
You Can Always Compute Maximally Permissive
Controllers Under Partial Observation

When They Exist
Sophie Pinchinat

IRISA-INRIA, F-35042, Rennes, France
Sophie.Pinchinat@irisa.fr

Stphane Riedweg
LVS, ENS Cachan, F-94235, Cachan, France

Stephane.Riedweg@irisa.fr

Abstract— The maximal permissivity property of controllers
is an optimal criterion that is often taken for granted as the
result of synthesis algorithms: the algorithms are designed
for frameworks where the existence and the uniqueness of
a maximal permissive controller is demonstrated apart, as
it fulfills sufficient hypotheses ; these algorithms precisely
compute this object. Still, maximally permissive solutions
might exist in circumstances which do not fall into such
identified frameworks, but there is no way to ensure that
the algorithms deliver an optimal solution. In this paper, we
propose a general synthesis procedure which always computes
a maximal permissive controller when it exists.

I. INTRODUCTION

The maximal permissivity property in control theory is
a natural notion meaning that the controller only disallows
what must be disallowed ; in other words, the controller
should be minimal restrictive controller as called in the
pioneer work of [1], or equivalently maximally permissive
controller as we qualify it here.

To our knowledge, the maximally permissive property
of controllers has never been treated on its own in the
literature. The major reason lies on the nature of supervisory
control problems that have been investigated. Either one
proves apart the existence and the uniqueness of a maxi-
mally permissive solution; this is the case of the Ramadge
and Wonham regular languages framework [2] where the
existence and uniqueness of a supremal controllable and
observable language is established (see also [3]) ; even if
it means adding stronger hypothesis than observability such
as normality [4], [5]. However, a few attempts to compute a
maximally permissive controller in less favorable contexts
have been proposed ; see for example [6]. On the contrary,
the considered framework does not ensure the existence of
maximally permissive solutions, in general; their computa-
tion is then evaded. This is the case in branching-time logic
frameworks [7], [8].

And yet, as we shown here, the maximally permissive
property of controllers under partial observation is decid-
able, even in the most general framework where the control
objective is any mu-calculus definable property [9]. Our
approach, based on labeling processes, makes it possible to
characterize the maximally permissive controllers as models
accepted by some tree automaton, so that their existence

(and synthesis when possible) comes down to the non-
emptiness problem for the tree automaton.

The paper is organized as follows: Section II presents the
framework and Section III focuses on maximal permissive-
ness issues with the general decision procedure.

II. BASICS OF CONTROL PROBLEMS

Models of systems are operational: they are standard
state machines called here processes, composed of states,
transitions between states that are triggered by events.

We assume given a finite set of events Ev =
{α, β, θ, υ . . . }, a set of atomic propositions AP =
{a, b, c, c′ . . . } which denote properties of states.

Definition 1: Processes. Given two finite sets Σ ⊆ Ev
and Γ ⊆ AP , a process on (Σ, Γ) is a tuple S =
〈S, s0, t, L〉, where S is the set of states, s0 ∈ S is the
initial state, t : S × Σ → S is the transition function - it is
partial -, and L : S → 2Γ is a labeling function, labeling
states with propositions - it is total. The set Σ is called the
type of S.

When t(s, α) = s′, the pair (s, s′) is called an α-
transition, and we say that an α-transition is firable in s.

A process S of type Σ is complete if for all α ∈ Σ, an
α-transition is firable in any state of S. A process S is finite
if S is finite. We will use S,P , E , E ′, ... as typical elements
for processes.

Processes can be combined: we use the weak synchronous
product. Two processes S1 and S2 must synchronize on the
occurrence of a shared event, namely an event in Σ1 ∩Σ2:

Definition 2: (Weak) Synchronous Product. The
(weak) synchronous product of S1 = 〈S1, s

0
1, t1, L1〉 of

type Σ1 and S2 = 〈S2, s
0
2, t2, L2〉 of type Σ2 is the process

S1 ⊗ S2 = 〈S1 × S2, (s0
1, s

0
2), t, L〉 on (Σ1 ∪ Σ2, Γ1 ∪ Γ2),

hence of type Σ1 ∪ Σ2, where t((s1, s2), α) = (s′1, s
′
2)

whenever
• (α ∈ Σ1 ∩ Σ2) and (s′1 = t1(s1, α)) and (s′2 =

t2(s2, α)), or
• (α ∈ Σ1 \Σ2) and (s′1 = t1(s1, α)) and (s′2 = s2), or
• (α ∈ Σ2 \ Σ1) and (s′1 = s1) and (s′2 = t2(s2, α)).

Moreover, L(s1, s2) = L1(s1) ∪ L2(s2).

