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Abstract—This article summarizes important observations
about control of decentralized systems with input saturation
and provides a few examples that give insight into the structure
of such systems.

I. INTRODUCTION

Decentralized control systems are characterized by sys-
tems that are made up of smaller systems, or agents, which
have only indirect information about the other systems. That
is, each agent does not receive direct information about the
outputs or the inputs to any other agent. Examples of decen-
tralized systems are abundant and include power systems,
economic systems, and systems of multiple autonomous
agents, to name a few. Control of such systems has been
the subject of much research since Wang and Davison’s
seminal paper [1] in 1973, in which they prove necessary
and sufficient conditions for stabilization of linear, time-
invariant (LTI) decentralized systems by LTI controllers.
One of the most important concepts in decentralized

control is that of fixed modes, and many different char-
acterizations of fixed modes have been developed over the
past three decades (see, for example [2], [3]). The role that
fixed modes play in stabilization of decentralized systems
has also been studied in detail for both LTI controllers [1]
and for linear, time-variant (LTV) controllers [4]. It has been
established that LTI controllers can stabilize a decentralized
control system if and only if all of the fixed modes are
stable. It has also been shown the LTV controllers are
capable of moving some (but not all) fixed modes with a
precise characterization given in [5].
There are currently many open research areas in decen-

tralized control. One important open problem is stabilization
of decentralized systems with input constraints, which we
consider in this article.
This article is organized as follows. In Section II, we

briefly summarize some important concepts about decen-
tralized control systems that we make use of throughout
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the rest of the paper. In Section III, we investigate the
ability of nonlinear, time-invariant controllers to move fixed
modes at zero. We show, through an example, that applying
such controllers results in multiple equilibria; thus, they
cannot be used (at least under some conditions) to stabilize
a system with a fixed mode at zero. In Section IV, we
demonstrate the design of a completely linear observer-
based full-state feedback controller for a system with zero
eigenvalues that are not simple after preliminary feedback
is applied. This example illustrates some of the problems
that can arise in stabilizing a simple decentralized system
that would not exist if the system were centralized. Finally,
in Section V, we introduce a method for model reduction
by singular perturbation that can be a useful first step
in controller design. Not surprisingly, the decentralized
structure adds some complexity to the process of model
reduction, which we explore in detail.

II. DECENTRALIZED STRUCTURE AND FIXED MODES

A decentralized control system has the following struc-
ture:

Σ :=

{
ẋ = Ax +

∑k
1 Biui

yi = Cix, i = 1, . . . , k
(1)

where A ∈ Rnxn, Bi ∈ Rnxmi , Ci ∈ Rpixn, mi is the
number of inputs to the ith agent, and pi is the number of
measurements available to the ith agent.
As mentioned, one of the most important concepts in

decentralized control theory is that of fixed modes. As
defined in [1], a fixed mode is any mode that cannot
be moved by static or dynamic LTI feedback. That is, if
Ki ∈ Rmixpi is the feedback to the ith agent, then a fixed
mode is any mode that is an eigenvalue of

A +
v∑

i=1

BiKiCi

for all Ki. Wang and Davison also show in [1] that if a
mode is a fixed mode under static LTI feedback, then it is
also a fixed mode under dynamic LTI feedback. However, in
the case of input constraints, the controllers are, in general,
nonlinear; therefore, the results regarding fixed modes do
not immediately apply. However, it can be easily shown that
if we require local exponential stability, then fixed modes
must be in the open left half plane, or exponential stability
cannot be attained.
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III. NONLINEAR CONTROLLERS AND FIXED MODES AT

ZERO

Although it has been shown in [5]–[7] that linear, time-
varying controllers can move some fixed modes, the same
is not true in general for nonlinear, time-invariant con-
trollers. Gong and Aldeen showed in [5] that the so-called
quotient fixed modes cannot be moved by any nonlinear,
time-varying controller. However, an interesting question is
whether time-varying controllers are needed, and in this
paper we will give an example of a system with a fixed
mode at the origin that is not a quotient fixed mode but
cannot be moved by any nonlinear, time-invariant controller.
Specifically, we consider dynamic, time-invariant, nonlinear
controllers of the form

