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Abstract— Macroscopic material transport properties such
as viscosity, diffusivity, conductivity, etc., may be computed by
using molecular level simulation such as molecular dynamics
or Monte Carlo methods. This computation is time consuming
since simulations over sufficiently long times are needed to
ensure that the assumed statistical properties are satisfied.
As a result, such tools are useful in gaining insight and
understanding of the underlying mechanisms behind observed
physical phenomena, but are not amenable to material prop-
erty design or material process control. In this paper, we
focus on the computation of shear viscosity of a fluid-like
material. We take a systems approach by regarding viscosity
as a scalar input/output map from shear stress to shear strain
rate. Linearizing this map about an equilibrated trajectory
results in a linear time varying system. By freezing the time
along the equilibrated trajectory, we obtain a set of linear
time invariant systems. These systems are usually unstable, but
may be transformed to stable systems by weighing all signals
with sufficiently fast decaying exponential functions. Viscosity
is then estimated directly from the frequency responses of
these systems. Model reduction such as approximate balanced
truncation may be applied to further reduce model complexity
and computation load. This approach has a potential compu-
tation advantage since extensive simulation runs using high
order molecular dynamics model are not required. Our long
term objective is to develop efficient computation methods
to facilitate rapid material and process design iterations. To
illustrate the approach described in this paper and compare
it with the traditional molecular dynamics methods, we have
included the simulation results involving a simple Leonard-
Jones fluid.

I. INTRODUCTION

Molecular simulation has long been used to gain un-

derstanding of phenomena observed in physical systems

[1]. In particular, macroscopic transport properties may be

computed by using molecular simulation methods such as

the molecular dynamics or Monte Carlo methods. There are

two types of molecular dynamics approaches: equilibrium

molecular dynamics (EMD) and non-equilibrium molecular

dynamics (NEMD).
In the EMD approach, transport properties are obtained

based on the unforced response of a collection of energy

conserving molecules by using the so-called Green-Kubo

relation [2], [3]. The basis of which is the observation that

the molecular response due to a weak external excitation

decays in the same way as a spontaneous fluctuation at

an equilibrium [4]. The drawback of this method is that

simulations must be run for very long times with many

particles to get a reasonable approximation of the ensemble

average.

NEMD is a more direct approach that applies a pertur-

bation to the collection of molecules and calculates the

transport coefficients from the resulting response. In the

case of shear viscosity, the perturbation may be an imposed

shear strain rate and the response is shear stress [5]; or the

perturbation could be an imposed shear stress with shear

strain rate as the response [6].
As these simulation-based molecular dynamics ap-

proaches are generally time consuming, they are useful

in gaining insight and understanding of the underlying

mechanisms behind observed physical phenomena, but are

not amenable to material property design or material process

control. The goal of this paper is to present an alternate

approach to calculate shear viscosity based on a systems

perspective of the NEMD model. Our ultimate goal is to de-

velop an efficient means to calculate transport coefficients,

and to use it as a tool for material design optimization and

process control. We regard viscosity as a scalar input/output

map from shear stress to shear strain rate. Linearizing this

map about an equilibrated trajectory results in a linear

time varying (LTV) system. We fix the times along the

equilibrated trajectory to obtain a set of linear time invariant

(LTI) systems. However, these systems are usually unstable.

By multiplying all signals with a sufficiently fast decaying

exponential, we transform these systems to stable systems.

Matching with the corresponding response of the Navier-

Stokes equation, we compute the viscosity directly from

the DC (i.e., steady state) gain of these LTI systems. This

approach has a potential computation advantage since ex-

tensive simulation runs are not required and well developed

model reduction tools for LTI systems can also be applied.
To illustrate the approach described in this paper, we have

included the simulation results based on a simple Leonard-

Jones (LJ) fluid, and compare them with the results using

the traditional EMD and NEMD methods.
Notation: The coordinate of particle i is denoted by ri ∈

R
3. The coordinates of a system of n particles are combined

into a vector r ∈ R
3n. The corresponding velocity and

acceleration are denoted by ṙ and r̈, respectively.

