
Abstract - In this paper, we apply the information- 
theoretic learning (ITL) technique to the extended 
Luenberger observer. Instead of prespecifying the 
globally stable observer gains for nonlinear dynamic 
systems, we propose minimizing the entropy of the error 
between the measurement and the estimated output to 
update the observer gains. A stochastic gradient-based 
algorithm is presented and the performance of the 
entropy observer is demonstrated on linear and 
nonlinear dynamic systems. We also point out that this 
approach leads to the introduction of kernel methods 
into state estimation. 

I. INTRODUCTION 
State estimation drew an intense attention in control and 
signal processing community following Kalman’s seminal 
paper [1]. Modern approaches on state estimation are based 
on Luenberger’s design [2,3]. The classical Luenberger 
observer deals with linear systems. Recently there has been 
work on the stable observer design for nonlinear and 
time-varying systems [4,5]. These extensions to nonlinear 
systems were focused on analytical design techniques. The 
main method is to set the observer gains such that the overall 
linearized error dynamics matrix, composed of the gain 
vector, the Jacobians of the state dynamics and the output 
mapping, has stable eigenvalues over a closed subset of the 
state space. Convergence can be proven and stability can be 
guaranteed for those state trajectories residing in this subset 
under these conditions [4,5]. This analytical extended 
Luenberger observer design has been successfully applied to 
realistic nonlinear system models.  
 In contrast to this analytical design, recently we 
proposed an adaptive extended Luenberger observer using 
mean-square-error (MSE), where the observer gains are 
continuously updated during state estimation [6]. MSE can 
extract all the information in the data provided that the 
dynamic system is linear and the noise is Gaussian 
distributed. However, when the system becomes nonlinear 
and the noise distribution is non-Gaussian, MSE fails to 
capture all the information in the error sequences. 
 In order to extend Luenberger observer to nonlinear 
dynamic system with non-Gaussian-distributed noise, an 

alternative criterion is needed in order to achieve optimality. 
Entropy is a natural extension beyond MSE since entropy is 
a function of probability density function (pdf), which 
considers all high order statistics [7].   
 Information theoretic approaches have been previously 
proposed as a natural extension of Kalman filtering to 
nonlinear and non-Gaussian systems and signals [8]. This 
early work focused on the theoretical aspects of 
entropy-based state estimation without providing a feasible 
practical algorithm. The contribution of this paper is a 
practical algorithm that implements error-entropy-based 
state estimation that has low computational complexity for a 
feasible real-time implementation as well. 

II. EXTENDED LUENBERGER OBSERVER 
Consider a linear time-invariant (LTI) dynamic system 
described by the equations 
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where
• n

kx ℜ∈  is the state vector, 

• m
ku ℜ∈  is the system input, 

• t
ky ℜ∈  is the system output, 

• 0x  are the initial conditions (probably unknown).
 It is often necessary to construct estimates of the state 

vectors that are not available through direct measurement in 
control design. A state estimator can be specified as 

( )kkk yux ,ˆ ℑ= , where ℑ denotes an operator and kx̂ is called 
the state estimate. It is desired that the estimation error, 
defined by kkk xxx ˆ~ −= , be small in some sense.  

 Luenberger proposed state observers for multivariable 
dynamic systems [2], which deal with state estimation for 
deterministic systems.  The estimation error is fed back 
through a proportional term so that the closes-loop state 
estimator is stable and the estimation error will approach to 
zero asymptotically provided that the original system is 
observable. The Luenberger observer is given by 
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If the observer gain vector L is set to a value such that the 
estimator error dynamics given by 

( ) kkkk xLCAxxx ~ˆ~
111 −=−= +++  (3) 