Σci =

{
v̇i(t) = gi(yi(t), vi(t)), vi(t0) = vi,0

ui(t) = fi(yi(t), vi(t))
(2)

where gi(·) and fi(·) are any nonlinear, time-invariant
functions of the ith controller. The results to follow also
apply to systems with static, nonlinear controllers, since
static controllers are just a special case of the controllers
described in (2). Since we are trying to make the origin an
asymptotically stable equilibrium, without loss of general-
ity, we assume that gi(0, 0) = 0 and fi(0, 0) = 0.
We will show that applying controllers of this form to

a system with a fixed mode at zero will often result in a
continuum of multiple equilibria. This will be illustrated by
the following example.

Example 1 Consider the system

Σ1 :=

{
ẋ = Ax +

∑2
1 Biui

yi = Cix, i = 1, 2
(3)

where

A =

⎛
⎝−1 1 1

1 0 0
−2 0 0

⎞
⎠ , B1 =

⎛
⎝1

0
0

⎞
⎠ , B2 =

⎛
⎝0

0
1

⎞
⎠

C1 =
(
0 1 0

)
, C2 =

(
1 0 0

)
.

This system is centralized controllable and observable and
has the following eigenvalues:

{λ1, λ2, λ3} =

{
0, −1

2
± i

√
3

2

}
.

Also, by the characterization in [2], [3], λ1 = 0 is a fixed
mode, since

rank
(

A B1

C2 0

)
= rank

⎛
⎜⎜⎝

−1 1 1 1
1 0 0 0

−2 0 0 0
1 0 0 0

⎞
⎟⎟⎠ = 2. (4)

Since this system is strongly connected (that is there exists
a path in the system from control station one to control
station two and vice versa) and centralized controllable and
observable, it has no quotient fixed modes. When we apply

static controllers u1 = f1(x2) and u2 = f2(x1) to the
first two control stations, then we have multiple equilibria
characterized by:

x1(t) = 0
x2(t) = α

x3(t) = −α − f1(α)

If we apply dynamic feedback of the form (2) to the
first two control stations, then applying these controllers is
equivalent to applying the following static controllers:

ũ1 =
(

f1(ỹ1)
g1(ỹ1)

)
ũ2 =

(
f2(ỹ2)
g2(ỹ2)

)
to the system:

Σ̃1 :=

{
˙̃x = Ãx̃ +

∑2
1 B̃iũi

ỹi = C̃ix̃, i = 1, 2

where

Ã =

⎛
⎝A 0 0

0 0 0
0 0 0

⎞
⎠ , B̃1 =

⎛
⎝B1 0

0 I
0 0

⎞
⎠ , B̃2 =

⎛
⎝B2 0

0 0
0 I

⎞
⎠

C̃1 =
(

C1 0 0
0 I 0

)
, C̃2 =

(
C2 0 0
0 0 I

)
.

If we look for equilibria, then we find v2(t) = 0, and for
any given function f1, we need that

x1(t) = 0
x2(t) = α

x3(t) = −α − f1(α, v1,0).

Finally, we note that we need g1(α, v1,0) = 0. Note that
if the controller is dynamic of order 1, then v1 is scalar
valued. In that case, g1(α, v1,0) = 0 has either an infinite
number of zeros close to the origin or an extremum. In
the first case, we have an infinite number of equilibria,
while in the second case, it is easy to check that the system
cannot be asymptotically stable. Although we do not have
a full proof yet, we conjecture that also higher-order time-
invariant controllers cannot stabilize this system.

IV. SINGLE INTEGRATOR EXAMPLE

In this section, we design and simulate a controller
for a decentralized, single-integrator system with input
constraints. We will show some of the inherent limitations
imposed both by the decentralized structure and the input
constraints.
Consider the following system:

Σ2 :=

{
ẋ = Ax +

∑3
1 Biui

yi = Cix, i = 1, 2, 3
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where

A =

⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠ , B1 =

⎛
⎝1

0
0

⎞
⎠ ,

B2 =

⎛
⎝0

1
0

⎞
⎠ , B3 =

⎛
⎝0

0
1

⎞
⎠ ,

C1 =
(
0 1 0

)
, C2 =

(
0 0 1

)
,

C3 =
(
1 0 0

)
,

where σ(u) is the standard saturation function given by

σ(u) :=

⎧⎪⎨
⎪⎩

−1, u < −1
u, |u| ≤ 1
1, u > 1.