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

ThA18.4

2287

A state in a (weak) synchronous product is then a pair
(s1, s2) of states each of which will be called a local state.
Following this line, a local transition of a synchronous
product is a transition firable in a local state.

The weak synchronous product gives the formal meaning
to the notion of controller: given a process P - for “plant”
- of type Σ, a subset O ⊆ Σ of observable events, and a
property ψ on processes - which will be made clear further.

A controller of P for ψ under observation O is some non-
empty process C on (O, ∅) with additional properties we
explain now. First of all, the controlled plant is the process
P ⊗ C and it satisfies ψ. The weak synchronous product
realizes our intuition of how a controller should act, for
the following reasons: in P ⊗ C, a local transition of P ,
labeled by a non-observable event (in Σ\O), remains firable
in the product since no synchronization with a transition
of C is required. Hence, C cannot prevent non-observable
events from occurring. The controller C can neither take
the occurrence of a non-observable event into account as
its local state does not change. However, the controller C
might stop P from doing an θ-transition when θ ∈ O: this
is the case when a θ-transition is firable in a local state of
P but is not firable in the local state of C; we then say that
C disallows this θ-transition.

Nevertheless, disallowing transitions is subject to addi-
tional constraints that respect the characteristic of events:
the events set Σ of P splits into the uncontrollable events
set Σuc ⊆ Σ, on the one hand, and the controllable events
set Σc, by complementary in Σ, on the other hand. The set
Σuc denotes particular events which cannot be controlled by
an internal device of the plant, since for example they arise
from the outside world; we use υ as a typical uncontrollable
event. A transition labeled by an uncontrollable event are
called an uncontrollable transition, otherwise it is called a
controllable transition... Consequently, realistic controllers
should disallow only transitions labeled by controllable
events, in which case the controllers are qualified admis-
sible. In the following, an admissible controller of P for
ψ under observation O is simply called a controller for
(P , O, ψ).

Finally, it is natural to require maximally permissive
controllers, that is controllers which disallow only tran-
sitions that must be disallowed. This qualitative notion is
formalized by the partial pre-order of simulation:

Definition 3: Simulation. Given two processes S1 =
〈S1, s

0
1, t1, L1〉 of type Σ1 and S2 = 〈S2, s

0
2, t2, L2〉 of type

Σ2, a simulation of S1 by S2 is a binary relation ρ ⊆ S1×S2

such that (s0
1, s

0
2) ∈ ρ and for any (s1, s2) ∈ ρ and for any

α ∈ Σ1 such that t1(s1, α) is defined, t2(s2, α) is also
defined and (t(s1, α), t2(s2, α)) ∈ ρ.

Notice that simulations do not take atomic propositions
into account. We write S1
 S2 whenever there exists a
simulation of S1 by S2, and we use S1 ≺ S2 when S1

S2 and not S2
 S1. One easily checks that
 is a pre-

order which corresponding order is partial. Basically, when
processes are associated their execution tree, that is, their
(possibly infinite) unfolding, S1
 S2 means that S2 has a
larger execution tree than S1 has.

Definition 4: Maximally Permissive Controllers Un-
der Partial Observation. Given a process P of type Σ, a set
of observations O ⊆ Σ and a property ψ, a controller C for
(P , O, ψ) is maximally permissive if for any other controller
C′ of type O for (P , O, ψ), we do not have P⊗C ≺ P⊗C ′.

The rest of the paper is dedicated to the computation
of a maximally permissive controller for (P , O, ψ) when
it exists, when property ψ is definable in any branching-
time temporal logic. For this, we consider the mu-calculus
logic of [9], [10], over processes, which subsumes any other
branching-time logics.

We first recall what the mu-calculus is. Assume given
a set of variables V ar = {X, Y, . . . }, which is used for
fix-points formulas of the mu-calculus, written Lµ.

Definition 5: Syntax of Lµ. The syntax of the mu-
calculus is standard [10]. It is defined by:
ϕ, ϕ′(� Lµ) ::=
 | a |X | ¬ϕ |ϕ ∨ ϕ′ | <α>ϕ |µX.ϕ(X)
where α ∈ Ev, a ∈ AP and X ∈ V ar.