has stable eigenvalues, then the global asymptotic stability 
of the observer is guaranteed [9]. 
 It is straightforward to extend the Luenberger observer to 
nonlinear system. Consider a nonlinear time-varying 
dynamic system given by 
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the extended Luenberger observer is specified by  
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 The extended Luenberger observer (5) is intended to deal 
with deterministic nonlinear dynamic system, it is also 
possible to apply the formulation to stochastic systems. The 
issue of stochastic state estimation arises when the noise and 
disturbance acting on state transition equations and 
measurements are considerable and cannot be satisfactorily 
filtered out [10].  Consider a nonlinear, time-varying, 
stochastic dynamic system described by equations 
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where kk wv ,  are zero-mean white noise for state transition 
and measurement respectively. The restriction to zero-mean 
noise is not a loss of generality. We can always add one 
more dimension to state transition equation and 
measurement to take care of a nonzero mean noise.  A 
proportional extended Luenberger observer is defined as in 
(5). In the stochastic state estimation scenario, zero mean 
and small variance are typical desired characteristics of the 
estimation error.  
  For the Luenberger observer (2), there is a solid 
analytical method to select the observer gain L such that the 
observer will behave according to control design 
requirements. But such a method is not yet available for the 
extended Luenberger observer (5). Instead of prespecifying 
the observer gain, we apply the information theoretic 
learning technique to update the observer gain during the 
course of state estimation so that the entropy of the error 
between the measurement and estimated output is minimized 
at each step.

III. INFORMATION-THEORETIC LEARNING 
Information theoretic learning (ITL) is a signal processing 
technique that combines information theory and adaptive 
systems. ITL utilizes information theory as a criterion to 
update the structure of adaptive system in order to achieve a 
certain performance [11]. Traditionally, mean-square-error 
(MSE) is the optimality criterion to perform supervised 
training of adaptive systems. The main reason for the wide 

use of MSE resides in the fact that quadratic criteria 
combined with linear systems result in analytically tractable 
mathematics and lead to solutions like the Wiener-Hopf 
equation [12]. For linear systems and Gaussian distributed
signals, second-order statistics are able to extract all the 
information present in the data, thus yield optimal training 
solutions in an information theoretic perspective. For 
example, the well-known Kalman filter, using the MSE 
criterion, from adaptive signal processing point of view, is 
the optimal filter in the information theoretic sense, since it 
deals with linear systems corrupted with white Gaussian 
noise [8]. 
 However, many contemporary signal processing 
problems extend beyond the linearity and Gaussianity 
assumptions, therefore to achieve optimality in an 
information theoretic framework, one has to go beyond 
second-order statistics as optimality criteria. To this end, we 
need to consider the higher-order statistics of the signals 
since arbitrary distributions, unlike the Gaussian, are not 
only characterized by their 2nd-order statistics. 
 Information theoretic criteria provide natural and 
intuitive means of dealing with higher-order statistics of the 
signals, since they are derived based on particular postulates 
such as additivity [7]. Entropy, which measures the average 
information content in a random variable with a particular 
probability distribution was previously proposed as a 
criterion for supervised adaptive filter training and it was 
shown to provide better neural network generalization 
compared to MSE [13]. 
 Given a random variable X with probability distribution 
function (pdf) fX(x), Shannon’s entropy is defined by [14] 

( ) ( ) ( )dxxfxfXH XXs −= log  (7) 

One drawback of using Shannon’s entropy as a cost function 
in adaptive signal processing is that it is difficult to estimate 
the quantity directly from data samples. In fact, Renyi’s 
entropy, which includes Shannon’s entropy as a special case, 
leads to a practical estimator for entropy directly from data 
when combined with a nonparametric estimator. Renyi’s 
entropy of order-α is given by [15] 
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As can be shown, using L’Hopital’s rule, the limit of Renyi’s 
entropy, as α approaches to 1, yields Shannon’s entropy. In 
order to estimate Renyi’s entropy directly from data samples 
{x1, x2,…xN}, Parzen windowing with kernel function (.)σκ
is employed [16]. Approximating the expectation operator 
with sample mean, we obtain the following estimator for 
Renyi’s entropy [13] 
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The parametric definition of Renyi’s entropy provides extra 
freedom to the designer. Most commonly used and easy to 
evaluate is the quadratic entropy, which is given by 
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 When Renyi’s entropy is utilized as a cost function that 
encompasses all the information lies in sample data in 
supervised learning, it is straightforward and intuitive to 
minimize the cost function with respect to system structure. 
Because the “log” function is monotonically increasing, 
minimizing Renyi’s entropy is equivalent to maximizing the 
argument of logarithm function, which is called the 
information potential.
 To apply information-theoretic learning to state 
estimation, we aim to minimize Renyi’s quadratic entropy 
(10) or equivalently maximize the quadratic information 
potential of the error, defined as the difference between 
measurements ky and estimated output kŷ , with respect to 
observer gain L. To this end, a gradient-based learning 
algorithm is developed to update observer gain L during the 
course of state estimation so that the estimated state will 
approach to the true state asymptotically in a statistical 
sense.

