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Abstract: This paper studies the decentralized control of a large platoon of identical
vehicles which are moving on a plane, where each vehicle is assumed to have steering
dynamics; each vehicle in this case is assumed to be described by a 6th order model and
has two inputs: traction force and steering angle. A study of the string stability of the
resulting platoon is made; in particular, it is shown that a decentralized controller
consisting of non-identical controllers can be used to control the platoon such that it 
possesses string stability. An example of a 200-vehicle platoon is included to illustrate
the results which can be obtained.
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1. INTRODUCTION

Due to the congestion of vehicles in highways, automated
highway systems have recently become a research topic in
transportation, and as a result there has been a good deal of
attention paid recently to the problem of controlling a
platoon of identical vehicles along a straight line e.g., see
[1-10], [14-16]. In this case it is desired to find a controller
for the platoon so as to bring about satisfactory
tracking/regulation of the separation distance between a
vehicle and its forward neighbour, independent of the
velocity of the lead vehicle, where each vehicle has only
limited communication with respect to its neighbours. One
feature which arises in this problem is that it is necessary
that the resultant closed loop system should be “string
stable” [3] in order to prevent collisions occurring between
vehicles, i.e. it is desired that the peak of the vehicles’
separation distance should have the property that it is non-
increasing along the platoon. In this problem, it is desired
that the controller should have least complexity, i.e. ideally
the controller would be decentralized, where each vehicle
only measures the separation distance between itself and its
neighbour, and such that a knowledge of the lead vehicle’s
velocity is not required. It is shown in [14], [15] that this
can be accomplished using decentralized non-identical
controllers.
This paper studies the same problem for a platoon of
vehicles which move on a plane, and where steering of the
lead vehicle now occurs in addition to velocity change. The
lateral movement of such vehicles has been considered in
[19] where the coordination between longitudinal and
lateral parts has been highlighted. In [20] the impact of 
combined longitudinal/lateral/vertical control of the 

vehicles in a platoon has been considered; however the
string stability of the platoon was introduced only for the
longitudinal movement. In [17] it is shown how the
maneuvers of the lead vehicle in a platoon can potentially
effect the whole platoon, where only steering kinematics is
included.
In this paper the string stability of a platoon, which has a 
closed loop controller applied to each vehicle, using a fully
decentralized controller in both longitudinal and lateral
directions is considered. In section 2 the nonlinear model of 
a vehicle with respect to the states relative to its immediate
neighbour is described, and the model is then linearized
about an equilibrium point. In section 3, the problem
specification is described and in section 4 a controller
design procedure is given. Finally simulation results for a
platoon consisting of 200 vehicles with a decentralized
controller applied is studied.

2. MODELING OF A VEHICLE WITH STEERING

In this paper we shall consider the case of a platoon of N
identical vehicles, where the ith vehicle and tire system is
assumed to have the configuration given in Figures 1 and 2;
in these Figures, the following notation is used to describe
the vehicle (see Table 1 and Table 2):

Table 1 Description of parameters used to model vehicle

Par. Description
xa Absolute x-position 
ya Absolute y-position

a Absolute Orientation
v Longitudinal velocity of the center of mass 

Angular velocity of the vehicle about its center of mass 
Skidding angle 
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F f Front wheel traction force (Input) 
F r Rear wheel traction force (Input)

 f Front wheel steering angle (Input)
 r Rear wheel steering angle (Input)

f  f Front wheel lateral force
f r Rear wheel lateral force

 f Front wheel skidding angle
 r Rear wheel skidding angle

v f Front wheel longitudinal velocity
v r Rear wheel longitudinal velocity
L f Distance between Front wheel and the center of mass
L r Distance between Rear wheel and the center of mass
µ f Front wheel Lateral friction coefficient
µ r Rear wheel Lateral friction coefficient
m Mass of the vehicle 
B Linear Viscous Damping ratio (Air resistance)
J Moment of inertia about the centre of Mass 
b Angular Viscous Damping ratio

