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Abstract—In this paper, a novel hierarchical clustering
algorithm is proposed, where the number of clusters is
optimally determined according to the Fisher class separability
measure. The clustering algorithm consists of two phases: (1)
Generation of sub-clusters based on the similarity metric; (2)
Merging of sub-clusters based on the Fisher class separability
measure. The proximity matrices are constructed. Each sub-
cluster comprises patterns close to each other in proximity
metric. The trellis diagram is used for searching of sub-
clusters. Connections between consecutive layers in the trellis
diagram are weighted by the similarity metric. The threshold
for the merge of sub-clusters is numerically designed according
to Fisher class separability measure. The proposed algorithm
can pre-process the data for the supervised learning. It also
can be applied for the optimal determination of basis functions
for radial basis function (RBF) networks.

I. INTRODUCTION

Clustering is a discovery process that group or segment
a collection of data into subsets or “clusters”, such that
the intracluster similarity and intercluster dissimilarity are
both maximized. Clustering problems arise in many appli-
cations, such as data mining and knowledge discovery [1],
data compression and vector quantization [2], and pattern
recognition (e.g. regression and classification problems) [3].
Existing clustering algorithms, such as K-means [4], PAM
[5], CLARANS [6], CURE [7], and DBSCAN [8] are
designed to find clusters that fit some static models. In
[4, 5, 6], clusters are assumed to be hyper-ellipsoid (or
globular) and of similar sizes. DBSCAN assumes that all
points within genuine clusters are density reachable and
points across different clusters are not. CURE is designed
for the large database clustering. The CURE algorithm is
more robust to outliers and identifies clusters having non-
spherical shapes and wide variance in size.

Among clustering formulations that are based on mini-
mizing a formal cost (or loss) function, K-means clustering
algorithm is the most widely used and studied. Given a set
of n data points, {z; € R?} and a pre-determined integer
k, the problem is to determine a set of k£ points in R,
called as centers, so that the squared Euclidean distance
from each data point to its nearest center is minimized. This
measure is often called the squared-error distortion [4, 9]
and this type of clustering falls into the general category of
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variance-based clustering [10]. There are many K-means
clustering algorithms when the size and the number of
clusters are known in advance. One of the most popular
heuristics for solving k-means problem is based on a simple
iterative scheme for finding a locally minimal solution. This
algorithm is often called the k-means algorithm. However,
there are problems with such a technique: k-means re-
quires the number of clusters to be specified beforehand.
Determining the number of clusters is not easy. Minimal
Spanning Tree Clustering Algorithm was proposed for the
unknown cluster problem. This hierarchial method starts
by considering each data point to be a cluster. Next, the
two clusters with the minimum distance between them are
fused to form a single cluster. This process is repeated
until all data points are grouped into the desired clusters.
Agglomerative hierarchical algorithms [4] start with all the
data points as a separate cluster. Each step of the algorithm
involves merging two clusters that are the most similar.
After each merge, the total number of clusters decreases by
one. These steps can be repeated until the desired number of
clusters is obtained or the distances between pairs of clusters
satisfy the certain threshold distance. However, for a large
set of data points, the searching procedure is complex and
time-consuming.

In this paper, we present a novel hierarchical clustering
algorithm that measures the similarity of pair of sub-clusters
and creates the merging criterion (proximity threshold),
which is numerically determined by the Fisher class sep-
arability measure. The proposed clustering algorithm has
the bottom-up structure. In the clustering process, each sub-
cluster is denoted as “leaves” and the merging process of
sub clusters is called as the formation of “branches”. The
proximity matrices and trellis diagram [11] are used to
generate the sub-clusters. Two sub clusters are merged if
and only if the proximity (closeness) satisfies the merging
criterion. The diagram of hierarchical clustering is illus-
trated in Figure 1. It consists of three layers: (1) data point
layer; (2) sub-clusters layer; (3) final cluster layer.

The rest of paper is organized as following. Section II
gives an overview of the clustering analysis. The proposed
hierarchical clustering algorithm is presented in Section III.
The effectiveness of the proposed algorithm is evaluated in
Section IV. Section V contains conclusions and directions
for the future work.
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Fig. 1. Diagram representation of hierarchical clustering

II. CLUSTERING ANALYSIS

The goal of cluster analysis is to group a set of data
such that the intracluster similarity is maximized, and to
arrange the clusters into a natural hierarchy. This involves
two phases: (1) grouping data points into a candidate sub-
cluster; (2) merging the sub clusters according to similarity
metric. At each level of the hierarchy, clusters or data
points within the same group are more similar to each other
than those in different groups. Fundamental to clustering
techniques is the choice of distance or similarity measure
between data points or sub clusters. In this paper, a prox-
imity matrix is constructed and provided as input to the
clustering process.

