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Abstract— Norm-Optimal Iterative Learning Control has
potential to significantly increase the accuracy of many tra-
jectory tracking tasks which can be found in industry. The
algorithm can achieve very low levels of tracking error and
the number of iterations required to reach minimal error is
small compared to many other Iterative Learning Control
Algorithms. However, in the current format, the algorithm is
not attractive to industry because it requires a large number
of calculations to be performed at each sample instant. This
implies that control hardware must be very fast which is
expensive, or that the sample frequency must be reduced
which can result in reduced performance. To remedy these
problems, a revised version, Fast Norm-Optimal Iterative
Learning Control is proposed which is significantly simpler
and faster to implement. The new version is tested both in
simulation and in practice on a three axis industrial gantry
robot.

I. INTRODUCTION

Iterative Learning Control (ILC) is a technique which is
designed to improve the performance of tracking control
systems which have a repeated reference trajectory. Such
systems include food processing plants, assembly lines,
chemical batch reactors and robotic arm manipulators. Each
time the trajectory is implemented (known as a trial or
iteration), ILC uses data from past iterations to modify the
control signal in an attempt to reduce the tracking error
obtained during the next iteration. Between each iteration
there is an undefined stoppage time, during which the plant
is reset to known initial states. ILC is theoretically capable
of reducing the tracking error to zero as the number of
iterations increases towards infinity [1]. This is a significant
advantage over conventional algorithms where the same
level of tracking error can be expected at each trial [2].

It is generally recognised that ILC was formally defined
by Arimoto, Kawamura and Miyazaki in 1984 [3]. The first
algorithm to be developed was very simple and consisted of
a tracking error term and a previous iteration input term [4].
However, over the past 20 years there has been significant
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development of ILC algorithms which now include prin-
ciples and theory from a wide range of automatic control
disciplines. Notably, there have been significant contribu-
tions from Robust, Adaptive and Optimal control (see [5]–
[7] for examples). Many of these ILC variations are highly
advanced model-based systems which aim to maximise the
tracking error reduction while still maintaining stability in
the presence of unmodelled dynamics and non-repeating
disturbances.

In the vast majority of cases, these advanced algorithms
are evaluated with simulation experiments, which invariably
conclude that the increased complexity of the algorithm is
extremely well justified by the significant improvements
in tracking error reduction and convergence rate, when
compared to simpler algorithms which require no form of
plant model. However there is rarely any consideration of
the effect which the increased complexity of the algorithm
will have on practical implementation of the algorithm on
a real system. Modern control systems are almost exclu-
sively implemented in sampled format on some form of
digital electronic device, examples of which include single-
chip micro-controllers, programmable-logic controllers and
desktop PC’s. The performance of such electronic devices is
constantly improving, with off-the-shelf systems currently
able to perform billions of calculations per second. How-
ever, there is still a finite limit on how many calculations can
be performed in a limited period of time. In this respect,
real-time control applications are particularly demanding.
The limitations on a particular controller can be summarised
by three fundamental properties of the machine [8], [9]:

• Memory capacity
• Processor frequency
• Communication/BUS frequency

Memory capacity is a key issue for ILC systems, because
data from at least one previous trial will invariably be re-
quired for the feed-forward term of the controller. Therefore
the greater the number of samples per iteration, the larger
the memory must be to hold all the data. If trial data also
needs to be logged for later analysis, then the memory
requirements become even more demanding.

Processor frequency fundamentally determines how many
calculations or numerical manipulations the controller can
undertake between sampling periods. As the algorithm
complexity increases, the processor frequency must be
sufficient to perform all of the required calculations within
the sample period. Eventually, if processor frequency cannot
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be increased, then the controller sampling frequency must
be reduced to compensate. Once the sampling frequency is
reduced beyond a certain level defined by the plant dynam-
ics, the controller performance will degrade considerably,
and the system may become unstable.

Communications/BUS frequency is directly concerned
with communications systems within the controller and
between the controller and plant. Lots of memory and a
fast processor are of little use if the subsystems which link
them with the plant are very slow. A significant portion of
the sample time is used just to exchange data with the plant.