IV. STOCHASTIC GRADIENT ALGORITHM  

Given the data sample set { }N
kkk yu 1, = up to time step N, the 

entropy observer will generate the estimated state Nx such
that Renyi’s quadratic entropy of error will be minimized. 
When we directly apply Renyi’s quadratic entropy in (10) to 
state estimation, the algorithm suffers from O(N2)
computational complexity since quadratic entropy (10) is a 
batch method which needs all the previous data samples. To 
reduce the computational complexity, we derive the 
stochastic information gradient (SIG) for Renyi’s quadratic 
entropy so that the algorithm can handle online, 
instantaneous computation for state estimation.  
 Dropping the expectation and evaluating its argument at 
the most recent sample of a random variable X, we obtain the 
stochastic gradient for quadratic entropy [17],  

( ) ( ) ( )kXX xfxfEXH log][log2 −≈−=  (11) 

kx denotes the most recent data. Since the probability 
density function (pdf) of X is unknown in practice, we use 
Parzen windowing to estimate it. In a nonstationary 
scenario, the online pdf estimator can be obtained using a 
sliding window. Assuming a length-W window of data 
samples, the stochastic pdf estimator evaluated at kx  is 
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Hence, the stochastic quadratic entropy at time step k is 

given by  
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 Define the instantaneous error kkk yye ˆ−= , then the 
cost function used to update the extended Luenberger 
observer gain L would be the stochastic quadratic 
information potential of error signal, i.e.  
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Applying the chain rule and taking the derivative of J with 
respect to the observer gain L, we get the update rule for the 
observer gain L for every time step k, thus the observer is 
updated during the course of state estimation.  
 Suppose the dynamic system is multi-input and 
multi-output (MIMO), L will be a matrix of dimension 
n-by-t, we can derive the stochastic gradient with respect to 
each column of L, denoted by L:, j.
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where η  is step size for adaptation. Throughout the paper, a 
Gaussian kernel is used, although other choices are possible 
and will be investigated in the future.  
 It can be shown that the stochastic gradient will update 
the observer gain L in the mean to the minimum error 
entropy (MEE) optimal values [17].  

V. SIMULATIONS 
In this section, we demonstrate the performance of the 
proposed minimum error entropy observer on state 
estimation for a linear time-invariant system and also for the 
Van der Pol oscillator. In order to illustrate the performance, 
we compare the results of entropy observer with the 
extended Luenberger observer using MSE [6].  

A. Linear time-invariant (LTI) system 
We first study a linear time-invariant system, here a 
single-input single-output excited by white noise of 
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exponential distribution. The system dynamic is given by 
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where kw is zero-mean white noise with any arbitrary 
distribution. 
 Two simulation results are presented in Fig. 1. The first 
one is without measurement noise, i.e. kw =0. The left two 
subplots in each figure present the true state and estimated 
states using ITL and MSE, and the right two subplots give 
the state estimation error. Notice that in Fig. 1(a), the 
absolute value of the state estimation errors using ITL decay 
exponentially much faster than the one using MSE, which 
means entropy observer converges to the true state much 
faster than the one trained by MSE. Whereas, in Fig. 1(b), 
the measurements are corrupted with zero-mean white noise 
of uniform distribution at 15dB signal-to-noise ratio (SNR), 
the simulation results suggest that the state estimation errors 
from the entropy observer not only decay faster, but also 

achieve a much lower level, up to 10-5 difference, than the 
one by MSE. Since the noise is not Gaussian, ITL extract 
more information from the error sequence than MSE.  