Fix-points formulas µX.ϕ(X) can be properly interpret-
ed whenever each occurrence of X in ϕ(X) is under an
even number of negation symbols ¬. This is standard.
Using the classical terminology of the mu-calculus, we
name sentences all the formulas where each occurrence of a
variable X is binded by a fix-point symbol µ. Following the
standards, we write ⊥, ϕ∧ϕ′, [α]ϕ, νX.ϕ(X) respectively
for ¬
, ¬(¬ϕ ∨ ¬ϕ′), ¬ <α> ¬ϕ, ¬µX.¬ϕ(¬X), as
well as

α→, []ϕ and ϕ ⇒ ϕ′ respectively for <α>
,∧
α∈Ev[α]ϕ and ¬ϕ ∨ ϕ′. For ϕ ∈ Lµ, AGϕ is a notation

for νX.[]X∧ϕ (for the reader who is familiar with the logic
CTL of Clarke and Emerson): according to Def.6 further,
it states the invariance of ϕ, namely “from now on, the
property ϕ always holds”.

The logic can now be interpreted. Given S = 〈S, s0, t, L〉
a process on (Σ, Γ), a formula ϕ ∈ Lµ denotes a subset
of states, those which “satisfy” it. The semantics is given
by induction over ϕ, hence the need to interpret variable
formulas X ∈ Var: a valuation val : V ar → 2S is set
which defines the subset of states denoted by each variable
formula.

Definition 6: Semantics of Lµ. Given a process S =
〈S, s0, t, L〉 on (Σ, Γ), and a valuation val : V ar → 2S,
the interpretation of an Lµ-formula ϕ, written � ϕ �

[val]
S , is

a subset of S defined inductively on the structure of ϕ by:

�
 �
[val]
S = S � a �

[val]
S = {s ∈ S |a ∈ L(s)}

� X �
[val]
S = val(X) � ¬ϕ �

[val]
S = S \ � ϕ �

[val]
S

� ϕ ∨ ϕ′ �
[val]
S = � ϕ �

[val]
S ∪ � ϕ′ �

[val]
S

� <α>ϕ �
[val]
S = {s ∈ S |∃s′, t(s, α) = s′, s′ ∈ � ϕ �

[val]
S }

� µX.ϕ(X) �
[val]
S =

⋂{V ⊆ S |� ϕ �
[val(V/X)]
S ⊆ V }

2288

As the interpretation of sentences is independent of the
valuation val, we simply write � ϕ �S , and write S |= ϕ,
read “S satisfies ϕ,” whenever s0 ∈ � ϕ �S . With these
conventions of notations, the assertions “S |= ϕ∨ϕ′”, “S |=
¬ϕ”, ... respectively mean “S |= ϕ or S |= ϕ′ ”, “not S |=
ϕ” (also written “S �|= ϕ”), ...

From now on, assume given a process P = 〈P, p0, t, L〉
on (Σ, Γ), an observation set O ⊆ Σ, and a mu-calculus
sentence ψ (with atomic propositions in Γ).

Maximally Permissive Control Under Partial
Observation Problem

MP(P , O, ψ):

Given (P , O, ψ), does there exist a maximally permissive
controller for (P , O, ψ), and if any, compute one ?

In the next secttion, Theo.14 characterizes a maximally
permissive controller for (P , O, ψ), and we derive an algo-
rithm, according to the results of Theo.18.

III. CHARACTERIZING AND COMPUTING MAXIMALLY

PERMISSIVE CONTROLLERS UNDER PARTIAL

OBSERVATION

Technically, controllers are represented in an extended
form. They become complete processes by a kind of com-
pletion procedure: informally, a fresh atomic proposition
c is chosen which labels original states of the controller,
whereas new states, not labeled by c (hence labeled by ¬c)
are added in order to make the result a complete process.
Given a controller C, we shall write EC the process obtained
by the completion procedure. EC is called a labeling process
which formal definition follows:

Definition 7: Labeling Processes. Given c ∈ AP , a
c-labeling process of type O is a complete process E =
〈E, e0, t, L〉 on (O, {c}), with L(e0) = {c}. We let LabO

c

be the set of c-labeling processes, and we use E , E ′, ...
for typical elements. A labeling of some process S by the
proposition c, or a c-labeling of S, is a product S ⊗E with
E ∈ LabO

c .
Basically, the process S ⊗ E is in general an unfolding

of S, with some states labeled by c.

The relationship between a controller C and the label-
ing process EC , obtained by the completion procedure, is
formalized by the notion of pruning:

Definition 8: Pruning. Given a labeling process E =
〈E, e0, t, L〉 on (O, {c}), the c-pruning of E , written E

�c,
is the restriction of E to the set of states E ∩ L−1({c}).
Namely, it is like E but only on its c-labeled part. Notice
that because e0 is labeled by c, process E

�c is non-empty.
Now, for a controller C, we have EC�c = C. So that

talking about controllers or talking about labeling processes
is equivalent.