This paper focuses exclusively on the Norm-Optimal It-
erative Learning Controller (NOILC) developed by Amann,
Rogers and Owens [10]. This is one of the more computa-
tionally intensive ILC algorithms which requires numerous
matrix multiplications and manipulations at each sampling
instant. Previous implementation of this algorithm has been
limited to a single SISO chain conveyor system, represented
by a second order transfer function model [11]. The second
order model generates matrices with small dimensions when
converted to state-space form and is therefore fast to imple-
ment. The results obtained from this prior implementation
do indicate that the algorithm is very successful at reducing
the tracking error and has a fast convergence rate.

Both of these attributes should potentially make the
NOILC algorithm very attractive to industry, because a
fast convergence to minimum tracking error implies less
time and product wastage. However, in the current format,
the NOILC algorithm is not attractive to industry because
it requires a high performance controller if it is to be
implemented with a high order model at fast sampling
frequency. This is mainly due to the need for large numbers
of multiplications, additions, subtractions, matrix transposi-
tions and matrix inversions which need to be performed
between each sample interval. To remedy this problem,
a new version of the algorithm is derived which allows
the majority of calculations to be performed during the
design and commissioning of the controller. The remaining
calculations are significantly reduced in number and consist
solely of multiplications, additions and subtractions.

The resulting Fast Norm-Optimal Iterative Learning Con-
troller F-NOILC is tested in simulation studies as well as
experimentally on a three axis industrial gantry robot. It is
found that the F-NOILC allows all three robot axes to be
controlled simultaneously and without difficulty at a sample
frequency of 1kHz for high order models ranging from
fourth to seventh order.

II. NORM-OPTIMAL ITERATIVE LEARNING CONTROL

The full derivation of the discrete NOILC algorithm
can be found in [10]. For simplicity, only the essential
components required for implementation are presented here.
Consider the familiar sampled-time state-space system:

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t) (1)

where A, B and C are the state matrices of appropriate
dimensions defined by the plant model, x represents the
states, u is the plant input, y is the plant output and t
represents the sample time. For ILC systems, each iteration
operates for a finite time, so 0 ≤ t ≤ T and equivalently
for the sample number n, 0 ≤ n ≤ N Based on these
fundamental equations, the three components of NOILC can
be constructed.

• Matrix gain equation

K(t) = AT K(t+1)A+CT Q(t+1)C− [
AT K(t+1)B

× {
BT K(t + 1)B + R(t + 1)

}−1
BT K(t + 1)A

]
(2)

where K(t) is a matrix gain which has the terminal con-
dition K(N) = 0. Q and R are tuning parameters which
affect the rate of error reduction and the rate of input change
respectively and are matrices of appropriate dimensions.

• Predictive component equation

ξk+1(t) =
{
I + K(t)BR−1(t)BT

}−1

× {
AT ξk+1(t + 1) + CT Q(t + 1)ek(t + 1)

}
(3)

where ξk+1(N) = 0.

• Input update equation

uk+1(t) = uk(t) − [ {
BT K(t)B + R(t)

}−1
BT K(t)

× A {xk+1(t) − xk(t)} ]
+ R−1(t)BT ξk+1(t) (4)

Implementation of the algorithm is as follows. The matrix
gain K (2) can be calculated before the system operates,
hence does not contribute to the real-time processing load.
The predictive term (3) must be calculated between each
iteration. Note that this equation has a terminal condition,
rather than an initial condition and must therefore be
computed in descending sample order. The input update (4)
must be calculated at each sample instant. It is therefore the
input update equation which particularly contributes to the
real-time processing load and has a significant influence on
the minimum sample time.

