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Abstract— We investigate the generalized LQR control
where the dimension of the control input is strictly greater
than the dimension of the controlled output, and the weighting
matrix on the control signal is singular. The dual problem is
the generalized Kalman filtering where the dimension of the
input noise process is strictly smaller than the dimension of
the output measurement, and the covariance of the observation
noise is singular. These two problems are intimately related to
inner-outer factorizations for non-square stable transfer ma-
trices with square inners of the smaller size. Such inner-outer
factorizations are in turn related to spectral factorizations for
power spectral density (PSD) matrices whose normal ranks
are not full. We propose iterative algorithms and establish
their convergence for inner-outer and spectral factorizations,
which in turn solve the generalized LQR control and Kalman
filtering.

1. INTRODUCTION

In the standard LQR control, the dimension of the control
input is no greater than the dimension of the controlled
output, and the weighting matrix on the control signal is
nonsingular. For the standard Kalman filtering, the dimen-
sion of the input noise process is no smaller than the
dimension of the outout measurement, and the covariance
of the observation noise is nonsingular. The standard LQR
control and Kalman filtering are well studied, and their
solutions and properties are well documented [2], [8]. It is
interesting to observe that these two optimization problems
are related to, and have applications to computations of
inner-outer and spectral factorizations [1], [5].

In this paper we study generalized LQR control and
Kalman filtering for discrete-time systems in which the
aforementioned regular conditions fail. The solutions to
these two generalized optimization problems are not diffi-
cult to find. Indeed using the same derivations to the regular
case, we can obtain similar Riccati equations whose solu-
tions provide the LQR control and Kalman filtering gains.
However it is not easy to compute the stabilizing solutions
to the algebraic Riccati equations (AREs), associated with
the generalized LQR control and Kalman filtering in the
stationary case. Such AREs involve pseudo-inverses, and
may contain more than one positive semi-definite solutions.
In fact for stable systems the two generalized optimization
problems can be equivalently converted to inner-outer fac-
torizations for non-square stable transfer matrices whose
inners are square and have a smaller size that is in turn
related to the spectral factorization for PSD matrices whose

normal ranks are not full. Our approach to generalized LQR
control and Kalman filtering is through tackling the equiva-
lent inner-outer and spectral factorizations, from which we
develop an iterative algorithm for computing the stabilizing
solutions to the AREs associated with the two optimization
problems. We will prove the convergence of the proposed
iterative algorithm.

Spectral factorizations have been widely used in signal
processing, control, and communications, due to the need
for spectral analysis in signals and for frequency-domain
design in systems. There is a large body of literatures
devoted to such a topic [1], [4], [7], [11], [14], [15]. The
solutions given in [1], [15] are the most general, but both did
not consider those PSD matrices whose normal ranks are not
full. Such spectral factorizations are less studied, and much
harder to compute. Nevertheless its solution helps solve
the generalized LQR control, Kalman filtering, and inner-
outer factorizations. In addition the blind channel estimation
problem emerged in wireless data communications [3], [9],
[10] is equivalent to such spectral factorizations. We will
follow the state-space approach proposed in [1], and develop
convergent iterative algorithms to compute spectral factors
for PSD matrices with non-full normal ranks. Due to the
space limit, all the proofs are omitted. The complete version
of the paper is available upon request.

2. PRELIMINARIES

We will begin with the formulation of the inner-outer and
spectral factorizations entailed in this paper. Denote the set
of real/complex numbers by IF = IR/C. Let H(z) be a
transfer function matrix of size p×m. It is called causal, if
its impulse response is causal. Its normal rank is defined as
the rank of H(z) for almost all, except a countable set of
z ∈ C. Denote ā the conjugate of a, and A∗ the conjugate
and transpose of A. Then the para-hermitian conjugate of
H(z) is defined and denoted by H(z)∼ = [H(z̄−1)]∗.
Assume that the underlying system is finite-dimensional.
Then H(z) admits a state-space realization

H(z) = D + C(zI − A)−1B =:
[

A B
C D

]
, (1)

by an abuse of notation where A ∈ IFn×n and D ∈ IFp×m.
It is clear that B and C have dimensions of n×m and p×n,
respectively. If A is a stability matrix, i.e., all eigenvalues
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of A are strictly inside the unit circle, then H(z) is stable.
If ∀ |z| ≥ 1,

rank
{[

A − zI B
C D

]}
= n + min{p,m}, (2)

then H(z) is strict minimum phase. Notice that the above
does not ensure the full rank for D.