(5)

If this system were centralized, then applying static,
linear feedback of the form

u = −εC−1y

(where ε is an arbitrary positive constant) will achieve
global stability, as long as ε is small enough so that the
inputs never saturate. However, since the system has a
decentralized structure, global stabilization is not achievable
with linear control.
After applying linear controllers to the first two channels,

the system is locally linear and still has three zero eigen-
values. This implies that the linear system, which must be
stabilizable through the third (scalar) input, cannot be stable
and actually has a Jordan block of size three. The results
from [8], [9] show that global stabilization of this linear
system then requires nonlinear controllers. However, after
applying the first two controllers, the saturation elements
become state constraints that limit the growth rate of the
state to be linear; hence we might potentially be able
to achieve global stability by linear controllers. But it
requires making explicit use of the saturation elements in
this system, which is obviously highly complex.
However, semi-global stabilization is achievable and is

much easier to obtain. By applying static feedback to the
first two agents (which we refer to as preliminary feedback),
the system can be made both observable and controllable by
the third agent. (See [10].) Thus, we can apply an observer-
based, full-state feedback controller at the third agent.
In typical design procedures, the controller is designed

to meet certain criteria, and then the observer is designed
so that the estimated state converges “quickly” to the true
state. However, to date, no real design methods have been
developed for decentralized systems. Our objective in this
example is to stabilize the system without saturating any of
the inputs (thus keeping the system totally linear), or at least
to design a stabilizing controller that only saturates for a
very short period of time. The procedure we follow is to first
design the observer and then to design the state feedbacks
by a low-gain design method (see [11]) so that the inputs
do not saturate. It should be noted that our design involved

significant trial and error and that developing controller
design methods for decentralized systems continues to be
an open research area.
Preliminary Feedback We apply the following pre-

liminary feedbacks to make the system observable and
controllable from the third agent: u1 = k1y1 = k1x2 and
u2 = k2y2 = k2x3. If neither of these inputs saturates, then
after applying these preliminary feedbacks, the system as
viewed from station three is:

ẋ =

⎛
⎝0 k1 0

0 0 k2

0 0 0

⎞
⎠

︸ ︷︷ ︸
Ã

x + B3σ(u3)

y3 = C3x.

(6)

Clearly, this system is both controllable and observable
∀ k1, k2 �= 0
Observer and Controller Design We now design a

linear observer at station three and then a full-state feedback
controller using a low-gain design method (see [11]) so that
‖u3(t)‖ ≤ 1∀t ≥ T , where T can be chosen to be arbitrarily
small.
The observer at station three is described by the following

equation:

˙̂x = Ãx̂ + B3σ(u3) + L (y3 − C3x̂) , (7)

and the observer error, δ = x̂ − x, has the following
dynamics:

δ̇ = ˙̂x − ẋ =
(
Ã − LC3

)
δ. (8)

Since
(
Ã, C3

)
is observable, the eigenvalues of Ã −

LC3 can be placed in any desired location. In this ex-
ample, L was designed by placing the eigenvalues of
Ã − LC3 at {−0.1, −0.11, −0.12}. These locations were
arbitrarily chosen, since the only requirement on the ob-
server dynamics is that the error decays exponentially
to zero. The resulting observer gain matrix was L′ =(

0.3300 0.3620 0.1320
)
.