II. VISCOSITY ESTIMATION METHODS

A. Equilibrium Molecular Dynamics

The EMD approach considers a collection of energy-

conserving particles with potential energy P (r) and normal-

ized kinetic energy K = 1
2 ‖ṙ‖2

. The equation of motion is
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given by the Newton’s Second Law:

r̈ +
∂P

∂r
= 0. (1)

Transport properties may be obtained through the EMD

simulation by using the Green-Kubo relations.
Specifically for the shear viscosity, the Green-Kubo re-

lation is given by:

ηxy =
1

V kBT

∫ ∞

0

〈σxy(0)σxy(t)〉 dt (2)

where 〈·〉 denotes ensemble average but computed using

time average (based on the ergodicity assumption), V is the

volume, kB the Boltzmann constant, T the temperature, and

σxy the shear stress given by:

σxy =
N∑

i=1

⎛
⎝vx

i vy
i +

1
2

N∑
j �=i

(xi − xj)fy(ri − rj)

⎞
⎠

where xi is the x component of ri, and (vx
i , vy

i ) are the

(x, y) components of ṙi.

B. Non-Equilibrium Molecular Dynamics

The NEMD approach directly imposes an external pertur-

bation. In the case of shear viscosity, one approach applies

a shear force and extracts the corresponding steady state

shear strain rate response [6]. The second approach imposes

a shear strain rate and computes the corresponding shear

stress [5].
In this paper, we consider the formulation in [6]. The

basic fluid behavior can be described by the following

equations:

∇ · J = −(ρ/m)F(r, t) + ρu̇ (3)

J = −pI − ηB(trE)I + 2ηE (4)

E = 1/2 (∇u + (∇u)∗) (5)

Equation (3) is the equilibrium equation of motion, (4)

the constitutive relation, and (5) the fluid kinematics. Col-

lectively these equations are known as the Navier-Stokes

equations. J is the Newtonian stress tensor, ρ is the mass

density, m is the mass, F(r, t) is an external force field,

u̇ is the material derivative of the velocity field, p is the

pressure, ηB is the bulk viscosity, and E is the strain rate

tensor. If the applied force force F(r, t) is in the x direction

only and varies only with z, i.e.,

F =
[

Fx(t, z) 0 0
]T

then the resulting steady state velocity will also have the

same property, i.e., only in the x direction and dependent

only on z. Then (4) and (5) reduce to:

J =

⎡
⎣ 0 0 η ∂ux

∂z
0 0 0

η ∂ux

∂z 0 0

⎤
⎦ − pI

Substitution into (3) yields the Laplace’s equation:

ρ
∂ux

∂t
= η

∂2ux

∂z2
+

ρ

m
Fx(t, z). (6)

We choose the forcing function profile to be:

Fx(t, z) = F0(t) sin(2πiz/L) (7)

where i is any positive integer, L is the boundary of the

periodic box, and F0 is the magnitude of the input force

field. Assume the fluid is initially at rest. Because the

external force is zero at the boundary, ux is assumed to

be also zero at the boundaries:

ux(t, 0) = ux(t, L) = 0. (8)

The operator η
ρ

∂2

∂z2 is self-adjoint and negative definite.

Therefore, its spectrum consists of only negative eigenval-

ues λ, and orthonormal eigenfunctions φ:

λ� = −η4π2�2

ρL2
, � = 1, 2, . . . (9)

φ� =
√

2/L sin(2π�z/L). (10)

The solution to (6), ux(t, z), can now be modally decom-

posed as:

ux(t, z) =
∞∑

�=1

q�(t)φ�(z) (11)

where the dynamics of the modal amplitude q� are decou-

pled and satisfy:

q̇� = −η4π2�2

ρL2
q� +

〈Fx, φ�〉
m

. (12)

With Fx(t, z) given by (7), the forcing terms are zero for

all � except when � = i. In this case, the dynamics is

completely given by the first order ordinary differential

equation (ODE):

q̇i = −η4π2i2

ρL2
qi +

√
L

2
F0

m
, (13)

and the velocity field is given by (11):

ux(t, z) =

√
2
L

qi(t) sin(2πiz/L). (14)

The steady state qi is

qiss =

√
L

2
ρL2

η4π2i2
F0

m
. (15)

Denote the amplitude of the steady state velocity field by

u0 :=

√
2
L

qiss
.