A para-hermitian transfer matrix Φ(z) of size p × p has
the form

Φ(z) =
∞∑

k=−∞
Rkz−k, R∗

k = R−k ∈ IFp×p. (3)

It follows that Φ(z) is a hermitian matrix for any z on the
unit circle. If in addition Φ(z) ≥ 0 ∀ |z| = 1, then Φ(z)
qualifies a PSD with {Rk} the covariance sequence. Let the
normal rank of Φ(z) be r < p. We are interested in spectral
factorizations

Φ(z) = WR(z)∼WR(z) = WL(z)WL(z)∼ (4)

where WR(z) has size r×p, WL(z) has size p×r, and more
importantly both are causal, stable, and strict minimum
phase. In other words, all poles and zeros of WR(z) and
WL(z) are strictly inside the unit circle. In this case WR(z)
and WL(z) are called the right and left spectral factors
of Φ(z). Extensions can be made for spectral factors to
include poles and zeros on the unit circle. But for the
sake of simplicity and brevity, we shall not do so in this
paper. Instead we assume that Φ(z) is a bounded hermitian
positive matrix with rank r for all z on the unit circle,
which excludes the possibilities of poles and zeros on the
unit circle for the spectral factors. It is worth to pointing
out that most of the existing work on spectral factorizations
assume that r = p, and there lack effective computational
algorithms for spectral factorizations in the case of 0 < r <
p.

In this paper we will also consider more general inner-
outer factorizations where H(z) as given in (1) may have
zeros strictly outside the unit circle, and its realization is
subject to the constraint

0 < rank{D} ≤ min{m, p}. (5)

We investigate inner-outer factorizations for the following
two cases:

Case (i) m > p : H(z) = Hi(z)Ho(z)
Case (ii) m < p : H(z) = Ho(z)Hi(z) (6)

where Hi(z) is a square inner of the smaller size, and
Ho(z) is an outer. A square transfer matrix Hi(z) is called
inner, if it is stable, and Hi(ejω) is a unitary matrix for all
ω ∈ IR. In other words, Hi(z)∼Hi(z) = I . A non-square
transfer matrix Ho(z) is called outer, if it is both stable,
and minimum phase. A moment of reflection reveals that
all zeros of Hi(z) are strictly outside the unit circle, and are
thus unstable. On the other hand, zeros of Ho(z) are all in
the unit disc, including the unit circle. The abovementioned
inner-outer factorizations are intimately related to spectral

factorizations. In fact, Ho(z) is the right spectral factor of
Φ(z) = H(z)∼H(z) for Case (i), and is the left spectral
factor of Φ(z) = H(z)H(z)∼ for Case (ii). The assumption
that D �= 0 has no loss of generality, because any causal
transfer matrix H(z) can be written as H(z) = z−kH̃(z)
for some k ≥ 0 and causal transfer matrix H̃(z) such that
D̃ = H̃(∞) �= 0. Thus inner-outer factorizations of H̃(z)
can then be studied with z−k subsumed into the inner.

3. GENERALIZED LQR CONTROL AND KALMAN

FILTERING

In this section we assume that the regular conditions
for LQR control and Kalman filtering fail to hold, and
derive their optimal solutions. For finite time horizon, and
time-varying state-space systems, the optimal solutions are
similar to the standard LQR control and Kalman filtering.
But in the stationary case, i.e., the infinite time horizon
and time-invariant systems, the optimal solutions require
computing the stabilizing solutions to the AREs associated
with the generalized LQR control and Kalman filtering.
The iterative algorithms proposed in this section are not
shown to converge to such stabilizing solutions, which will
be proven in the next section.

We will also investigate inner-outer factorizations for
non-square transfer matrices. For the interest of this paper,
we restrict inners to square, and outers to non-square
transfer matrices. It should be mentioned that inner-outer
factorizations with square outers are well studied for H∞-
based robust control, and are associated with standard
LQR control, and Kalman filtering. However inner-outer
factorizations with square inners are less studied, let alone
the singular constraint in (5). In the next two subsections,
we generalize the results on optimal control (standard LQR
control) and optimal estimation (standard Kalman filtering),
and derive an iterative algorithm for computing inner-outer
factorizations with square inners.