Given a set of n data points, {z; € R?}, the proximity
matrix D € R™*", has nonnegative entries. The diagonal
elements are set to be equal to zero. The off-diagonal
elements are computed as

Dij = ®([lzi — a;ll) Vi #j (D
where @ is nonlinear transfer function. In order to avoid
more emphasis on larger differences between data points
than smaller ones, the Gaussian type function is used to
calculate off-diagonal elements.

2

@l — ) = esp(— 1Ty
where o is chosen according to the span of data points.
The similarity measure between two different data points is
constrained into the range from O to 1; and the more close
two data points are, the greater similarity they have. As we
can see, the proximity matrix is symmetric. The similarity
measure defined in (1) is suitable for the Quantitative
variables.

For nonquantitative variables (e.g. categorical data), the
similarity measure in (1) may not be appropriate. In [12],
the similarity measure for nonquantitative variable is pre-
sented. With unordered categorical variables, the degree-of-
difference between pairs of variables can be delineated as
the following. If the variable is assumed to have M distinct
values, the proximity matrix is defined as a symmetric
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Fig. 2. Overall framework of hierarchical clustering algorithm

matrix in RY>*M with nonnegative elements as

0 i=j
>0 i#j

The most common choice for off-diagonal elements is

Lij =A{

Lij=1 Vi#j

For the clustering algorithm, the appropriate proximity
matrix is crucial according to the different types of data.
In this paper, quantitative data is considered for the design
of clustering algorithm.

III. HIERARCHICAL CLUSTERING ALGORITHM BASED
ON FISHER CLASS SEPARABILITY MEASURE

The widely used K-mean clustering algorithm starts the
clustering process with the pre-defined number of clusters.
However, it is not easy to determine the appropriate number
of clusters without any prior knowledge about the data
set being clustered. Here, we propose a novel hierarchi-
cal clustering algorithm based on Fisher class separability
measure. The clustering process consists of two phases. In
the first phase, the proximity matrix is generated for the
quantitative data, Trellis Diagram is constructed so that each
layer contains all data points and the connection between
the consecutive layers is weighted by the proximity matrix,
and paries of data points with large similarity measure are
chained to form a sub-cluster. During the second phase,
the centroid of data points in each sub-cluster is calculated,
and the similarity between two sub clusters is measured
by the proximity between the corresponding centroids.
The similarity is compared with the certain threshold to
determine if the merge of two sub clusters occur or not.
The merging process will be repeated until the similarity
measure between two closet clusters does not meet the
merging criterion. The effectiveness of the merging can
be evaluated by Fisher class separability measure. The
clustering framework is illustrated in Figure 2.

A. Clustering Algorithm Phase 1

Given a set of n data points {x;}?_,, the proximity matrix
is calculated using similarity measure as (1). A n x n Trellis
Diagram is constructed as Figure 3, with the interconnection
between two consecutive layers weighted by the similarity
measure. Before the clustering process, an index vector,
m € R, is defined to record the status of each point. The
value of m; is binary, where ‘0’ denotes that " data point
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is free to be clustered, and ‘1’ denotes that it" data point
has been grouped into a certain sub-cluster.

The procedure of clustering the data into the sub-cluster
is illustrated as following.

¢ As following the Trellis Diagram, free data point, x;,
in the first layer is picked as to be a seed for a sub-
cluster.

¢ Seek the largest weight from z; in the first layer to data
points in the second layer. Assume the connection from
x; to x; has the largest weight. There are two situations
here.

o If x; is free data point, the searching continues
until the closure loop is created as Figure 4.

o If x; belongs to a sub-cluster, then the chain of
data points from the seed point to x; is attached
to the sub-cluster as shown in Figure 5.

¢ The searching procedure is repeated until all data
points have been clustered.