Table 2 Description of relative parameters used to model vehicle

Par. Description
Ri Relative Distance from the previous agent 

i Angle between the heading direction of a vehicle and
vehicle-to-vehicle connection line (following angle)

i Relative Orientation (relative to the orientation angle of 
the previous vehicle)

vi Longitudinal velocity of the center of mass 
i Angular velocity of the vehicle about its center of mass 
i Skidding angle 

Figure 1 Geometrical parameters of a vehicle in the platoon 

Figure 2 Relative parameters of a vehicle with respect to the
vehicle in immediate neighbourhood

In this case, the “kinematics” and “dynamics” of the ith

vehicle can be described as follows [18 ]:
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Here the control inputs to the vehicle are: Fi
f, Fi

r, i
f, i

r

(see Table 1 for notation).

Since the absolute values of the position and orientation of
the vehicles cannot be linearized about any equilibrium
point, the relative measurements given in Figure 2 and
Table 2 are used for the implementation of a nonlinear
state-space model of the vehicle. By simple but massive
geometrical calculations, the resulting state space equations
of the ith vehicle with respect to the relative parameters can
then be obtained as:
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where the notation used is described in Table 2. In this
paper, we shall assume that the rear wheel traction force Fi

r

and rear wheel steering angle i
r are not used, i.e. the

vehicle uses “front-wheel-drive” and “front-wheel-
steering”, so that Fi

r= 0 and i
r= 0, i.e. each vehicle has 2

control input signals given by Fi
f and i

f. We shall also 
assume that the desired separation distance is the same for 
all vehicles and that the desired following angle is also the 
same for all vehicles. In addition, there are external inputs
to vehicle i arising from vehicle i-1 given by (vi-1, i-1, i-1) .
Let the equilibrium point of (5) with respect to the constant
control inputs Fi

f = Feq
f , i

f = eq
f, and external inputs from

vehicle (i-1) i-1= eq , vi-1=veq, i-1= eq , be denoted by:
[Req eq eq  veq eq eq].
2.1 Linearization of the ith vehicle model

Given the constant control inputs:

Feq
f  = Ff0 and eq

f= 0    (6a)

then on solving for the equilibrium point from (5), the 
following result is obtained:

Req=R0, eq= 0, eq=0, veq=v0, eq=0, eq=0 (6b)

where R0 and 0 are not unique (Here R0 and 0 depend on
the formation geometry of the platoon of vehicles), and the
following linearized model of the vehicle (5) about this
equilibrium point (6a), (6b) is obtained as: 
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In the case of a flock of birds, 0 often would be non-zero
(of course, the model (5) would now be different), but for
the case of a platoon of vehicles, 0 will normally be equal
to zero. In this case, the following state-space model for 
vehicle i is obtained:
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2.2 Decomposition of the linearized model

It can be directly observed that the model (8) can be
decomposed into two decoupled models (i) a “longitudinal
model” and (ii) a “rotational model” and are given as
follows:

Longitudinal Model:
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Rotational Model:
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3. PROBLEM SPECIFICATION

Assumptions:

The controller to be used for the platoon is assumed to be
fully decentralized without any communication existing 
between the vehicles, which implies that each vehicle can 
only measure the relative distance (Ri) and also the
following angle ( i) between itself and its immediate
neighbour; it is also assumed that the velocity (vi) of the
vehicle is measurable. It is further assumed that the velocity
of the previous vehicle (vi-1) is measurable; this can be
obtained by taking the derivative of its relative distance 
from the immediate previous neighbour and subtracting the
result from the velocity of the vehicle itself. The relative
orientation ( i) is not easily measurable; however it is very
useful in calculating the performance of the closed loop
system, so it can be estimated, as well as the skidding angle
( i) and angular velocity ( i) of the vehicle, using a full
order or reduced order observer.
Although the vehicles of the platoon are assumed to be 
identical, it is not assumed necessarily that the 
decentralized controllers to be used in the platoon are
identical. Figure 3 gives the structure of the closed loop
system when decentralized control is used. 

