 

on that state feedback gains 1...n n NK K + −  are 

obtained and first gain nK  is used for the 
control.  

5. In the next discrete time the algorithm is 
repeated and remaining gains 1 1...n n NK K+ + −  are 

used. The last gain n NK +  required by the 
algorithm in the next iteration is obtained 
DSDRE at the origin (from equations (4), (5) 
with the state prediction n Nx + ). This forms the 
receding horizon strategy. 

Note that it is assumed that state is driven to the origin 
within the horizon N. The use of the prediction of future 
trajectory results in better performance of the controller. 
This is due to more realistic assumptions about future state. 

4. OPTIMISED DISCRETE SDRE METHOD 

 The discrete SDRE method is not guaranteed to 
provide an optimal control solution. For some systems the 
state-dependent parameterization giving an optimal 
solution may not exist at all. The refinement with the 
predicted trajectory, given by Algorithm 1, brings the 
improvement. However, the optimality still depends on the 
state dependent parameterization.  
In this section the optimal control for the system (1), with 
the infinite horizon cost function, is analyzed. Defining the 

cost function (6) with 2J  as 2

1

2
T

N N NJ x P x=  the 

performance index is given by the following expression: 

{ }
11 1

2 2

n N
T T T

n i i i i n N n N n N
i n

J x Q x u R u x P x
+ −

+ + +
=

= + +∑
(9) 

The matrices NP , Q  and R  are assumed symmetric and 

semi-positive and positive definite respectively. The NP  is 
a final state penalty matrix for the finite horizon 

optimization. If the system is driven to the origin (or 
sufficiently close) within the horizon N this cost is zero (or 
close to zero). The value of the terminal penalty matrix 
may be obtained from the solution of the Discrete 
Algebraic Riccati Equation for the system linearized 
around the origin. If the system is driven to the 
neighborhood of the origin the fixed gain control must be 
capable of stabilizing the system in this region. The 
stability region for the system controlled by the linear state 
feedback controller is determined using Lyapunov 
functions theory [13], [14]. 
The control minimizing the performance index (9) is 
computed. The Hamiltonian for the cost function (9), 
subject to equality constraints (1), is given by: 

( ) ( ) ( )( )1

1

2
T T T

i i i i i i i i iH x Q x u R u f x B x uλ += + + +
(10) 

The optimality conditions for the minimization problem 
solution are given as follows [12]: 

( ) 1 0
Ti

i i i
i

H
Ru B x

u
λ +

∂ = + =
∂

(11) 

( ) ( )
1

T

i ii
i i i i

i i i

f x B xH
Q x u

x x x
λ λ+

⎡ ⎤∂ ∂∂
= + + =⎢ ⎥∂ ∂ ∂⎢ ⎥⎣ ⎦

(12) 

( ) ( ) 1
1

i
i i i i

i

H
f x B x u x

λ +
+

∂ = + =
∂

(13) 

The boundary condition for the co-state in the equation 
(12) is n N n N n NP xλ + + += . The initial condition for the state 

in the equation (13) (the system state) is nx . The 
optimization with the initial value for the state equation 
and final value for the co-state is known as a two point 
boundary problem. 
To find a solution introduce the matrix 
coefficient ( )1, ,...,i i i n NP P x x x+ += . Without loss of 

generality it may be assumed that the following expression 
for the co-state iλ  holds: 

i i iP xλ = (14) 

From the system equation (13), stationary condition (11)  
and the assumption (14) the following may be computed: 

( ) ( )( ) ( )1
1 1

T

i i i i ix I B x R B x P f x−
+ += − (15) 

From the co-state equation (12), the assumption (14) and 
the equation (15) the expression is obtained: 
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( ) ( )

( ) ( )( ) ( )

1

1
1

T

i i
i i i i

i i

T

i i i i i

f x B x
P x u P

x x

I B x R B x P f x Q x

+

−
+

⎛ ⎞∂ ∂
= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

× − +

(16) 

The equation should hold for all ix  in the state-space. The 
equation (16) is re-arranged using the matrix inversion 
Lemma [12]. The state-dependent parameterization of the 
system (1) given by (2) is employed next. The following 
equation is obtained: 

( ) ( ) ( )

( ) ( )( ) ( ) ( )

1 1

1

1 1

T

i i
i i i i i

i i

T T

i i i i i i

f x B x
P u P P B x

x x

B x P B x R B x P A x Q

+ +

−

+ +

⎛ ⎞∂ ∂
⎡= + −⎜ ⎟ ⎣⎜ ⎟∂ ∂⎝ ⎠

⎤× + +⎥⎦

(17) 

The equation (17) has a similar structure to the difference 
Riccati equation (7). Only the following term which can be 
re-written using the state-dependent parameterization is 
different:  

( ) ( ) ( ) ( ) ( )i i i i
i i i i

i i i i

f x B x A x B x
u x A x u

x x x x

∂ ∂ ∂ ∂
+ = + +

∂ ∂ ∂ ∂

(18) 

The derivatives 
( )i

i

A x

x

∂
∂

 and 
( )i

i

B x

x

∂
∂

 are tensors (third 

dimension has to be introduced to accommodate 
derivatives of each element of A matrix). Note that for the 
linear system where A and B are constant or time varying 
but state-independent equation (16) becomes the ordinary 
Difference Riccati Equation (7). The same result is 
obtained if matrices A and B are frozen. 
The optimal control minimizing the cost function (9) may 
be computed from equations (11), (13), (14), which results 
in the equation (8). 
The value of 1nP +  is obtained by iterating the equation (17) 

from 1i n N= + −  back in time to 1i n= + .  
The equations (17), (18) must be used with the predicted 

future trajectory. For this trajectory tensors 
( )i

i

A x

x

∂
∂

 and 

( )i

i

B x

x

∂
∂

 as well as ( ) ( ),i iA x B x  are computed. 