A. Generalized LQR Control and the Right Spectral Factor

The generalized LQR control assumes the state-space
model, with x(0) = x0 �= 0,

x(t + 1) = Ax(t) + Bu(t), z(t) = Cx(t) + Du(t) (7)

and searches for the control input u(t) to minimize the
quadratic performance index

J =
∞∑

t=0

‖z(t)‖2 =
∞∑

t=0

z∗(t)z(t). (8)

We assume that the control input u(t) has size m, the
controlled output z(t) has size p, and m > p. Stability
of A is not assumed for the generalized LQR control, and
rank{D} ≤ p.

This problem differs from the standard LQR problem in
that D is a “fat” matrix by m > p, and its rank can be
strictly smaller than p. That is, the penalty weighting matrix
on the control signal is singular. The conventional approach
is to consider optimal control over the finite time horizon,
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and then take the limit to the infinity time horizon. With
careful derivation, we can obtain a similar solution to that
for the standard LQR control, which is summarized in the
following result.

Theorem 3.1: Let the m-input/p-output system be given
as in (7), with m > p ≥ rank{D}. Suppose that (A,B)
is stabilizable, and X = X∗ ≥ 0 satisfies the generalized
ARE:

X = A∗XA + C∗C − Γ(D∗D + B∗XB)+Γ∗, (9)

where Γ = A∗XB + C∗D. Then with uopt(t) = Fx(t),
the performance index is J = Jmin = x∗

0Xx0 where

F = −(D∗D + B∗XB)+(B∗XA + D∗C). (10)
Remark 3.2: We make the following remarks:

(a) Different from the standard LQR theory, we can not
conclude stability of A + BF despite the fact that (A,B)
is stabilizable. That is, the optimal feedback system

x(t + 1) = (A + BF )x(t), z(t) = (C + DF )x(t), (11)

with F in (10), may not be internally stable, even though
the energy of the controlled output

Jmin = ‖z‖2
2 =

∞∑
t=0

‖z(t)‖2 = x∗
0Xx0

is bounded. A careful reflection concludes that any un-
stable modes of (A + BF ) are unobservable based on
the controlled output z(t) = (C + DF )x(t). That is, the
unstable modes of (A + BF ) are also unobservable modes
of (C + DF, A + BF ).
(b) The ARE (9) may admit more than one positive semi-
definite solutions. Each one can be viewed as an equilibrium
to the DRE

Xt = A∗Xt+1A + C∗C − Γt(D∗D + B∗Xt+1B)+Γ∗
t .

However there is a unique maximal solution Xmax, and a
unique minimal solution Xmin such that any other positive
semi-definite solution X to the ARE (9) satisfies

0 ≤ Xmin ≤ X ≤ Xmax.

It can be argued that the limit to the DRE exists for any
initial value X(0) ≥ 0, but the limit is dependent on X(0).
(c) Theorem 3.1 provides an algorithm to compute a positive
semi-definite solution X ≥ 0: For k = 0, 1, · · ·, with
X(0) ≥ 0 given, do the following:

F (k) = −(D∗D + B∗X(k)B)+Γ∗
k,

X(k+1) = A∗
Fk

X(k)AFk
+ Qk

(12)

with AFk
= A + BF (k) and Qk = (C + DF (k))∗(C +

DF (k)). The algorithm can be terminated if ‖X(N) −
X(N+1)‖ is smaller than some pre-specified tolerance
bound. It is noted that X(k) = XT−k is the solution to
the DRE at time t = T − k with XT = X(0) ≥ 0.

(d) For the problem of inner-outer factorization in Case (i)
of (6), A is assumed to be a stability matrix. If X(0) = W
is chosen as the solution to the Lyapunov equation

W = A∗WA + C∗C, (13)

then W ≥ 0. Moreover taking the difference between the
above Lyapunov equation and the ARE (9) yields

(W − X) = A∗(W − X)A + Γ(D∗D + B∗XB)+Γ∗.

Stability of A implies that W ≥ X for any positive
semi-definite solution to the ARE (9). Hence the maximal
solution to the ARE (9) is likely to be obtained with the
iterative algorithm (12) with the initial value X(0) = W .
(e) A solution X ≥ 0 to the ARE (9) is said to be
a stabilizing solution, if (A + BF ) is a stability matrix
where F has the expression in (10). It can be argued as
in the standard LQR control that the stabilizing solution
to the ARE (9) is maximal among all positive semi-definite
solutions to (9), and thus is Xmax, if it exists. The existence
of the stabilizing solution Xmax is hinged to the condition
(which is similar to the standard LQR control):

rank
{[

A − ejθI B
C D

]}
= n + p ∀ θ ∈ IR, (14)

in addition to the stabilizability of (A,B). It will be shown
later that X = Xmax is what needed for computing the
inner-outer factorization for Case (i) in (6). How to obtain
X = Xmax will be answered in the next section.