Theo.14 further relates the maximally permissive prop-
erty with a single logical formula. The result relies on the
adjustment of the sentence describing the control objective,
see Def.9, and on a formula which ensures the admissibilty
of the controller, as stated by Lem.12:

Definition 9: Adjustment. For all ϕ ∈ Lµ and b ∈ AP ,
the b-adjustment of ϕ is ϕ

�b ∈ Lµ, inductively defined by:

�b =
 a

�b = a X
�b = X

(<α>ϕ)
�b =<α>(b ∧ ϕ

�b) (¬ϕ)
�b = ¬ϕ

�b

(ϕ ∨ ϕ′)
�b = ϕ

�b ∨ ϕ′
�b (µX.ϕ)

�b = µX.ϕ
�b

The fundamental result of Lem.10, easily proved by
induction on the structure of the sentence, means that the
b-adjustment of a sentence ϕ holds of a process whenever ϕ
holds of the process derived by keeping only states labeled
by b:

Lemma 10: Given a process S on (Σ, Γ), a sentence ϕ
and b ∈ Γ, S

�b |= ϕ if and only if S |= ϕ
�b.

Applying Lem.10 to the control problem (P , O, ψ), we
get the following:

Lemma 11: Given a fresh proposition c �∈ Γ and a
labeling process E ∈ LabO

c , P ⊗ E
�c |= ψ if and only

if P ⊗ E |= ψ
�c.

Proof: Observe that process P⊗E
�c is isomorphic to

process (P ⊗ E)
�c and use Lem.10.

Let us write Admissible(c) the sentence

AG(c ⇒
∧

υ∈Σuc

[υ]c)

P ⊗ E |= Admissible(c) tells that E
�c is indeed a

controller: in particular, in P no uncontrollable transition
is disallowed by the controller E

�c.

For convenience let us simply write Controller(c, ψ)
instead of Admissible(c) ∧ ψ

�c. Now, P ⊗ E satisfying
Controller(c, ψ) gives a logical manner to express that
E

�c is a controller for (P , O, ψ):

Lemma 12: Let E ∈ LabO
c . P ⊗ E |= Controller(c, ψ)

if and only if E
�c is a controller for (P , O, ψ).

Proof: Assume E
�c is a controller for (P , O, ψ) ;

hence P ⊗ E
�c |= ψ, which entails P ⊗ E |= ψ

�c, by
Lem.11. Moreover, because E

�c is admissible, no uncon-
trollable transition of P is disallowed by E

�c, hence, in
P ⊗ E , the target states of any uncontrollable transition
necessarily are labeled by c (for this transition to be kept
after pruning by c) ; P ⊗ E therefore satisfies the invariant
property AG(c ⇒∧

υ∈Σuc
[υ]c), that is Admissible(c).

Reciprocally, let E be such that P ⊗ E |=
Controller(c, ψ). By assumption, because E ∈ LabO

c , E
�c

has type O; it is also non-empty. According to Lem.11,
P ⊗ E

�c |= ψ. It remains to show that E
�c is admissible:

let (p, υ, p′) be an uncontrollable transition of P and let
(p, e) be a global state of P ⊗E with e labeled by c, hence

2289

so is (p, e). For E
�c to be admissible, we must exhibit a

local state e′ ∈ E s.t. ((p, e), υ, (p′, e′)) is a transition in
P ⊗ E and e′ is labeled by c. De facto, ((p, e), υ, (p′, e′))
will also be a transition of the controlled plant P ⊗ E

�c.
If υ �∈ O, it is obviously the case by taking e′ = e.
Otherwise (υ ∈ O), because E is complete on O, the local
transition (e, υ, e′) exists; e′ must be labeled by c since
P ⊗ E |= AG(c ⇒∧

υ∈Σuc
[υ]c), which concludes.

We now turn to permissiveness issues.
Let us write c � c′ for c � c′ ∧ ¬(c′ � c) where c � c′

is a notation for the invariant property ([]AG(c′))
�c.

c � c′ simply means the following: when interpreted on
some process S (w.l.o.g. with all states reachable), S |=
c � c′ whenever � c �S ⊆ � c′ �S . That is, the label c covers
less states than the label c′ does. Reformulated in terms of
labeling processes, we get Lem.13:

Lemma 13: For any E ∈ LabO
c and E ′ ∈ LabO

c′

P ⊗ E ⊗ E ′ |= c � c′ if and only if P ⊗ E
�c ≺ P ⊗ E ′

�c′ .
Proof: Actually, it is enough to show that: P⊗E⊗E ′ |=

c � c′ if and only if P ⊗ E
�c
 P ⊗ E ′

�c′ .
Assume P ⊗ E ⊗ E ′ |= c � c′. By definition of labeling

processes, P ⊗ E ⊗ E ′ is some unfolding of P labeled
by both c and c′, in a such a way that any state labeled
by c is necessarily also labeled by c′. Clearly, the c-
pruning of P ⊗ E ⊗ E ′ is a sub-process of the c′-pruning
of P ⊗E ⊗E ′. Hence P ⊗ E ⊗ E ′

�c
 P ⊗ E ⊗ E ′
�c′ . We

conclude by observing the following: since E ′ is complete,
(P ⊗ E ⊗ E ′)

�c is isomorphic to P ⊗ E
�c, up to the

atomic proposition c′, and (P ⊗ E ⊗ E ′)
�c′ is isomorphic

to P ⊗ E ⊗ E ′
�c′ , up to the atomic proposition c.