Combining with (15), the viscosity η may be estimated

based on F0 and u0. We choose i = 1, then the η estimate

becomes:

η =
ρL2

4π2m︸ ︷︷ ︸
:=k

F0

u0
. (16)

To obtain the viscosity estimate from an NEMD simulation,

we impose the sinusoidal force profile described above and

measure the resulting steady-state velocity profile uxss
(z).

The magnitude of the applied force F0 should be large

enough to obtain a well defined drift velocity profile and

small enough for linearization to hold. We choose F0 to

be the average magnitude of the molecular force when the

input is zero (i.e., an EMD simulation). Since the applied

force is only in the x-direction, we divide this average force

by 3.
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III. VISCOSITY BASED ON LINEARIZATION OF NEMD

A. Equation of Motion

The equation of motion of the NEMD model in Sec-

tion II-B may be written as:

r̈ +
∂P (r)

∂r
= g(r)F (17)

where F = F0 and g(r) provides the desired force profile:

g(r) =
[

sin(2πz1/L) 0 0 sin(2πz2/L) . . .
]T

(18)

From (14), the expected solution to Navier-Stokes equation

is ṙ = g(r)y, where y = u0. Therefore,

y =
gT (r)

gT (r)g(r)
ṙ, (19)

which means that y is the least square fit of the measured

velocity profile to the expected velocity profile. Following

the NEMD approach, the viscosity may be estimated to be

a constant multiplied by the ratio between the steady state

input and output:

η = k
F

y
. (20)

B. Addition of Damping

The forced system (17) has no damping which does not

agree with the viscous behavior of the physical fluid. The

NEMD approach fixes the problem by scaling the particle

velocities to maintain a constant temperature (effective

damping). This motivates us to also add a simple linear

damping term to the NEMD model (17):

r̈ + αṙ +
∂P (r)

∂r
= g(r)F. (21)

The kinetic energy now evolves according to

d

dt

(
1
2
ṙT ṙ

)
= ṙT

(
−αṙ − ∂P

∂r
+ g(r)F

)
.

To ensure that the temperature (and hence kinetic energy)

remains constant, we need to set α to

α =

(
ṙT g(r)F − ṙT ∂P

∂r

‖ṙ‖2

)
. (22)

An NEMD simulation after equilibration would provide an

estimate of α. Notice this α depends on the magnitude of

F .

C. Linearization and State Space Model

Since the transport property of interest (viscosity) is

based on the linear response theory (due to small external

perturbations), it is natural to apply linearization to the

nonlinear state space model (21) and (19). Let (r∗, ṙ∗) be

the unforced (F = 0) response of (17) and (19) (obtained

from an EMD simulation). A small external perturbation

F will result in (r, ṙ) that approximately satisfies the

linearized system:

(r̈ − r̈∗) + α(ṙ − ṙ∗) +
∂2P (r∗)

∂r2
(r − r∗)=g(r∗)F−αṙ∗

y − y∗=

(
ṙ∗T ∂g(r∗)

∂r

‖g(r∗)‖2 − 2
gT (r∗)ṙ∗gT (r∗)∂g(r∗)

∂r

‖g(r∗)‖4

)
︸ ︷︷ ︸

C1

(r−r∗)

+
gT (r∗)
‖g(r∗)‖2︸ ︷︷ ︸

C2

(ṙ − ṙ∗). (23)

Define the state as

x :=
[

r − r∗

ṙ − ṙ∗

]
.

We then obtain the linearized state space model with a scalar

input and a scalar output:

ẋ = Ax + BF + B0ṙ
∗

y − y∗ = Cx + Du (24)

where

A =

[
0 I

−∂2P (r∗)
∂r2 −αI

]
, B =

[
0

g(r∗)

]

B0 =
[

0
−αI

]
, C =

[
C1 C2

]
, D = 0.