After all data being clustered, a sparse matrix, C €
R™*™_ is generated, in which the nonzero elements in each
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Fig. 5. Diagram representation of attaching data point (data chain) to a
existing sub-cluster

TABLE I
HIERARCHICAL CLUSTERING ALGORITHM

Initialization, 2 = 0, m = Opx1, CL = Opxn
Doi—i+1
if z; is free (e.g. m; = 0)
Cr(i,1)=1
l—1i,flag«—0,5—0
Doj—j+1
h = argmaxy (D), k=1,---,n
l—nh
if Closure loop or zj, belongs to a sub-cluster
flag «— 1
else
Cr(i,h) =h
end
until flag=1orj >n
else
CL(iv :) =01xn
end
until ¢ > n

row represents the data points in the same sub-cluster. The
matrix Cp, has the form as

1 & j -« k 0 -+ 0
ct=0 0 0 - 0 0 -~ 0
I m h O -~ 0 --- 0

The value of each nonzero element in matrix C';, represents
the position of data point in data set {x;}" ;. The total
number of sub-clusters is denoted as ng,, which is equal
to the number of nonzero elements in the first column of
the matrix C',. The batching clustering algorithm can be
summarized as Table 1.

B. Clustering Algorithm Phase 11

During the second phase, the centroid of each sub-cluster

is calculated as

Zz €Cij Tk
mij = RS T 3)
Nij

where n;; is the number of data points in sub-cluster Cj;,
and the subscription of C;; denotes the j*" sub-cluster that
will be merged into the i*" final cluster, C;. The n;; satisfies

n:E E?’Lij
i

From the phase I, we can get ng, sub-clusters and ng,
centroids; and the similarity between pairs of sub-clusters is
measured using (1) with input variables taken as centroids.

Dijrr = ®([lmij — myall) “4)

Thus, the proximity matrix for sub-cluster set is a symmetric
matrix in Jo7sbX"eb,
A similarity threshold, SMr, is defined as

SMr = &(||zz])) (5)
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where zp is a vector in the observation space. Since
the function ®(-) is deterministic, the similarity threshold
totally depends on the value of x7. A pair of sub-clusters
are merged if their similarity measure is greater than the
SMr. As we can see, the similarity measure reflects how
close the pair of sub-clusters are. The choice of similarity
threshold, SMp or x, really affects the number of final
clusters, denoted as k. With different choices of =7, we
may get different number of final clusters. It is assumed
that the effect of 1 on k can be described by an unknown
nonlinear function as

k= o(zr) (6)

Thus, it is crucial to design an appropriate x for the sub-
cluster merge to yield optimal clustering result so that the
data characteristics can be revealed to the most extend.

Assume the clustering process is completed, k final
clusters are generated with n; data points in i*" cluster. In
order to evaluate the clustering result, an objective function
is defined. The objective function will be optimized with
the optimal choice of xr. According to the assumption,
since the number of clusters is known and data points are
grouped into corresponding clusters, the problem is turned
to be a supervised learning. We can exploit some useful
properties of supervised learning such as locality property
[13], which is that Patterns that belong to the same class
are close to each other and those in different classes are
relatively farther away, according to some distance metric.
The locality property can be evaluated using Fisher class
separability measure, which is derived from the Fisher
discriminant rule [14]. Next, the Fisher class separability
measure is briefly presented.

Let u; be the mean of cluster C; defined by

1
pi=-d @ @
zeC;

where n; is the number of data points in the cluster C;. Let
1 be the mean of all data points given by

u=%2xi ®)

The within cluster scatter matrix is a measure of how
compact the cluster is. The within cluster scatter matrix
is defined as

k
Swik) = > (@—p)w—p)" ©)

i=1 z€C;

The between cluster scatter matrix measures the separation
between clusters. It is defined as

k
Sp(k) = mni(pi — ) (i — )" (10)
=1

The locality property can be translated into an objective
function J (k) in terms of the between cluster scatter matrix

and within cluster scatter matrix as follows.

J(k) = (SB, Sw, k) (11)

By applying the Fisher class separability measure, the
objective function is defined as

tr(SB)
= 12
I = 5 (12)
The term tr(Sp) can be written as
k
w(S) = Y milpi — )" (i — 1) (13)
i=1
k
= ) il i —np"p (14)
i=1
and the term tr(Sy/ ) is written as
k
w(Sw) = Y. (@—m) (@—m) (15
i=1 2€C;
n k
= Y almi— Y nipl (16)
i=1 i=1

Considering the extreme situations for £k =1 and k = n as

c>0 k=1
wds)={ "o k=n
0 k=1

TS =150 k=n

However, it is quite hard to find the explicit function to
delineate relationships between Sp (Sw ) and k. Based on
the clustering result from Phase I, it can be seen that the
upper bound of £ is equal to ng,, which is normally much
less than n. The optimal number of final cluster, kopt will
be in (1,ns].