The above remarks indicate that the limiting optimal
solution X to the generalized LQR control is dependent
on the boundary condition X(0). The resultant control law
can not be implemented in practice, unless (A + BF ) is
a stability matrix, in which case X = Xmax. For ease of
the reference, we denote Fm as the optimal feedback gain
associated with Xmax as follows:

Fm = −(D∗D + B∗XmaxB)+(B∗XmaxA + D∗C). (15)

In the rest of the section we present our result on inner-outer
factorization for Case (i) in (6).

Theorem 3.3: Suppose that H(z) as in (1) has normal
rank p < m, satisfies the condition (14), and A is a
stability matrix. Let Xmax ≥ 0 be the maximal solution
to (12), and Fm be as in (15). Then there holds the
inner-outer factorization H(z) = Hi(z)Ho(z) where, with
Ω∗

mΩm = Π = D∗D + B∗XmaxB, the inner and outer are
given respectively by

Hi(z) =
[

A + BFm B
C + DFm D

]
Ω+

m

Ho(z) = Ωm

[
A B

−Fm I

] (16)

We comment that the outer factor Ho(z) has no trans-
mission zeros at z = ∞, due to the full rank of Ωm which
has size p × m, and the same rank as the normal rank of
H(z). The possible transmission zeros of H(z) at z = ∞
are now transmission zeros of the inner factor Hi(z), which
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is evident by its expression in (16). In the case when G(z)
is strict minimum phase, i.e.,

rank
{[

A − zI B
C D

]}
= n + p ∀ |z| ≥ 1,

there is a unique positive semi-definite solution X ≥ 0. In
fact X = 0, if rank{D} = p.

B. Generalized Kalman Filtering and the Left Spectral
Factor

The results in this subsection are dual to those in the
previous subsection. Thus we will only state the results
without proofs and derivations. We will present the result
on generalized Kalman filtering, and the inner-outer factor-
ization for Case (ii) in (6), which assumes p > m. Since
H(z)H(z)∼ = Ho(z)Ho(z)∼, we seek a left spectral factor
of H(z)H(z)∼, which is related to generalized Kalman
filtering. That is, we are given the random process described
by

x(t+1) = Ax(t)+Bv(t), y(t) = Cx(t)+Dv(t), (17)

where v(t) is a WSS (wide-sense stationary) random pro-
cess, and satisfies

E[v(t)] = 0, E[v(t + k)v∗(t)] = δ(k)I, (18)

with E[ · ] the expectation. The dimension of the input noise
{v(t)} is m, and the dimension of the output measurement
{y(t)} is p. Since p > m, the covariance of the observation
noise Dv(t) is singular. The objective is to estimate x(t+1),
based on the observation {y(k)}t

k=0. The standard Kalman
filtering deals with the case when D is “fat” and has the
full row rank. However, we have a “tall” D, which may not
have a full column rank: 0 < rank{D} ≤ m.

By duality, let Y ≥ 0 be a solution to the ARE

Y = AY A∗ − Lt(DD∗ + CY C∗)Lt + BB∗ (19)

L = −(AY C∗ + BD∗)(DD∗ + CY C∗)+ (20)

Again there are more than one solutions Y ≥ 0 in general.
A positive semi-definite solution Y ≥ 0 can be obtained
iteratively: For k = 0, 1, · · ·, with Y0 ≥ 0, do the following:

Lk = −(AYkC∗ + BD∗)(DD∗ + CYkC∗)+

Yk+1 = ALk
YkA∗

Lk
+ (B + LkD)(B + LkD)∗

(21)
where ALk

= (A + LkC). In practice the algorithm is
terminated when ‖YN −YN+1‖ satisfies some pre-specified
tolerance bound.