III. FAST NORM-OPTIMAL ITERATIVE LEARNING

CONTROL

The F-NOILC algorithm is derived by identifying numer-
ous simplifications which can be made to the NOILC al-
gorithm. The algorithm fundamentally remains unchanged,
but a large number of the calculations involved in generating
the plant input can be performed off-line, resulting in faster
computation during operation. The Matrix gain equation is
already performed off-line in the NOILC implementation
and there is no change for the F-NOILC. Secondly consider
the predictive component equation (3). The only variables
in this equation are the tracking error ek and the predictive
term itself ξk+1 all of the other terms can be combined
together to produce constant matrices:

α(t) =
{
I + K(t)BR−1(t)BT

}−1
(5)

1952



β(t) = α(t)AT (6)

γ(t) = α(t)CT Q(t + 1) (7)

leading to the simplified predictive component equation:

ξk+1(t) = β(t)ξk+1(t + 1) + γ(t)ek(t + 1) (8)

Exactly the same concept can be applied to the input update
equation (4):

λ(t) =
{
BT K(t)B + R(t)

}−1
BT K(t)A (9)

ω(t) = R−1(t)BT (10)

resulting in the simplified input update equation:

uk+1(t) = uk(t) − λ(t) {xk+1(t) − xk(t)} + ω(t)ξk+1(t)
(11)

The resulting implementation therefore requires seven ma-
trices in total to be supplied to the real-time controller.

• state matrices, A, B and C
• F-NOILC matrices, β, γ, λ and ω

If the tuning parameters Q and R need to be adjusted,
then the F-NOILC matrices must be recalculated and down-
loaded again to the controller.

It must be stated that the F-NOILC algorithm does
use significantly more memory than the NOILC algorithm
because the memory allocation is static rather than dynamic.
The NOILC can recycle memory once calculations are
complete. However it is worth observing that the process
of recycling the memory does take time and therefore
decreases the amount of time available for computation of
the algorithm. The current status of electronics does tend
to be in favour of the F-NOILC algorithm because it is
relatively easier and cheaper to upgrade memory than to
upgrade the central processor of the controller hardware.

With respect to the improvement in computation speed
due to the reduced number of calculations, it would be
possible to calculate exactly the time required to perform
each algebraic operation for both the NOILC and the F-
NOILC, then find the total time for each variation. However,
the results of this laborious process would still ultimately
depend on the characteristics of the controller, the operating
system and the efficiency of the program functions [9]. A
similar, yet much simpler approach is described in section
VI.

IV. GANTRY ROBOT TEST FACILITY AND PLANT

MODELLING

The gantry robot (Figure 1) represents an industrial
tracking control problem. Mounted above a chain conveyor
system, the robot is designed to collect a payload from a
dispenser then place the object onto the moving conveyor.
This task is fairly involved, as the robot must accurately
synchronise both speed and position with the conveyor
before releasing the payload. This type of operation is
designed to represent an industrial system such as processed
food canning, bottle filling and automotive assembly. All of

these applications require accurate tracking control with a
minimum level of error in order to maximise production
rates and minimise loss of product due to faulty manufac-
ture.

Fig. 1. The Gantry Robot

The robot consists of three separate axes which are
mounted perpendicular to each other. The lowest horizontal
axis - X moves parallel to the conveyor beneath. It is built
from two subsystems, a brushless linear dc motor and an
un-powered linear bearing slide. The second horizontal axis
- Y has one end mounted on each component of the X-
axis. The Y -axis is a single brushless linear dc motor. The
vertical axis - Z, consists of a linear ball-screw stage driven
by a rotary brushless dc motor. All motors are powered
by performance matched dc amplifiers. Position feedback
is obtained by means of optical incremental encoders.
The control algorithm is implemented on a Pentium 4 PC
running under the Linux operating system which is suitable
for real-time control applications. The control software,
signal processing hardware and instrumentation have been
designed and built by the project team.

Modelling of each robot axis has been performed by
means of open-loop frequency response tests. A sine-wave
of known frequency and magnitude is sent to the plant.
The output consists of a sine-wave of shifted phase and
different magnitude. The phase shift is recorded in degrees
and the magnitude difference as gain in decibels (dB).
If a range of frequencies are tested, the resulting data
can be used to generate a Bode plot which describes
the dynamics of the plant. Using the Bode plotting rules,
it is then possible to identify key features of the Bode
plot such as poles, zeros and resonances, from which an
approximate transfer function can be generated by hand.
When deriving the transfer functions for the gantry robot,
a least-mean-square algorithm was implemented to refine
the approximate transfer functions and improve the match
between the measured gain response and the model gain
response.