The converse follows the same reasonning backward

We can now state the fundamental result that:

Theorem 14: Maximally Permissive Controllers Un-
der Partial Observation.
Let E ∈ LabO

c . E
�c is a solution of MP(P , O, ψ) if and

only if for all E ′ ∈ LabO
c′ ,

P ⊗ E ⊗ E ′ |= Controller(c, ψ)
∧(Controller(c′, ψ) ⇒ ¬(c � c′)).

Proof: Assume P ⊗ E ⊗ E ′ |= Controller(c, ψ) ∧
(Controller(c′, ψ) ⇒ ¬(c � c′)). Since E ′ is complete
and not labeled by c, from P⊗E⊗E ′ |= Controller(c, ψ)
we get P ⊗ E |= Controller(c, ψ). By Lem.12, this is
equivalent to say that E

�c is a controller for (P , O, ψ).
E

�c is moreover maximally permissive: indeed, consider a
controller C′ for (P , O, ψ), and its corresponding labeling
process EC′ , obtained by using proposition c′. By Lem.12,
P⊗EC′ |= Controller(c′, ψ), which entails P⊗E⊗EC′ |=
Controller(c′, ψ), as E is complete and not labeled by c′.
Now by assumption, necessarily P ⊗E ⊗EC′ |= ¬(c � c′).
Lem.13 then involves not P ⊗ E

�c ≺ P ⊗ EC′
�c′ . Because

EC′
�c′ is simply C′, we conclude.

The converse follows the same line.

We now investigate a decision procedure MP(P , O, ψ).
By Theo.18, the solutions of MP(P , O, ψ) coincide with
the models of some parity automaton. As already shown
by [11], parity automata can actually be exploited to
characterize the controllers; moreover, the controller
synthesis reduces to the computation of a model of some
parity automata. Moreover, computing a model of a parity
automata is known to be decidable since [12], see also [10].

We first recall what parity (tree) automata are:
Definition 15: Parity Tree Automata. A parity tree

automaton on (Σ, Γ) (with Σ ⊆ Ev and Γ ⊆ AP) is a tuple
A = 〈Q, Q∃, Q∀, q0, δ, r〉 where Q is a finite set of states
partitioned into two subsets Q∃ and Q∀ of existential and
universal states, q0 ∈ Q is the initial state, the transition
function δ which assigns to each state q and each subset of
Γ an a set of pairs in ((Σ ∪ {ε}) × Q) ∪ (Σ × {→, �→}).
Formally,

δ : Q × 2Γ → 2((Σ∪{ε})×Q)∪(Σ×{→, �→})

Finally, r : Q → IN is the parity condition.

In the following, we simply say “automaton” instead of
“parity tree automaton”.

The automata semantics is parity games, introduced by
[12]. We refer to [13] for a survey on parity games, and we
give here a short presentation before Def.17.

A parity game is a directed graph G with a partition
(VI , VII) of the vertices, an initial vertex v0, and a partial
mapping r from the vertices to a given finite set of integers;
when it is convenient, the edges of the graph can have
labels, as it is the case of Def.17. The game involves two
players Player I and Player II.

A play from some vertex v of G proceeds as follows: if
v ∈ VI , then Player I is the current player and she chooses
a successor vertex v′ in the graph G, otherwise (v ∈ VII)
Player II chooses a successor vertex v′. The play goes on
now from vertex v′. This way, a play can define an infinite
sequence of vertices or a finite sequence ending in a current
vertex which has no successor in the graph G. The play is
winning for player I if either it is finite and ends up in a
vertex of VII , or if it is infinite and the upper bound of the
set of ranks r(vi) of vertices vi infinitely often covered in
the play is even.