As in the previous subsection, we point out that (A+LC)
may not be stable, even though Y ≥ 0 is a solution to the
ARE (19). However the corresponding state estimation error
has bounded variance. That is if (A + LC) is unstable,
then (A + LC, B + LD) is an unreachable pair, and all
unstable modes of (A + LC) are unreachable modes of
(A + LC, B + LD), by noting that the ARE (19) can be
written into the form of Lyapunov equation

Y = (A+LC)Y (A+LC)∗ +(B +LD)(B +LD)∗. (22)

Moreover there are more than one positive semi-definite
solutions to (21), with only one Ymax and one Ymin. Any
other Y ≥ 0 satisfies the inequality Ymax ≥ Y ≥ Ymin ≥ 0.
If in addition there holds the rank condition

rank
{[

A − ejθI B
C D

]}
= n + m ∀ θ ∈ IR, (23)

then Ymax is stabilizing in the sense that with

Lm = −(AYmaxC
∗ + BD∗)(DD∗ + CYmaxC

∗)+, (24)

(A+LmC) is a stability matrix. In this case the generalized
Kalman filter is given by

x̂(t + 1) = (A + LmC)x̂(t) − Lmy(t).

As in the previous subsection, Ymax and Lm are associated
with the inner-outer factorization entailed in Case (ii) of
(6). The next result presents the solution to the inner-outer
factorization in Case (ii) of (6).

Theorem 3.4: Suppose that H(z) as in (1) has normal
rank m < p, satisfies the condition (23), and A is a stability
matrix. Let Y = Ymax ≥ 0 be the maximal solution to (21),
and Lm be as in (24). Then there holds the inner-outer
factorization H(z) = Ho(z)Hi(z) where, with ΩmΩ∗

m =
Π = DD∗+CYmaxC

∗, the inner and outer factors of H(z)
are given respectively by

Hi(z) = Ω+
m

[
A + LmC B + LmD

C D

]
,

Ho(z) =
[

A −Lm

C I

]
Ωm.

(25)

Although iterative algorithms are derived for computing
solutions to the AREs in (9) and (19), it is unclear how
to choose the boundary conditions X(0) ≥ 0 and Y0 ≥
0 to (12) and (21), respectively, that will ensure their
convergence to the required stabilizing solutions. It turns
out that such an issue has to be resolved together with that
for spectral factorizations.

4. SPECTRAL FACTORIZATIONS

In this section we investigate the spectral factorization
problem for the q × q para-hermitian transfer matrix Φ(z)
which is positive semi-definite on the unit circle. It has the
form

Φ(z) = R0 + CΦ(zI − A)−1BΦ + B∗
Φ(z−1I − A∗)−1C∗

Φ

(26)
where A is a stability matrix, and the normal rank of Φ(z)
is ρ < q. This problem is much harder than the case of
full normal rank. Since Φ(z) is positive semi-definite on
the unit circle. there exist minimal degree factorizations [1]

Φ(z) = WG(z)∼WG(z) = WK(z)WK(z)∼, (27)

where WG(z) of size ρ × q and WK(z) of size q × ρ are
both stable, given by

WG(z) =
[

A BΦ

G DG

]
, WK(z) =

[
A K
CΦ DK

]
,

(28)
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for some (G, DG) and (K, DK). The following result is
modified from [1].

Lemma 4.1: Consider the positive para-hermitian trans-
fer matrix Φ(z) in (26) where A is a stability matrix. There
exist minimal degree factorizations as in (27) for some
WG(z) and WK(z) in the form of (28), if and only if

P = A∗PA + G∗G, CΦ = D∗
GG + B∗

ΦPA (29)

Q = AQA∗ + KK∗, B∗
Φ = DKK∗ + CΦQA∗(30)

R0 = D∗
GDG + B∗

ΦPBΦ, R0 = DKD∗
K + CΦQC∗

Φ

admit solutions (P,G, DG), and (Q,K, DK) respectively.
Lemma 4.1 shows that in order to obtain the minimal

degree factors WG(z) and WK(z) in (28), i.e., (G, DG) and
(K, DK), we need first solve for P and Q in (29) and (30),
respectively, which are two Lyapunov equations. Since A is
stable, P ≥ 0, and Q ≥ 0, if they exist. In fact (29), and (30)
have solutions (P,G, DG), and (Q,K, DK), respectively,
if and only if Φ(z) ≥ 0 for all |z| = 1. However more
than one set of such solutions (P,G, DG), or (Q, K, DK)
exist, implying that more than one pair of minimal degree
factors exist. However there are unique sets of solutions
(P,G, DG), and (Q, K, DK) such that both WG(z) and
WK(z) as in (28) are outer functions, i.e.,

rank {WG(z) } = rank {WK(z) } = ρ ∀ |z| ≥ 1. (31)

The spectral factorization problem in this section is also
referred to as minimal degree spectral factorizations, and the
spectral factors are unique up to a factor of unitary matrices.
Because not every set of solutions to (29) or to (30) yields
spectral factors of Φ(z), our goal is to obtain the right sets
of solutions such that the resultant WG(z), and WK(z) are
spectral factors of Φ(z), and satisfy (27). For this purpose
the results from the previous section play the pivotal role.