The controller at station three has the following form:

u3 = −Fεx̂, (9)

where Fε is designed by a low-gain method as described
in [12]. As shown in [12], since all eigenvalues of Ã are
in the closed left-half plane, Fε can be chosen arbitrarily
small; thus, it can be designed so that ‖u3(t)‖ ≤ 1∀ t.
In this simple example, the values of k1 and k2 were

selected (by trial and error) to be 0.1, and the low-gain
parameter, ε, was selected to be 0.001. The resulting control
gain matrix was Fε =

(
0.0316 0.1010 0.1456

)
. The

system was simulated, and the resulting state trajectory,
state estimate trajectory, and inputs were plotted. (See Fig.
1 and 2.)
The method for designing the controller at station three

that guarantees that u3 does not saturate is well documented
and is basically reduced to tuning a single parameter, ε.
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However, guaranteeing that the other two inputs remain
linear is not as straightforward. Simply making the two
preliminary feedbacks smaller does not necessarily make
u1 and u2 smaller, since the magnitude of these feedbacks
affects the overshoot in the state itself. Therefore a special
design technique is needed in order to guarantee semi-global
stability.
A first step towards this goal is decoupling the prelim-

inary and observer-based feedbacks by choosing the same
feedback parameter for the first two channels k1 = k2 = α
and making the substitutions ε = αε̄, Fε = αF̄ε̄. The new
gain F̄ε̄ has the same properties as Fε, but it is independent
of α. Assuming linearity is preserved, the closed-loop will
be

˙̃x = Aclx̃ (10)

where

x̃ =
(

x
δ

)
, Acl = α

(
Ā − B3F̄ε̄ B3F̄ε̄

0 Ā − L̄C3

)
,

Ã = αĀ and L = αL̄. The factorization of the prelimi-
nary feedback parameter α will provide more freedom in

choosing appropriate values for the other parameters such
that the inputs do not saturate.
The possible non-linearities caused by the overshoot in

the error dynamics can be avoided by splitting the design
into two phases: first we make use of the saturation elements
on the third channel in order to train the observer, while in
the second phase appropriately chosen parameters will keep
the inputs in the linear domain once the observer error is
small enough. It can be proven that for any µ > 0 and any
T > 0, there exists a gain L such that

‖δ(t)‖ ≤ e−µt‖δ(0)‖ ∀t ≥ T. (11)

For the first phase (0 ≤ t ≤ T ), T and α should be
chosen small enough such that the state remains inside a
given compact set, and the preliminary feedbacks do not
saturate (in order to preserve the linearity of the observer
error dynamics), while in the second phase (t ≥ T ), using
(11) and the decoupling between α and ε̄, appropriately
chosen α, µ and ε̄ will keep all inputs in the linear domain.

V. MODEL REDUCTION BY SINGULAR PERTURBATION

To date, the literature contains very few methods for
designing controllers for decentralized systems, especially
in combination with an additional constraint such as input
saturation. One tool that may potentially aid in developing
such a design method is model reduction by singular
perturbation. In this section, we briefly summarize the steps
involved in model reduction by singular perturbation and
discuss both the potential simplification and the drawbacks
of using such a reduced-order model for controller design.
(Extensive literature about singular perturbation methods
exists, see for instance [13]).
In centralized linear systems with input saturation, when

considering stabilization problems, the stable dynamics can
be ignored. This reduces the complexity of design con-
siderably since the unstable dynamics are often of very
low dimension. In decentralized control, this cannot be
done because the stable dynamics are often crucial for the
communication between the different channels.
In this paper, we look at systems whose unstable modes

are only at the origin. We will show by singular perturbation
methods that we can actually achieve a reduction in which
we only need to investigate the unstable dynamics. Actually,
this reduction reduces the dynamic interconnections induced
by the stable dynamics to static interconnections which
obviously will allow for an easier design. But this method
is obviously only a first step since we do not present a full
design for stabilization after we achieve the reduction.
The singular perturbation method can be applied to

systems whose dynamics can clearly be divided into fast
and slow dynamics. The singular perturbation model for an
LTI system is

ΣSP :=

⎧⎪⎨
⎪⎩

ẋ1 = A11x1 + A12x2 + B1u

εẋ2 = A21x1 + A22x2 + B2u

y = C1x1 + C2x2,

(12)
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where the first and second lines of (12) describe the slow
and fast dynamics of the system, respectively. The param-
eter ε is a measure of the magnitude of the ratio between
the large and small eigenvalues.
A zeroth-order approximation is obtained by setting ε =

0 in (12), which is equivalent to assuming that the fast
dynamics converge instantly to what is called a quasi-steady
state. Thus, the reduced-order model becomes

ΣRO :=

{
˙̄x1 = A0x̄1 + B0u

y = C0x̄1 + D0u,
(13)

where A0 = A11 − A12A
−1
22 A21, B0 = B1 − A12A

−1
22 B2,

C0 = C1 − C2A
−1
22 A21, and D0 = −C2A

−1
22 B2.