A strategy for Player I is a function σ assigning to
every sequence

→
v of vertices ending in a vertex of VI , a

successor vertex. A strategy σ is a memoryless if σ(
→
v)

only depends on the last vertecs of
→
v . A play follows a

strategy σ for Player I if each choice of Player I in any
vertex v ∈ VI is σ(

→
v); in general, a given strategy σ is

followed by several plays as the choice of Player II is left
free by σ. A strategy σ for Player I is winning (for Player I)
if each play from the initial vertex following σ is winning

2290

for Player I. Winning strategies for Player II are defined
similarly. The fundamental result of parity games is the
Memoryless Determinacy Theorem, established in [12] (see
also [10]).

Theorem 16: Memoryless determinacy [12]. In any par-
ity game G, one of the two players has a (memoryless)
winning strategy.

As announced earlier, the automata semantics is parity
games: given a process S, we say that S is accepted
by A whenever there exists a winning strategy in the
corresponding (acceptance) parity game G(A,S) which
depends on both S and A.

Definition 17: (Acceptance) Parity Game G(A,S). For
A = 〈Q, Q∃, Q∀, q0, δ, r〉 an automaton on (Σ, Γ) and S =
〈S, s0, t, L〉 a process on (Σ, Γ), the (acceptance) parity
game G(A,S) is defined as follows: VI is Q∃ × S ∪ {⊥},
VII is Q∀ × S ∪ {
}, and v0 is (q0, s0). The remaining of
the graph G(A,S) is defined incrementally. Vertices
 and
⊥ have no successor. For any vertex (q, s) and any α ∈ Σ,

• there is an ε-edge from (q, s) to a successor vertex
(q′, s) if (ε, q′) ∈ δ(q, L(s)),

• there is an α-edge from (q, s) to a successor vertex
(q′, s′) if (α, q′) ∈ δ(q, L(s)) and t(s, α) = s′,

• there is an α-edge from (q, s) to
, if (α,→
) ∈ δ(q, L(s)) and t(s, α) is defined, or (α, �→) ∈
δ(q, L(s)) and t(s, α) is not defined,

• there is an α-edge from (q, s) to ⊥, if (α,→) ∈
δ(q, L(s)) and t(s, α) is not defined, or (α, �→) ∈
δ(q, L(s)) and t(s, α)is defined.

Formally, the automaton A accepts S, written S ∈ L(A),
if there exists a winning strategy for Player I in G(A,S).

We recall that the non-emptiness of parity automata and
the computation of a model, if any, are decidable problems,
as showed [12] with an optimal algorithm. When the size
of A is n, deciding and computing a model (if any) S of
A is done in time 2nO(1)

.

We can now state the theorem to obtain the decision
procedure for MP(P , O, ψ), since computing a model of a
parity automata is decidable:

Theorem 18: There exists an automaton A(ψ,P) on
(O, {c}) s.t. E ∈ L(A(ψ,P)) if and only if E ∈ LabO

c and
for all E ′ ∈ LabO

c′ ,

P ⊗ E ⊗ E ′ |= Controller(c, ψ)
∧(Controller(c′, ψ) ⇒ ¬(c � c′)).

Proof: (Sketch) We construct A(ψ,P) in tree steps.
First, we construct the automaton A1 on (Σ, Γ∪ {c, c′})

equivalent to the mu-calculus formula Controller(c, ψ)∧
(Controller(c′, ψ) ⇒ ¬(c � c′)): the construction is
standard (see [10] for example).

Next, in the same spirit as [8] but for the weak syn-
chronous product, we construct the automaton A1//P on
(O, {c, c′}) s.t. for any complete process S on (O, {c, c′}),

S ∈ L(A1//P) if and only if P ⊗ S ∈ L(A1); the
construction of A1//P is given in the Appendix, see Def.20.

Lastly, we construct A(ψ,P), on the basis of A1//P , as in
[11] - the construction uses complementation and projection
of automata -, so that E ∈ L(A(ψ,P)) if and only if E ∈
LabO

c and ∀E ′ ∈ LabO
c′ , E ⊗ E ′ ∈ L(A1//P).

Corollary 19: The problem MP(P , O, ψ) is decidable and
the proposed algorithm has complexity 2EXP-TIME(|ψ| ×
|P|).

Proof: According to Theo.14 and Theo.18, we can
decide MP(P , O, ψ) by computing the non-emptiness of
the parity automaton A(ψ,P). The standard algorithm for
non-emptiness in addition delivers a model (if any) which
achieves the controller synthesis; as a model E is computed,
the controller is E

�c.
It is well known that the size of A1 is |ψ|. By Def.20,

A1//P has size n2 = |ψ| × |P|, and according to [11],
A(ψ,P) has size 2(|ψ|×|P|)O(1)

.
Finally, the non-emptiness of A(ψ,P) is computed in time

22(|ψ|×|P|)O(1)

which concludes.