Problem Requirements:

It is desired to find a decentralized controller which has
local inputs ui and local outputs yi for the system (8), to
solve the servomechanism problem [11],[12] for (8) so that:

i- Asymptotic regulation occurs, i.e., 
)0,0,0()(lim tyi

t
 , i= 2, 3, …, N

for all constant linear and angular velocities ( v0, 0,
0)  of the lead vehicle, i.e. “spacing distance control”

and “following angle control” occurs,

ii-Asymptotic tracking occurs, i.e., 
0)(lim refref

i
t

Rty ,i= 2, 3, …, N

for all constant reference signals Rref > 0 and
- /2< ref < /2.

iii-The resultant closed loop system is asymptotically
stable.

iv- Eventual String Stability [15], with respect to spacing 
distance, velocity, absolute orientation, angular
velocity, following angle and skidding angle occurs.

It is to be noted that eventual string stability in a platoon
is that property of the system, by which there exists an 
index N0 for which the system is string stable [3] for 
vehicles with index i> N0. It is also to be noted that for a
platoon of identical vehicles, using decentralized control,
it is impossible to achieve string stability if the 
decentralized controllers are identical [3], [14].

4. DEVELOPMENT OF DECENTRALIZED
CONTROL FOR THE PLATOON

It is clear that the controller design for decentralized control
of the platoon can be decoupled with respect to the
longitudinal and rotational models (11), (12).

Existence conditions:

It can be directly verified from the structure of (11), (12),
that the existence conditions for a solution to the 
decentralized robust servomechanism problem for (11) and 
(12), for constant tracking signals / disturbance signals
always exists [11] for all parameters of (11), (12). Thus a 
decentralized controller which satisfies problem
requirements (i), (ii), (iii) always exists. To determine if 
problem requirement (iv) is satisfied requires an 
examination of the actual controller which is used to control
the system.

Figure 3 Flow of variables along the closed loop platoon, i= 2, 3,
…, N where Controller (i), (i+1) denote decentralized controllers
and Vehicle (1) is the lead vehicle of the platoon 
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4.1 Longitudinal Control:

Longitudinal control can be implemented using a 
decentralized PID term controller on each vehicle: 
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but to obtain string stability in the relative distance between 
vehicles using decentralized control, it is necessary to have
non-identical controllers applied to the platoon of N
identical vehicles [14]. In this case, the vehicles in the 
platoon are numbered so that controller i is applied to
vehicle i. In particular, to obtain eventual string stability 
[15] in the relative distance, and bounded stability in the 
velocity of the vehicles, one can use the PID controller 
described in [15]; this controller is given by (13) where the
PID gains are updated with respect to the vehicle index as
follows:
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where b
mbmb ,24max
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 [15]; here

I0>0, P0>0, and D0>0 are chosen to stabilize the first 
vehicle (11) in the platoon so that it has a “reasonable non-
oscillatory response”. Because (11) is controllable and
observable and of order n=2, this can always be achieved.

4.2 Rotational Control:

In finding a controller for the rotational model (12), it is 
assumed that only the following angle is measurable, and
that the other bearing states: relative orientation, angular
velocity, and skidding angle are estimated via an observer.
This is always possible to do, since (12) is observable for
the following angle and is controllable. It is to be noted that
since the transfer function from the steering angle control 
input to any of the outputs is a type II system, and that the
transfer function from the skidding angle and angular
velocity of the previous vehicle to the output of the system
is at least a type I system, then no integrator is required to
regulate the outputs of the system (12). Thus the following
type of controller can be applied:
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are defined in (12), and  and K  are the observer gain,
and controller gain respectively which can be found using

conventional linear design methods. Unlike the case of
longitudinal control, the rotational control uses identical
controllers given by (15) for all of the platoon vehicles.