Through some derivations we can show that

G∗G = G̃∗(R0 − B∗
ΦPBΦ)+G̃ (32)

KK∗ = K̃(R0 − CΦQC∗
Φ)+K̃∗ (33)

where G̃ = (CΦ−B∗
ΦPA) and K̃ = (BΦ−AQC∗

Φ). Hence
the two Lyapunov equations in (29) and (30) have the form
of AREs:

P = A∗PA + G̃∗(R0 − B∗
ΦPBΦ)+G̃, (34)

Q = AQA∗ + K̃(R0 − CΦQC∗
Φ)+K̃∗, (35)

respectively. The following result is again modified from
[1].

Lemma 4.2: Suppose that Φ(z) ≥ 0 for all |z| = 1. Then
all solutions P and Q to (34), and (35) respectively are
non-negative definite. There exist maximal solutions Pmax,
Qmax, and minimal solutions Pmin, Qmin to (34), and (35),
respectively. All other solutions P , and Q to (34), and (35),
respectively satisfy Pmin ≤ P ≤ Pmax and Qmin ≤ Q ≤
Qmax.

The solution sets corresponding to Pmin, and Qmin are
associated with right, and left spectral factors of Φ(z),
respectively, while Pmax, and Qmax are associated with

those factors WG(z), and WK(z), whose transmission zeros
are all outside unit circle, respectively. Any other solutions
P , and Q being neither minimal, nor maximal correspond to
those factors WG(z), and WK(z) which contain some non-
minimum phase zeros. The computation of Pmin, and Qmin

is the main focus of this section, which yield the minimal
degree spectral factors of Φ(z) in (26). We propose the
following iterative algorithm.

• Set initial values P0 = 0, and Q0 = 0.
• For k = 0, 1, · · ·, compute

Pk+1 = A∗PkA + G̃∗(R0 − B∗
ΦPkBΦ)+G̃ (36)

Qk+1 = AQkA∗ + K̃(R0 − CΦQkC∗
Φ)+K̃∗ (37)

• If ‖PN − PN−1‖ is smaller than the pre-specified
tolerance bound, terminate computation of {Pk}; If
‖QN − QN−1‖ is smaller than the pre-specified tol-
erance bound, terminate computation of {Qk}.

In the rest of the section we will show that the above
algorithm is convergent with limit Pmin, and Qmin. For this
purpose define DGm and DKm as the minimum Cholesky
factors via

D∗
Gm

DGm = R0 − B∗
ΦPminBΦ,

DKmD∗
Km

= R0 − CΦQminCΦ.
(38)

Similarly define Gm and Km as

Gm = (D+
Gm

)∗(CΦ − B∗
ΦPminA),

Km = (BΦ − AQminC∗
Φ)(D+

Km
)∗.

(39)

Then (A,Km, CΦ, DKm), and (A,BΦ, Gm, DGm) are real-
izations associated with left, and right spectral factors of
Φ(z), respectively. That is,

WKm(z) =
[

A Km

CΦ DKm

]
,

WGm(z) =
[

A BΦ

Gm DGm

] (40)

are the left, and right spectral factors of Φ(z), respectively,
and are thus outers. In light of Theorem 3.3, DGm has rank
ρ, and in light of Theorem 3.4, DKm also has rank ρ. As
a result, DGm and DKm have dimensions ρ× q and q × ρ,
respectively, and thus have the full rank. Recall that ρ is
the normal rank of Φ(z). However for any other minimal
degree factors WK(z) and WG(z) as in (28) which are not
spectral factors of Φ(z), the associated DG and DK may
have ranks strictly smaller than ρ. It is crucial to observe
that the right spectral factor of Φ(z) can be obtained from
the inner-outer factorization of H(z) = WG(z) as in Case
(i) of (6), and the left spectral factor of Φ(z) can be obtained
from the inner-outer factorization of H(z) = WK(z) as in
Case (ii) of (6). Hence the following result is true.