This system is time varying in general since (r∗, ṙ∗) is time

varying. If the time variation is sufficiently slow, we can in-

stead consider a series of “frozen” (in time) systems, where

(r, ṙ) is in the neighborhood of (r∗(t), ṙ∗(t)) for some t.
However, these systems are usually unstable, preventing

any steady and frequency response analysis. To address this

problem, we apply the following time-dependent coordinate

transformation:

r1 = e−βt(r − r∗), (25)

for some β > 0. Multiplying both sides of the linearized

dynamics (23) by e−βt and simplifying we get:

r̈1 + (2β + α)ṙ1 + (P ′′(r∗) + (α + β)βI) r1

= g(r∗)e−βtF − αe−βtṙ∗

e−βt(y − y∗) = (C1 + βC2)r1 + C2ṙ1. (26)

If β is chosen sufficiently large, so that P ′′(r∗)+(α+β)βI
is positive definite, the system is stable. In this case, the

frequency response from e−βtF to e−βty is

H(jω) = ((C1 + βC2) + C2jω) (27)[−ω2I + (2β + α)jωI + (P ′′(r∗) + (α + β)βI)
]−1

g(r∗).
Note that terms corresponding to e−βtṙ∗ and e−βty∗ drop

out since they vanish as t → ∞.
To estimate the viscosity, we return to the Navier-Stokes

equation (6), but with e−βt multiplied to both sides:

e−βtρ
∂ux

∂t
= e−βtη

∂2ux

∂z2
+ e−βt ρ

m
Fx(t, z). (28)

It follows that

e−βt ∂ux

∂t
=

∂ûx

∂t
+ βûx, where ûx = e−βtux.

The Navier-Stokes equation then becomes

ρ
∂ûx

∂t
= −ρβûx +

∂2ûx

∂z2
+ e−βt ρ

m
Fx(t, z). (29)
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D. Viscosity Estimation
If we choose the input force to be

e−βtFx(t, z) = Fo sin(2πz/L),
then at steady state, the forced solution is of the form

ûx = uo sin(2πz/L)
and

ρβuo = −η4π2

L2
uo +

ρ

m
Fo,

which can be used to solve for η:

η = k

(
Fo

uo
− mβ

)
(30)

where Fo

uo
is simply the inverse of the DC response, i.e.,

η = k
(
H(0)−1 − mβ

)
. (31)

To summarize, our approach to estimating the shear

viscosity involves the following steps:

1) Run an equilibrated EMD simulation to obtain

(r∗, ṙ∗).
2) Estimate α (using (22)) from an NEMD simulation

with 1
3 of the average molecular force magnitude from

the EMD run above. The simulation only needs to

be long enough to ensure a consistent value of α is

obtained.

3) Choose β to obtain stable LTI systems and use the

DC gain of the frequency response (27) to estimate

the viscosity.

Though EMD and NEMD simulations are still used, we

only need short simulation runs to obtain (r∗, ṙ∗) and α.

E. Reduced Order Model
The state space model for the linearized system (26) is

given by (A,B,C, 0) where

A =
[

0 I
−(P ′′ + (α + β)βI) −(2β + α)I

]
B =

[
0

g(r∗)

]
, C =

[
C1 + βC2 C2

]
.

The size of the state space is 6n, where n is the number of

particles. We may apply standard LTI model reduction tech-

niques to first obtain a reduced order model, and then use it

to compute the complex modulus. For high order systems,

these standard model reduction tools are time consuming

and plagued by numerical inaccuracy. Fortunately, for bal-

anced truncation, reliable approximate methods have been

proposed and implemented [7]–[9]. By choosing a cut-off

of the (approximate) Hankel singular values corresponding

to (A,B, C, 0), we can find matrices SB and SC (with the

number of columns corresponding to the number of retained

Hankel singular values) to approximate the state as

z = ST
c x, x = SBz, (32)

where z is of much lower dimension than x. The linearized

equation (26) may then be approximated by:

ż = ST
c ASBz + ST

c Bû

ŷ = CST
B

where (û, ŷ) are the appropriate input and output signals.

The DC gain H(0) in the viscosity estimation (31) may

now be approximated by

Ĥ(0) = −CST
B(ST

CASB)−1ST
CB. (33)

If the dimension of z is much smaller than the original state

dimension, the computation cost would be much lower since

only a small matrix inversion is required.

IV. SIMULATION EXPERIMENTS

For a comparison between EMD, NEMD, and the lin-

earization method described in this paper, we consider a

simple LJ fluid. The potential energy is given by:

P (r) =
n∑

i=1

n∑
j=1

p(rij), rij := ri − rj (34)

p(r) :=

{
4ε

(
σ12

‖r‖12 − σ6

‖r‖6

)
‖r‖ < L/2

0 otherwise

We use the normalized model (in reduced units), so ε = σ =
1. Periodic boundary conditions are used, therefore, r =
mod(r, L) to ensure all particles remain in the simulation

box. The minimum image criterion is also used, i.e., if the

particle separation in any one dimension is greater than half

of the box dimension,
∣∣rk

ij

∣∣ > L/2, k = x, y, z, then the

distance from a replicated image of the particle is used,

rk
ij = rk

ij − sgn(rk
ij)L.