4.3 Properties of Transfer Function of Resultant Closed
loop System

The following closed loop transfer functions are obtained
on applying the longitudinal controller (14) to (11) and the
rotational controller (15) to (12):

Transfer functions associated with the longitudinal
behaviour:

On applying the 3-term controller (14) to (11), the transfer
functions associated with the relative distance and velocity
between vehicles from one vehicle to another can be
obtained as:
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Transfer functions associated with the rotational behaviour:

Consider the closed loop system obtained by applying the
controller (15) to (12) and define the following transfer
function matrices:
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where A22 and B2 are given in (12) and Gc(s) is given in
(19), and finally Gyy(s) can be obtained from (21) and (22)
on noting that:

)()()( sHsGsG vyyvyy    (23)

A sufficient condition for the rotational closed loop system
to be string stable with respect to the rotational states is
that:

1)( jGvv     (24a)

1)( jG yy     (24b)

where  represents the maximum singular value, and so in
this case, one would design the controller (15) to satisfy 
(24) if possible. In the examples, it is shown that the 
resultant closed loop system has eventual string stability, 
with respect to the bearing of the vehicles. 

5. EXAMPLE

In the following example, a platoon of N=200 identical 
vehicles with the nonlinear model (5) and model parameters
given in Table 3, is considered. The reference for the
relative distance is set to Ri

ref=15 m and for the following
angle to i

ref=0.

Table 3 Numerical values for the parameters of the vehicle

Par. Value Par. Value
L f 2 m m 1 Kg
L r 2 m B 1 N/ms-1

µ f 5 N/rad J 1 Nm/rad.s-2

µ r 5 N/rad b 1 Nm/rad.s-1

The longitudinal controller parameters of (14) are obtained
using the method of [15] and are given as follows:

P0 = 5, I0 = 1, D0 = 5, 

The rotational controller of equation (15) has been obtained
by placing the closed loop poles at [-1.0, -1.5, -2.0, -2.5]
and the observer poles at [-10, -15, -20, -25] which results
in:

Ko=[-0.1125 -0.1680 0.0672 0.0394] (25)

and
o=[65 11515 12870 -2779]. (26)

In the example, an approximately 100-degree left-turn
maneuver is applied to the leader and the response of the
resulting nonlinear platoon with a closed loop fully
decentralized controller is considered. The resulting 
historical footsteps of the vehicles obtained, using the
resultant decentralized controller are shown in Figure 4, and
Figure 5 shows the time response of the platoon. Figures 6
and 7 give a Bode plot of the magnitude of the resultant
closed loop transfer function matrices for the obtained
rotational states. 

Discussion:

It is seen that the platoon under closed loop decentralized
controller closely follows the leader in tracking a 100-
degree turn, and that the resulting system has excellent 
eventual string stability. Figure 5 shows that we have: (i)
eventual string stability for relative distance and velocity
and (ii) desired behaviour for all the remaining responses.
Figures 6 and 7 show that the sufficient conditions (24a), 
(24b) do not hold in spite of the fact that the responses in
Figure 5 are completely satisfactory.

6. CONCLUSIONS

In this paper, a study of a large platoon of identical vehicles 
moving on a plane is made, in which a decentralized 
controller, consisting of non-identical controllers for each
vehicle, is used. The model for the vehicle contains both
dynamics and kinematics, with reasonably complete
steering dynamics. In this case, it is shown that the 
longitudinal and rotational movements of the linearized 
model of the vehicle are decoupled, and thus that the
decentralized controller design problem for the platoon, can
be decomposed into two classes of problems: (i) the 
longitudinal controller design problem, and (ii) the
rotational controller design problem. A method for
constructing a decentralized controller which possesses
eventual string stability, and which tracks constant 
reference separation distances and constant steering angles
is then described, and an example of this decentralized
controller design is made for a platoon consisting of 200
vehicles, in which it is shown that the resulting nonlinear 
vehicle model closed loop system has excellent eventual
string stability.
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Figure 4  Footstep of the vehicles near the ramp.
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Figure 5  Time responses of the platoon of N=200 vehicles 
Note: responses plotted only for vehicles i=1, 10, 20, 30,…,200
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Figure 6  Bode diagram for the transfer function [ i+1 i+1] =Gvv(s)[ i i]
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