IV. CONCLUSION

We have presented a uniform approach to compute maxi-
mally permissive controllers, when they exist, in the frame-
work of deterministic systems under partial observation with
mu-calculus definable behaviors.

To our knowledge no such vast result has ever been
established in the literature, as it subsumes existing works in
more restrictive frameworks, such as regular languages, and
it clarifies the notion of maximally permissive controllers
in the branching-time setting.

We insist on the elegance of the approach which uses the
weak synchronous product to combine the plant and the
controller in order to treat partial observation. We believe
the framework is a lot more natural than those based
on strong synchronous product, where “unobservation” is
represented by state-looping transitions in the controller, as
in [8], although equivalent in essence.

As shown here, the existence of maximally permissive
controllers is decidable, and by extending the approach,
their uniqueness can be decided as well: it suffices to require
the equality of the labels c and c′ in the key formula of
Theo.14.

The decision procedure gives an upper bound to the
complexity of the Maximally Permissive Control Problem.
As shown by Theo.18, this complexity is independent of
O, the observation events set. Whether this complexity
is optimal is still an open problem, but it can surely
be improved for the restricted case of total observation
(when O = Σ): indeed, as shown in [14], the Maximally
Permissive Control Problem for total observation reduces
to model-check a formula which does not depend on the
plant P , hence its polynomial complexity in the size of the
plant. On the other hand, the presented decision procedure

2291

for partial observation relies on the non-emptiness decision
of an automaton which size depends on the plant, hence
doubly exponential in the size of the plant.

APPENDIX

Details on A1//P for Theorem 18:
Assume the process is P = 〈P, p0, t, L〉 and the automa-

ton is A1 = 〈Γ ∪ {c, c′}, Q, Q∃, Q∀, q0, δ, r〉.
Definition 20: A1//P is the automaton on {c, c′} which

set of states is (Q×P)∪ {
,⊥}, with respectively (Q∃ ×
P)∪{⊥} and (Q∀×P)∪{
} its existential and universal
sets, which initial state is (q0, p0) and which parity for any
state (q, p) ∈ Q×P is r(q). Finally, its transition function is
δ// : ((Q×P)∪{
,⊥})×2{c,c′} → 2(Q×P)∪{�,⊥} defined
by: for any (q, p) ∈ Q × P , l ⊆ {c, c′} and any α ∈ Σ,

• (ε,
) ∈ δ//((q, p), l) whenever⎧⎨
⎩

(α,→) ∈ δ(q, L(p) ∪ l) and t(p, α) defined.
or

(α, �→) ∈ δ(q, L(p) ∪ l) and t(p, α) undefined.
• (ε,⊥) ∈ δ//((q, p), l) whenever⎧⎨

⎩
(α,→) ∈ δ(q, L(p) ∪ l) and t(p, α) undefined
or

(α, �→) ∈ δ(q, L(p) ∪ l) and t(p, α) defined.
• (α, (q′, p′)) ∈ δ//((q, p), l) whenever α ∈ O and

(α, q′) ∈ δ(q, L(p) ∪ l) and t(p, α) = p′.
• (ε, (q′, p′)) ∈ δ//((q, p), l) if and only if⎧⎨

⎩
(ε, q′) ∈ δ(q, L(p) ∪ l) and p′ = p
or

(α, q′) ∈ δ(q, L(p) ∪ l) and t(p, α) = p′ and α /∈ O

We now establish the correction of Def.20:
Proposition 21: For any complete process S on

(O, {c, c′}), S ∈ L(A1//P) if and only if P ⊗S ∈ L(A1).
Proof: Assume S is (S, s0, t, L). Note that we freely

use t and L for S, as for P , and later for P ⊗ S as well,
but it is clear in what follows -.

Consider the two parity games G = G(A1,P ⊗ S)
and G// = G(A1//P ,S). There is an obvious one-to-one
correspondence between the positions (q, (p, s)) in G and
the positions ((q, p), s) in G//; the positions also have
the same parity value r(q). Moreover, by associating the
positions
 and ⊥ in G respectively to all the positions
(
, s) and (⊥, s) in G//, we show that any play in G
has a counterpart as a play in G//; the converse holds as
well and its proof uses the same arguments. This way, the
existence of a winning strategy holds for both games exactly
at the same time, hence S ∈ L(A1//P) if and only if
P ⊗ S ∈ L(A1).

Let (q, (p, s)) be a position of G, we study each possible
move from (q, (p, s)) in G.