Algorithm 2
1. Use the state feedback gains for the finite 

horizon N computed in previous iteration and 
simulate the closed loop system with the model 
(1) starting from the current state nx . This 
provides prediction of the state and control
trajectory. 

2. The solution of the Riccati equation (4) is 
calculated at the origin. The state-dependent 
model of the system is time invariant there. 

3. Within the finite horizon the state dependent 
matrices and tensors are calculated along the 
prediction of the state trajectory.  

4. Within the finite horizon N the equation (17) is 
iterated and the 1...n N nP P+ +  are computed. Based 

on that state feedback gains 1...n n NK K + −  are 

obtained and first gain nK  is used for the 
control.  

5. In the next discrete time the algorithm is 
repeated and remaining gains 1 1...n n NK K+ + −

with n NK +  are used. 

5. EXAMPLE 

 As an example a discrete-time model of the driven 
inverted pendulum is employed. The pendulum is shown in 
Figure 1. 

Figure 1: Inverted Pendulum 

The control task is to find the optimal control sequence for 
the pendulum from the certain initial level to the unstable 
equilibrium point. Assuming that the origin corresponds to 
the unstable equilibrium the model is given as follows: 

( )
1, 1 1, 2,

2, 1 2, 1,1 sin

n n s n

s s
n n n n

x x T x

T T g
x x x u

ML L

γ
+

+

= +

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

(19) 
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Where 

0.05, 0.1, 0.1, 10, 0.05sT M L g γ= = = = =

The state-dependent parameterization of the system (19) is 
given as follows: 

( )1,1

1,

1
0

sin
11

s

s nn n ns

n

T

T g xx x uT

Lx ML

γ+

⎡ ⎤
⎢ ⎥ ⎡ ⎤

= +⎛ ⎞⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

(20) 

To avoid the division by zero the 
( )1,

1,

sins n

n

T g x

Lx
 term in 

(20) is substituted for 1, 0nx =  by the limit 

( )
1,

1,

0
1,

sin
lim

n

s n s

x
n

T g x T g

Lx L→
= . The cost function employed in 

the example is given by the equation (9). The following 
weights and control horizon were chosen: 

, 1, 40Q I R N= = =   

The boundary condition NP  is obtained from the solution 
of the discrete state dependent Riccati equation at the 
origin. 
The length of the control horizon is chosen such that the 
state is driven to zero within that time frame. 
The following results are obtained. The state trajectories 
for the DSDRE, Predictive DSDRE (Algorithm 1) and 
Predictive Optimized DSDRE (Algorithm 2) are shown in 
Figure 2.  

0 5 10 15 20 25 30 35 40
0

1

2

3

0 5 10 15 20 25 30 35 40
-8

-6

-4

-2

0

DSDRE
Predictive DSDRE
Predictive Optimised DSDRE

DSDRE
Predictive DSDRE
Predictive Optimised DSDRE

Figure 2: State Trajectory for the DSDRE, P-DSDRE, PO-
DSDRE 

It may be noticed that speed of response is fastest for the 
predictive DSDRE algorithm. The optimized predictive 
DSDRE provides slower response and the DSDRE is the 
slowest. 

 This would suggest that the P-SDRE provides the best 
performance. However, one may measure the performance 
of the control system by the equation (9). This performance 
index is used for the derivation of control algorithm. Thus, 
it is a good indicator of the controller performance. 

The slower response of the optimized predictive DSDRE 
algorithm may be explained by the lower control effort. 
The control trajectories are shown in Figure 3.  

0 5 10 15 20 25 30 35 40
-7

-6

-5

-4

-3

-2

-1

0

DSDRE
Predictive DSDRE
Predictive Optimised DSDRE

Figure 3: Control Trajectory for the DSDRE, P-DSDRE, 
PO-DSDRE 

The value of the performance index (9) calculated along 
state and control trajectories for three algorithms is given 
below. 

DSDRE 557.72J = : DSDRE controller,  

P-DSDRE 554.78J = : Predictive DSDRE (Algorithm 1),  

PO-DSDRE 541.53J = : Predictive Optimized DSDRE 
(Algorithm 2). 

The optimized P-DSDRE algorithm provides the best 
performance. The P-DSDRE and DSDRE algorithms result 
in higher costs. 
The system trajectories for three controllers plotted in 
state-space are shown in Figure 4.  
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Figure 4: State Trajectory for the DSDRE, P-DSDRE, PO-
SDRE method in State Space

6. CONCLUSIONS 

 The method presented in the paper provides a 
control law that gives lower values of the cost function. 
The method is based on the State Dependent Riccati 
Equation for the discrete-time non-linear systems. 
Originally the SDRE was developed for the continuous 
time systems. For these systems, optimality was achievable 
theoretically, e.g. for scalar case, or for higher order 
systems - providing the state dependent representation was 
selected properly. In discrete-time case the DSDRE is not 
guaranteed to provide optimality even in the simplest first-
order case. The method presented in this paper introduces 
additional term in the Riccati equation that helps to 
improve the optimality of the method. 
It was noticed that if the prediction of the future trajectory 
was refined iteratively at a given time instant, the method 
not only decreased the value. Additionally, the control 
trajectory converged to the optimal sequence minimizing 
the given cost function. This however was done only for a 
limited number of examples based on simulation and is 
subject of ongoing research. 
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