A. EMD and NEMD Methods
EMD simulations are performed with the velocity Verlet

algorithm. The reduced time step is chosen to be 0.005. Dur-

ing the equilibration phase, the velocity is rescaling at every

time step to maintain the correct equilibrium temperature.

Production runs are then performed without the velocity

scaling. Each NEMD run uses the same equilibration phase

as the EMD, but during the production run an additional

forcing term is added. The viscosity is then calculated from

the steady state velocity field. The results match reasonably

well with the EMD results as the system size gets larger.

Both our EMD and NEMD results match well with the

results published in [10] and [6].

B. Linearization Method
For the linearization approach described in this paper, we

use N = 108, T = 1, and ρ = .8279. The first step in our

approach is to obtain (r∗, ṙ∗) and the average molecular

force from the EMD simulation. We use 5000 steps for

equilibration and 500 steps for the production run. The

average force magnitude divided by 3 (over the production

run) is 8.34 with standard deviation of 0.75.
The next step is to estimate the linear damping α corre-

sponding to F0 = 8.34. The simulation with velocity scaling

(to maintain constant temperature) is shown in Fig. 1.

The α estimated using (22) has average value α = 2.57
with standard deviation 0.53. To check the validity of this

estimate, we run the NEMD simulation again including the

damping term but without the velocity scaling. As can be

seen in Fig. 2, even though the kinetic energy fluctuates

more, it remains approximately around the required mean

of 1.5.
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The final step is to choose β so that (26) is stable. The

shear viscosity can then be found from (31). With β = 15,

the viscosity values for the entire r∗ trajectory over 5000

time steps are shown in Fig. 3. The few spurious data points

correspond to where the system become unstable (i.e., β
not large enough). The overall average value is 1.93 with

standard deviation 0.17, which is on par with the EMD and

NEMD estimation ranges. The results for different β values

(again over 5000 simulation steps) are shown in Table I. The

estimated η values are reasonably close to the NEMD and

EMD predictions (which range from 2.1 to 2.5, and 2.7 to

3.2, respectively). More numerical tests are being conducted

for further validation of our procedure.

Fig. 1. Energy evolution in NEMD simulation with velocity scaling

Fig. 2. Energy evolution in damped NEMD simulation (without velocity
scaling)

β η mean η standard dev.

12 1.82 0.31

15 1.93 0.17

20 1.95 0.10

25 1.92 0.08

30 1.89 0.07
TABLE I

VISCOSITY ESTIMATES FOR DIFFERENT CHOICES OF β . THE MINIMUM

CHOICE OF β IS AROUND 11.8 TO ENSURE STABILITY OF THE MODEL.

C. Model reduction
We have applied two approximate balanced truncation

methods, low rank square root method (LRSRM) and

dominant subspace projection model reduction (DSPMR)

[8] to reduce the state dimension which is 648 in this

Fig. 3. Estimates of viscosity over 5000 time steps of r∗(t)

case. We found that for all the LTI systems, there is only

one significant Hankel singular value (at least 2 orders of

magnitude larger than all other Hankel singular values). The

largest 2 Hankel singular values over 1800 time steps are

shown in Fig. 4. The fact that there is a single dominant

Hankel singular value means that we can approximate

the original 648th order system by a first order system!

The estimated shear viscosities based on the first order

approximate systems are close to the full order estimate. For

example, for β = 15, the average viscosity estimates based

on the two model reduction methods are ηLRSRM = 2.0
and ηDSPMR = 2.17. The viscosity estimates for LRSRM

over 1800 time steps is shown in Fig. 5 (DSPMR results

are similar). Both model reduction schemes show consistent

estimates of the viscosity in time. Therefore, a random

(r∗(t), ṙ∗(t)) may be chosen for linearization. Fig. 6 shows

the Bode plot comparison between the full order, LRSRM,

and DSPRM model. All three cases have almost identical

DC gains, but LRSRM matches the full order frequency

response almost exactly while DSPRM shows considerable

error in higher frequencies.