In this paper, the numerical analysis is used to find the
optimal solution for k. Referring to (6), numerical determi-
nation of kopt is equivalent to look for the optimal choice
of x7 in the observation space. The objective function is
locally maximized so that the clusters are as separated as
possible and each cluster is as compact as possible. The
optimal choice of x7 is described as

xr = arg max J(p(z))

17
zeR a7

The merging process of Phase II is illustrated as following:

o Select an appropriate 7 and compute the SMr.

© Merge sub-clusters whose similarity measures are
larger than SMr.

¢ Stop the merging process until none of the similarity
measures between pairs of sub-clusters is larger than
SMr.

1932



0.8

0.7

0.6

051

Fig. 6. The data set used for performance evaluation

0.9 b

0.8

Fig. 7. The 500 data set used for cluster searching

C. Computational Complexity Analysis

The overall computational complexity of the proposed
hierarchical clustering depends on the amount of time
required to perform the two phases of the clustering al-
gorithm. The amount of time required by the two-phase
clustering relies on the number of the sub-cluster generated
in the phase I and the size of each sub cluster. Without loss
of generality and to simplify the analysis, it is assumed that
each sub cluster has the same number of data points, m. So
the total number of sub clusters is 7. By analyzing the
Trellis Diagram, the computation complexity for Phase I
is O((n —m)n). And the computation complexity for the
phase II is bounded by O(%) The overall computational
complexity for two-phase clustering algorithm is O((n —

m)n + :TZ)

IV. PERFORMANCE EVALUATION

A data set, U, containing 8 cloudy points in 2-D as shown
in Figure 6, is applied for the performance evaluation of
the proposed hierarchical clustering algorithm. The total
number of data points in this data set is 4000. A 500 data
point set, {2, is randomly chosen from the original data set
as shown in Figure 7. Since the data set is in 2-D, the
threshold x is denoted as

rr = ( .TT(l) iL'T(2) )T

@)

Fig. 8. Fisher class separability measure vs. threshold vector xp

Fig. 9. The number of final cluster vs. threshold vector z

The numerical simulation of J(z7) ~ zr is demonstrated
in Figure 8.

As we can see, the locally maximum value of J(xr)
occurs when the ||zr|| is around 0.06. The relationship
between the number of clusters and the threshold vector 1
is shown in Figure 9. since the maximum value of J(z7)
occurs at ||z7|| around 0.06, the number of final clusters is
determined to be 8 by examining Figure 9. The clustered
data set €2 is shown in Figure 10. The {2 data set can be
used as ‘teacher’ for the supervised learning. By applying
probabilistic neural network-based (PNN) pattern classifier
in [15], the testing patterns are from the data set ¥ — (2, and
the simulation result is demonstrated as in Figure 11. The
density estimation from PNN classifier is shown in Figure
12 and Figure 13. As we can see, the 8 cloudy data set W
can be correctly clustered by choosing appropriate value of
similarity threshold. The density estimation from the PNN
classifier correctly reveals the characteristics of data points.

V. CONCLUSIONS

This paper presented a novel hierarchical clustering al-
gorithm based on Fisher class separability measure. The
Gaussian similarity measure is adopted. The proximity
matrix is used to reveal the pairwise similarity between
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Fig. 11. Classification of testing data points using probabilistic neural
network-based classifier

data points. The clustering procedure consists of two phases:
(1) Generation of sub-clusters; (2) Merging of sub-clusters.
Trellis Diagram is used to generate the sub-cluster set, and
the connection between two consecutive layers in Trellis
Diagram is weighted by the similarity measure. The Trellis
Diagram provides a fast way for searching sub-cluster.
Fisher class separability measure is applied for the design
of similarity threshold for the merging of sub-clusters so
that the data points in the same cluster will have maximum
intracluster connectivity while the intercluster similarity is
minimized. As mentioned early, the proposed clustering
algorithm is applicable for the optimal determination of
radial basis function sets and also can be provided as
‘teacher’ for the supervised learning. In the future work,
the design of objective function will be further studied; and
the clustering scheme will be improved for the presence of
very ‘noisy’ data.
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