The most accurate transfer functions obtained by this
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process are 21st, 7th and 4th order for X , Y and Z-
axes respectively. These high order models are required
to accurately represent the resonant frequencies of the
mechanical system. Bode plots for the measured data and
the axis models can be found in [12].

The X and Y -axis, 21st and 7th order models have
numerous uncontrollable and unobservable states. As all
of the states must be known to implement the F-NOILC
algorithm, optimal model order reduction was performed
using a suitable software package to obtain a 7th order
model for the X-axis and a 5th order model for the Y -
axis, the highest order possible with all states controllable
and observable. The transfer functions for the three models
used in this paper are presented here:

• X-axis (7th order)

Gx(s) =
(s + 500.19)(s + 4.90 × 105)

s(s + 69.74 ± j459.75)
× · · ·

· · · × (s + 10.99 ± j169.93)(s + 5.29 ± j106.86)
(s + 10.69 ± j141.62)(s + 12.00 ± j79.10)

(12)

• Y -axis (5th order)

Gy(s) =
(s + 148.20)

s(s + 78.54 ± j533.34)
. . .

· · · × (s + 49.24 ± j526.52)
(s + 213.42 ± j151.47)

(13)

• Z-axis (4th order)

Gz(s) =
(s + 473.51)(s + 199.02)

s(s + 989.06)(s + 266.22 ± j157.81)
(14)

Having calculated the frequency response transfer func-
tions, it is then necessary to convert these into state space
form. Firstly, discrete versions of the transfer functions are
computed. Then suitable software is used to find the state
space equivalents. The final state-space matrices for the Z-
axes are presented to show the general structure which is
consistent with the X and Y -axes.

A =

⎡
⎢⎢⎣

2.885 −0.758 0.342 −0.109
4 0 0 0
0 1 0 0
0 0 0.500 0

⎤
⎥⎥⎦ (15)

B =
[

0.0039 0 0 0
]T

(16)

C =
[

26.136 −4.484 −3.790 5.043
] × 10−4

(17)

V. TEST PARAMETERS

With all axes operating simultaneously, the reference
trajectories for the axes produce a three dimensional syn-
chronising ‘pick and place’ action (Figure 2). The trajecto-
ries produce a work rate of 30 units per minute which is
equivalent to an iteration time period of 2 seconds. Using a
sampling frequency of 1kHz, this generates 2000 samples
per iteration.

All tests are performed in iterative learning control for-
mat.

• There is a stoppage time between iterations.
• The plant is reset to known initial states before the

next iteration.
• Calculation of the next ILC plant input occurs between

iterations.

A two second stoppage time exists between each iteration,
during which the next input to the plant is calculated. The
stoppage time also allows vibrations induced in the previous
iteration to die away and prevents vibrations from being
propagated between iterations. Before each iteration, the
axes are homed to within ±30 microns of a known starting
location to minimise the effects of initial state error.

The plant input voltage for the first iteration is zero.
Therefore the algorithm must learn to track the reference
in its entirety. There is no assistance from any other form
of controller.

As well as recording input voltage and axis position
during each iteration, the control software also calculates
the mean-square-error (mse) for position over each iteration.
This is much more useful for analysing overall performance
of the system and highlights whether the tracking is gener-
ally improving or deteriorating. In the following sections,
the mse is plotted on a logarithmic scale which improves
resolution at small error values and shows up trends which
may otherwise not be visible. The disadvantage of using
a logarithmic scale is that the data appears to become
increasingly noisy as the resolution increases.