A question that arises is how far this reduced-order model
is from the actual model. Since the initial value of the
approximation for x2 (that is, its quasi-steady-state value)
may not be close to the actual initial state, the best we can
expect is that after a time t1, the approximation x̄ is close
enough to the actual x2:

x2(t) = x̄2(t) + O(ε) ∀t ≥ t1. (14)

We do not have the same problem with the approximation
x̄1, for which

x1(t) = x̄1(t) + O(ε) ∀t ≥ 0. (15)

We now state a few results regarding ΣRO and relating
to the stability of the ΣRO to ΣSP .
By Tikhonov’s Theorem (see for instance [13]), we have

the following result:

Theorem V.1 Assume the fast dynamics are asymptotically
stable; i.e. , the eigenvalues of the matrixA22 are in the open
left-half plane. Then (15) holds for all t ∈ [t0, ∞), and there
exists a t1 ≥ t0 such that (14) holds.
Moreover a static feedback u = f(x̄1) that asymptotically

stabilizes (13) results in a static feedback u = f(x1) that
asymptotically stabilizes (12).

We will now outline the basic steps for model reduction
for a stabilizable decentralized system with input saturation
(that is, a system with all eigenvalues in the closed left-half
plane and no fixed modes on the imaginary axis). Via a
basis transformation, such a system can be written as:(

ẋ1(t)
ẋ2(t)

)
=

(
A1 0
0 A2

) (
x1(t)
x2(t)

)
+

(
B1

B2

)
u(t) (16)

y(t) =
(
C1 C2

) (
x1(t)
x2(t)

)
, (17)

where all eigenvalues of A1 are zero, A1 is in Jordan form,
and all eigenvalues of A2 are in the open left-half plane.
Also, B and C are the partitioned concatenations of all of
the Bi’s and Ci’s, respectively. We also point out that such
a basis transformation does not invalidate the decentralized
structure, since a basis transformation does not change the
input-output behavior.

Applying the change of variable τ = εt to (16) gives

ẋ1(τ) =
1
ε
A1x1(τ) +

1
ε
B1u(τ) (18)

εẋ2(τ) = A2x2(τ) + B2u(τ). (19)

Since (18) cannot be evaluated at ε = 0, we apply the
following state transformation.(

x̃1(τ)
x̃2(τ)

)
=

(
Tε 0
0 I

) (
x1(τ)
x2(τ)

)
(20)

Recall that all eigenvalues of A1 are zero, and A1 is in
Jordan form; that is, A1 = diag

(
J1 · · · Jk

)
, where

each Jordan block, Ji, has dimension ni. Thus, if the
transformation matrix is

Tε =

⎛
⎜⎜⎜⎜⎝

T1,ε 0 · · · 0

0 T2,ε
. . .

...
...

. . .
. . . 0

0 · · · 0 Tk,ε

⎞
⎟⎟⎟⎟⎠

where

Ti,ε =

⎛
⎜⎜⎜⎜⎝

εni 0 · · · 0

0 εni−1 . . .
...

...
. . .

. . . 0
0 · · · 0 ε

⎞
⎟⎟⎟⎟⎠ ;

for i = 1, . . . , k, then the transformed system fits the
singular perturbation model:

˙̃x1(τ) = A1
ε x̃1(τ) + B1

ε u(τ) (21)

ε ˙̃x2(τ) = A2
ε x̃2(τ) + B2

ε u(τ) (22)

y(τ) = C1
ε x̃1(τ) + C2

ε x̃2(τ), (23)

where A1
ε = 1

ε T −1
ε A1Tε = A1 (because of the structure of

A1); A2
ε = A2; B1

ε = 1
ε TεB

1; B2
ε = B2; C1

ε = C1T −1
ε ;