If there is an ε-edge from (q, (p, s)) to
. By Def.17,
we obtain Condition (1):{

(α,→)∈ δ(q, L(p, s)) and t((p, s), α) is defined
or (α, �→) ∈ δ(q, L(p, s)) and t((p, s), α) is undefined

Since S is complete on O, “t((p, s), α) is defined” is
equivalent to “t(p, α) is defined”. Hence Condition (1) is

equivalent to Condition (2):{
(α,→) ∈ δ(q, L(p) ∪ L(, s)) and t(p, α) is defined,
or (α, �→) ∈ δ(q, L(p) ∪ L(s)) and t(p, α) is undefined.

By Def.20, Condition (2) entails (ε,
) ∈
δ//((q, p), L(s)), which shows an ε-edge from (q, (p, s)) to
(
, s) in the game G//.

In the same manner, we can show that the presence an
ε-edge from (q, (p, s)) to ⊥ in G implies the presence an
ε-edge from (q, (p, s)) to (⊥, s) in G//,

If now there is an ε-edge from (q, (p, s)) to some
(q′, (p′, s′)), then p′ = p and s′ = s. We can show that
(ε, (q′, p)) ∈ δ//((q, p), L(s)), and necessarily there is an
ε-edge from ((q, p), s) to (q′, (p, s)) in G//.

If there is an α-edge, where α ∈ O, from (q, (p, s)) to
some (q′, (p′, s′)), then (α, q′) ∈ δ(q, L(p)∪L(s), t(p, α) =
p′, and t(s, α) = s′. By definition of δ//, (α, (q′, p′)) ∈
δ//((q, p), L(s)), and because moreover t(s, α) = s′, there
is an α-edge from ((q, p), s) to ((q′, p′), s′) in G//,

If there is an α-edge from (q, (p, s)) to (q′, (p′, s′)),
where α �∈ O, then (α, q′) ∈ δ(q, L(p) ∪ L(s)) and s = s′.
By definition of δ//, we can show that there is an ε-edge
from ((q, p), s) to ((q′, p′), s) in G//.

REFERENCES

[1] P. J. Ramadge and W. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM Journal of Control and Optimization,
vol. 25, no. 1, pp. 206–230, 1987.

[2] Ramadge and Wonham, “The control of discrete event systems,” in
Proc. of the IEEE, vol. 77(1), 1989, pp. 81–98.

[3] Thistle and Wonham, “Control of of infinite behavior of finite
automata,” SIAM Control and Optimization, vol. 32(4), pp. 1075–
1097, 1994.

[4] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya, “Supervisory
control of discreteevent processes with partial observations,” IEEE
Transactions on Automatic Control, vol. 33, no. 3, pp. 249–260, 1988.

[5] F. Lin and W. M. Wonham, “On observability of discrete-event
systems,” Information Sciences, vol. 44, no. 3, pp. 173–198, 1988.

[6] S. Takai and T. Ushio, “Effective computation of an lm(g)-closed,
controllable, and observable sublanguage arising in supervisory con-
trol,” in Workshop on Discrete Event Systems, Zaragoza, Spain,
October 2002.

[7] O. Kupferman, P. Madhusudan, P. S. Thiagarajan, and M. Y. Vardi,
“Open systems in reactive environments: Control and synthesis,” in
Proc. 11th Int. Conf. on Concurrency Theory, ser. LNCS, vol. 1877.
Springer-Verlag, 2000, pp. 92–107.

[8] Arnold, Vincent, and Walukiewicz, “Games for synthesis of con-
trollers with partial observation,” Theoretical Computer Science,
vol. 1, pp. 7–34, 2003.

[9] Kozen, “Results on the propositional µ-calculus,” Theoretical Com-
puter Science, vol. 27(3), pp. 333–354, 1983.

[10] A. Arnold and D. Niwinski, Rudiments of mu-calculus. North-
Holland, 2001.

[11] Riedweg and Pinchinat, “Quantified mu-calculus for control synthe-
sis,” in Mathematical Foundations of Computer Science, ser. LNCS,
vol. 2747, 2003, pp. 642–651.

[12] E. A. Emerson and C. S. Jutla, “Tree automata, mu-calculus and
determinacy,” in Proceedings 32nd Annual IEEE Symp. on Founda-
tions of Computer Science, FOCS’91, San Jose, Puerto Rico, 1–4
Oct 1991. Los Alamitos, California: IEEE Computer Society Press,
1991, pp. 368–377.

[13] J. Mycielski, “Games with perfect information,” in Handbook of
Game Theory, R. Aumann and S. Hart, Eds. Elsevier Science
Publisher, 1992, vol. 1, pp. 41–70.

[14] S. Riedweg and S. Pinchinat, “Maximally permissive controllers in
all contexts,” in Workshop on Discrete Event Systems, Reims, France,
sep 2004.

2292

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ArialNarrow-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Oblique
 /Times-Roman
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