The values Q and R for each axis were held constant for
all experiments (Table I). These values were chosen because
they produce good results. No attempt has been made to
optimise them, or measure the effect caused by changing Q
and R, this will be investigated in future work:

TABLE I

Q AND R VALUES USED IN TESTING

Axis Q R

X 100I 0.01I
Y 100I 0.01I
Z 1000I 0.01I

In the practical implementation, the system states are es-
timated by means of a tuned Full-state Luenberger observer
[13].

VI. SIMULATION STUDIES

Both the NOILC and the F-NOILC variants of the al-
gorithm have been simulated. Both variations are identical,
only the matrix simplification is different. Both simulations
generate exactly the same results, confirming that the matrix
simplifications are correct. Figure 3 displays the plant
output for the first 5 iterations of the simulation. Note that as
stated in section V the first iteration has zero input voltage,
therefore the plant does not move and iteration 1 is a point
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Fig. 2. Three dimensional reference trajectory

centered at the origin. Clearly, the algorithm is capable of
tracking the reference trajectory (Figure 2) very well after
only a few iterations. Figure 4 displays the mse tracking
error for the same test up to 200 iterations, showing the
high speed of convergence and the low level of error which
can be achieved.

To demonstrate the saving in computation time obtained
by using the F-NOILC algorithm, both variants were im-
plemented at maximum rate for 100 iterations. No sample
frequency restrictions were imposed on either algorithm
so that the processor could implement the 100 iterations
in sequence without stopping. The data for each iteration
was also saved to memory, to simulate the other time
requirements for a real application such as communications
with the plant and data logging. The time required by
the NOILC algorithm for 100 iterations was measured as
243 seconds (2.43 seconds per iteration), while the time
recorded for the F-NOILC algorithm was 83 seconds (0.83
seconds per iteration). On this particular system, the F-
NOILC algorithm was just less than three times faster than
the NOILC.

VII. PRACTICAL IMPLEMENTATION

The F-NOILC algorithm has been implemented on the
gantry robot with the models described in section IV. It is
important to note that there was no difficulty implementing
the high order models on the test hardware at the 1kHz
sample frequency with the F-NOILC algorithm. Figure 5
shows the plant output for the first 5 iterations. Compared
to the simulation study (Figure 3) the performance is very
similar. This suggests that the plant models are suitably
accurate.

Figure 6 shows the mse tracking error data for 5000
iterations implemented on the gantry robot. The important
feature to note here is that over the 5000 trials, the system
remains stable and does not diverge as many ILC algorithms
tend to do [14]. This indicates that the algorithm has a good
degree of robustness to non-repeating disturbances.
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Fig. 4. Simulation study - mse 200 iterations

Figure 7 compares the mse plots for the practical imple-
mentation and the simulation for the first 200 iterations.
The mse plots are virtually identical for the first 20 -
40 iterations, but then for all three axes the mse for the
implementation reaches a minimum level, while the mse for
the simulation continues to decrease. This is an indication
that the physical plant exhibits certain non-linear effects,
for example measurement quantisation and friction which
the simulation does not model accurately. Measurement
quantisation is particularly significant as it defines the
maximum level of accuracy which the plant can achieve.

VIII. CONCLUSIONS

The F-NOILC algorithm is clearly a significantly faster
implementation of the NOILC algorithm. The extra usage
of memory is a problem that needs to be addressed, but the
computation time benefits are more significant, given the
availability and low cost of memory. Additional work needs
to be performed to evaluate the robustness to modelling
error. The F-NOILC algorithm achieves a high level of
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tracking accuracy in a minimal number of repetitions and
should therefore be very attractive to industry.

IX. FUTURE WORK

Future work will involve three components. Firstly, test-
ing the effect of Q and R on the convergence rate and
algorithm robustness. Secondly, investigating the robustness
by using simpler and less accurate models. Finally, in most
applications, many of the elements of the F-NOILC matrices
are redundant because they are either zero, or replicated
many times. To reduce the memory requirements posed
by the F-NOILC, it should be possible to compact these
matrices into a more efficient form. The F-NOILC would
then provide significantly increased computation speed at
little cost to memory requirements and would therefore be
particularly suited to industrial applications.
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