C2
ε = C2; and x̃2(τ) = x2(τ).
The only problem with this transformed system is that

y(τ) is undefined for ε = 0 (since C1
ε = C1T −1

ε , and T −1
ε

is a diagonal matrix with powers of ε−1 on the diagonal).
However, if we scale each output by εki , where ki is the
largest power of ε−1 on the ith row of C1

ε , then the new,
scaled output,

ỹ(τ) = C̃1
ε x̃1(τ) + C̃2

ε x̃2(τ), (24)

is defined for all finite ε. Such scaling does not affect the
structure of our system. From (21), (22), and (24), we find
the following singular perturbation model for our system:

Σε :=

⎧⎪⎨
⎪⎩

˙̃x1(τ) = A1x̃1(τ) + B1
ε u(τ)

ε ˙̃x2(τ) = A2x̃2(τ) + B2u(τ)
ỹ(τ) = C̃1

ε x̃1(τ) + C̃2
ε x̃2(τ)

(25)

The fast dynamics are asymptotically stable, while the
slow dynamics have all eigenvalues at the origin. When
considering the slow dynamics, we first note that the
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decentralized structure is preserved. By setting ε = 0 in
(25), we actually obtain a system of the form:

Σ0 :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˙̄x = Āx̄ +
k∑

i=1

B̄iui

yi = C̄ix̄ +
k∑

j=1

D̄ijuj , i = 1, . . . , k.

(26)

We first note that the slow dynamics are always centralized
stabilizable. The system in general need not be centralized
detectable. However, in important cases such as when
all Jordan blocks associated with the eigenvalue 0 have
the same size, then the slow dynamics are centralized
detectable.
Another important issue is whether reduction to the slow

dynamics can introduce fixed modes at the origin that were
not present in the original system. Again, this is not the case
when all Jordan blocks associated with the zero eigenvalue
have the same size. The same conclusion holds also if,
instead of assuming that all the Jordan blocks in Ā have
the same size, we assume that observations of different
Jordan blocks do not interact (i.e. they appear on different
rows in C̄). Also notice that under either of these two
assumptions, the centralized detectability of the reduced
system is guaranteed as well. However, detectability of the
reduced system does not necessarily imply absence of fixed
modes at the origin.
For our stabilization purposes, a more specific version

of Theorem V.1 holds in this case, allowing also dynamic
stabilizing controllers for the reduced system:

Theorem V.2 If a dynamic controller

C :

{
v̇ = G1v + G2y

u = F1v + F2y
(27)

stabilizes the reduced system Σ0, and A2 + B2F2C̃
2
0 is

asymptotically stable, then there exists ε∗ > 0 such that C
also stabilizes Σε for all ε ∈ (0, ε∗).

This result is valid for general (centralized) controllers,
so it will hold also for a particular decentralized controller
that does not saturate and asymptotically stabilizes the
reduced system. Regarding the design, it is interesting to
note that the interconnections between the different channels
have become mostly static and the only possible remaining
dynamics are integrators. Therefore, the crucial aspect in
stabilization has become the graph structure underlying the
interconnections, which directly connects to other recent
approaches such as the authors in [14] recently proposed
in designing controllers for decentralized systems in which
the dynamics are simple but the interconnection structure is
arbitrarily complex.

VI. CONCLUSION

In this article, we have explored some of the inherent
difficulties in designing stabilizing controllers for decen-
tralized control systems with input saturation. We have

shown that (at least under certain conditions) time-invariant
nonlinear controllers cannot be used to move fixed modes at
zero. We also provided an example to illustrate the potential
problems caused by peaking in an observer-based design.
This phenomenon certainly makes designing a linear stabi-
lizing controller more difficult but not impossible, and we
outlined a procedure for designing such a controller. Finally,
we adapted the theory for model reduction by singular
perturbation to decentralized systems, in which the stable
dynamics cannot be ignored because they play a crucial
role in communication between control stations. We feel
that this model reduction method is a very promising first
step in designing stabilizing controllers for decentralized
control systems with input saturation.
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