Theorem 4.3: Consider WG(z) of size ρ×q, and WK(z)
of size q × ρ as in (28), which are not spectral factors of
Φ(z), but satisfy (27) with ρ < q, where Φ(z) ≥ 0 for
all |z| = 1. Then for any X(0) ≥ 0, and Y0 ≥ 0 with
T > 0, the algorithms (12) and (21) have non-negative
definite solutions {X(k)}T

k=1, and {Yk}T
k=1, respectively.
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Suppose that X(0) ≥ 0 and Y0 ≥ 0 are chosen such that
X(T ) converges to Xmax ≥ 0, and YT converges Ymax ≥ 0,
respectively, as T → ∞, satisfying the AREs (9) and (19),
respectively. In this case, realizations of the left and right
spectral factors in (40) are uniquely specified (up to a factor
of unitary matrices) respectively by

D∗
Gm

DGm = D∗
GDG + B∗

ΦXmaxBΦ, (41)

Gm = (D+
Gm

)∗(B∗
ΦXmaxA + D∗

GG),
DKmD∗

Km
= DKD∗

K + CΦYmaxC
∗
Φ, (42)

Km = (AYmaxC
∗
Φ + KD∗

K)(D+
Km

)∗,

where DGm and DKm are the minimum rank Cholesky
factors.

Theorem 4.3 shows that the minimal solutions Pmin ≥ 0,
and Qmin ≥ 0 to the AREs (34) and (35) can be computed
from

Pmin = A∗PminA + G∗
mGm

Qmin = AQminA∗ + KmK∗
m

(43)

respectively, which are basically the special cases of (29),
and (30). It can be shown that

(Xmax + Pmin) = A∗(Xmax + Pmin)A + G∗G (44)

(Ymax + Qmin) = A(Ymax + Qmin)A∗ + KK∗ (45)

Comparing the above two Lyapunov equations with those
in (29) and (30), respectively concludes that P = Xmax +
Pmin, and Q = Ymax +Qmin. Note that Xmax is dependent
on G, while Ymax is dependent on K, but Pmin and Qmin

are not. Hence we may switch to the notations

Xmax = Xmax(G), P = P (G),
Ymax = Ymax(K), Q = Q(K),

respectively. The aforementioned analysis leads to the rela-
tion

P (G) = Xmax(G) + Pmin, Q(K) = Ymax(K) + Qmin,
(46)

which are associated with WG(z) and WK(z) in (28),
respectively. The above relation is crucial to prove the main
result of this section.

Theorem 4.4: Let Φ(z) of size q × q as in (26) have
normal rank ρ < q. Suppose that A is a stability matrix,
and Φ(z) ≥ 0 and rank{Φ(z)} = ρ for all |z| = 1. Then the
iterative formulas (36) and (37) in the proposed algorithm
are convergent with limits Pmin, and Qmin, which are the
minimum solutions to the AREs (34) and (35), respectively.

It is noted that the convergence of the proposed spectral
factorization algorithm embodied in (36) and (37) is estab-
lished under the zero initial condition P0 = Q0 = 0. If
P0 ≥ 0 and Q0 ≥ 0 are arbitrary, then the convergence of
the DREs in (36) and (37) remains unknown, that is very
different from the inner-outer factorization algorithms in the
previous section.

Remark 4.5: In light of (46) and the proof of Theorem
4.4, we also obtain the right initial values X(0) and Y0

for the iterative algorithms in (12), and (21), respectively,
in order to ensure the limits Xmax and Ymax, respectively.

That is, the initial condition X(0) = W with W the solution
to the Lyapunov equation (13) can ensure that the iterative
algorithm in (12) admits limit Xmax, as required for the
inner-outer factorization in Case (i) of (6); Similarly if Y0

satisfying Y0 = AY0A
∗ +BB∗ is chosen, then the iterative

algorithm (21) admits the limit Ymax, as required for the
inner-outer factorization in Case (ii) of (6).

5. CONCLUSION

This paper considers generalized LQR control and
Kalman filtering. The main contributions are the relations
between these two optimization problems and computations
of inner-outer factorizations (Section 3), and spectral factor-
izations (Section 4). It is these relations that help develop
iterative algorithms, convergent to the stabilizing solutions
of the AREs, associated with generalized LQR control and
Kalman filtering, which in turn solves the problem of inner-
outer factorizations and spectral factorizations. The results
are applicable to control, signal processing, and communi-
cations. Due to the space limit, examples are skipped in this
conference version.
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