The reduced first order system is of the form

Ĥ(s) =
b

s + a
(35)

for some constants a and b. From (13) and (29), we know

that the time constant is given by −η4π2

ρL2 − β. Therefore, η
may also be directly estimated from a:

η =
ρL2

4π2
(a − β). (36)

Viscosity estimates using this method together with the

LRSRM model are shown in Fig. 7. Since the LRSRM

model captures the true time constant well, the viscosity

estimates are also very close to the expected (the average

is 2.13).

The ability to reduce the high order molecular dynamics

model to a first order model is not entirely surprising since

we have already shown that the Navier-Stokes equation

under the forcing function (7) is just a first order ODE given

by (13). It is interesting that the NEMD model validates this

property in the macroscopic model.
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Fig. 4. Two largest Hankel singular values over 1800 time steps of r∗(t)

Fig. 5. Viscosity estimates based on the first order LRSRM model, over
1800 time steps of r∗(t)

V. CONCLUSION AND FUTURE WORK

This paper considers the computation of shear viscosity

based on a molecular dynamics model. We obtain a set of

LTI systems by linearizing the NEMD equation about an

EMD trajectory. Through an exponential transformation, the

transformed LTI systems become stable, and the viscosity

can be directly computed from the frequency responses.

This approach has the potential of reducing the computa-

tion requirement needed in designing for specific material

properties. Results from a simple LJ fluid confirms the

consistency of the estimates between EMD, NEMD, and the

linearization based method described here. Furthermore, the

higher order NEMD model may be approximated by a first

order model and still yields a good estimate for viscosity.

Our next step is to apply the approach to polymeric systems

with the finite extensible non-linear elastic (FENE) potential

energy, and ultimately polymers with filler particles. Our

long term goal is to develop a set of computationally

efficient tools for transport properties that is suitable for

material design optimization and process control.

ACKNOWLEDGMENT

The authors would like to thank Catalin Picu, Sanat

Kumar, Rahmi Ozisik, and Sanford Sterstein for help dis-

cussions. This material is based upon work supported by the

Fig. 6. Bode Plot comparison between full order, first order LRSRM,
and first order DSPMR models

Fig. 7. Viscosity estimates using (36) and the first order LRSRM model,
over 1800 time steps of r∗(t)

National Science Foundation Grant No. 031056, Multiscale
Systems Engineering for Nanocomposites.

REFERENCES
[1] D. Frenkel and B. Smit, Understanding Molecular Simulation,

2nd ed. Academic Press, 2001.
[2] M. Green, J. Chem. Phys., vol. 22, p. 398, 1954.
[3] R. Kubo, “Statistical mechanical theory of irreversible processes. I.

general theory and simple applications to magnetic and conduction
problems,” J. Phys. Soc. Japan, vol. 12, pp. 570–586, 1957.

[4] L. Onsager, Phys. Rev., vol. 37, p. 405, 1931.
[5] A. Lees and S. Edwards, “The computer study of transport processes

under extreme conditions,” J. Phys. C: Solid State Physics, vol. 5,
pp. 1921–1929, 1972.

[6] E. Gosling, I. McDonald, and K. Singer, “On the calculaton by
molecular dynamics of the shear viscosity of a simple fluid,” Molec-
ular Physics, vol. 26, no. 6, pp. 1475–1484, 1973.

[7] T. Penzl, “Algorithms for model reduction of large dynamical sys-
tems,” T.U. Chemnitz, Germany, Technical Report, 1999.

[8] ——, “Lyapack – a MATLAB toolbox for large Lyapunov
and Riccati equations, model reduction problems, and
linear-quadratic optimal control problems,” Available from
http://www.tu-chemnitz.de/sfb393/lyapack/.

[9] A. Antoulas, D. Sorensen, and S. Gugercin, “A survey of model
reduction methods for large-scale systems,” in Structured Matrices
in Operator Theory, Numerical Analysis, Control, Signal and Image
Processing. American Mathematical Society, 2001.

[10] J. M. Haile, Molecular Dynamics Simulation : Elementary Methods.
Wiley-Interscience, 1997.

2033


	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /ArialNarrow-Italic
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Times-Bold
    /Times-BoldItalic
    /Times-BoldOblique
    /Times-Oblique
    /Times-Roman
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