B. Van der Pol Oscillator 
Next, we apply the minimum error entropy Luenberger 
observer to the discretized (first-order difference) Van der 
Pol oscillator dynamic system. The system is characterized 
by the following equations.  
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where T is the sampling time used in discretization and the 
smaller T the better approximation. Note that though the 
continuous Van der Pol oscillator is globally stable, the 
first-order discretization leads to instability in parts of state 
space. In the case that the state trajectory goes through this 
unstable region, neither the entropy observer nor the MSE 
extended Luenberger observer can follow the diverging 
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measurement noise 
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Fig. 1(b) LTI system states, estimates and estimation error with 
measurement noise 
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Fig. 2(a) Van del Pol system states, estimates and estimation error 
without measurement noise 
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trajectory. But, as long as the state trajectory remains in the 
stable region, both observers converge smoothly.  
 In simulations, we used a sampling time of T=0.1 and the 
oscillator parameter is µ=0.5. The state estimation errors 
exhibit similar behavior to that observed in the LTI system. 
The first simulation corresponds to noiseless measurements. 
As can be seen from the results, the entropy observer 
converges faster than the extended Luenberger observer 
using MSE. Under the noisy measurement case, where the 
white noise of uniform distribution is 15dB, the state 
estimation error from entropy observer yields a lower bound 
than that of extended Luenberger observer by MSE. The 
bound is affected by the measurement noise.  
 Case studies from linear time-invariant system and 
nonlinear dynamic system suggest that entropy observer 
outperforms the extended Luenberger observer using MSE 
in terms of faster convergence and smaller steady-state 
estimation error.  

VI. ALGORITHM DISCUSSIONS 

A. Computational Complexity 
It is important that the developed algorithm for state 
estimation problems be on-line. By introducing the 
Stochastic Information Gradient (SIG), we transformed a 
batch algorithm to an online one and reduced the 
computational complexity from O(N2) to O(W), where N is 
the total data up to time step N and W is the window length 
used in SIG. The designer considers a trade-off in choosing 
the window length W, since smaller W results in less 
computational complexity, while larger W is required to 
improve estimation accuracy and reduce misadjustment. 

B. Mean-invariance of Entropy 
Entropy is mean-invariant, which means its value remains 
constant even if the mean has been shifted. Let ξ+=′ xx ,
where ξ  is a replacement, then  
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Thus training with entropy will lead to a set of optimal 
weights. This is the reason that we have to properly modify 
the output system bias to yield zero mean error over the 
training data set [13].  However, we don’t need any extra 
processing about mean-invariance in the proposed entropy 
observer. The reason is that the bias is feedback to the 
observer and it will decay exponentially to zero as long as 
the entropy observer is stable.  

C. Optimization issue 
Training with information-theoretic learning may exhibit 
some local minima [13]. From the extensive simulations 

above, we notice that gradient descent algorithm sometimes 
failed to reach the global minimum. The kernel size σ in the 
Parzen window (.)σκ  controls the smoothness of the error 
information potential. A kernel annealing approach is 
proposed to update the kernel size during adaptation in order 
to achieve the global minimum [18]. One problem with 
kernel annealing is how to set the annealing rate (a common 
unsolved problem in all variants of stochastic annealing). 
This issue will be addressed in a future paper, and in this 
preliminary report, we use a constant kernel size for 
simplicity. 

VII. KERNEL METHODS 
Kernel methods have become a hot research topic in the 
machine learning community since the introduction of 
Support Vector Machines (SVM) [19]. Kernel-based 
algorithms are nonlinear versions of linear algorithms where 
the data has been nonlinearly transformed to a high 
dimensional feature space where we only need to compute 
the inner product via the kernel function. Kernel methods 
have been successfully used in classification, regression and 
data analysis [19]. In essence, the eigendecomposition of a 
positive function (the kernel) is utilized to define the 
following inner product for the transformation space: 

)(),()()()(
1

xxxxxx
k

kkk ′ΦΦ=′=′−
∞

=
ϕϕλκσ  (19) 

 Recently we formulated information-theoretic learning 
based on Parzen window density estimators as a kernel 
method, which allows us to address the kernel methods from 
an information processing point view [20]. Revisiting the 
information potential for order-2 Renyi’s entropy in (10), we 
notice that 
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where Φ  is the mean vector of the transformed data. 
Thus, the quadratic information potential turns out to be the 
inner product of the mean vector of the nonlinearly 
transformed data in the Hilbert kernel space. By applying 
information-theoretic learning technique to the extended 
Luenberger observer for nonlinear dynamic systems, we are 
essentially transforming the input data to a high dimensional 
feature space so that a second-order, linear algorithm is 
performed.  
 The authors hypothesize that a kernel Kalman filter can 
be developed where the Kalman filter equations can be 
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applied to the nonlinearly transformed dynamic system in 
the high dimensional Hilbert kernel space. The mapping 
back to original input space enables us to deal with 
nonlinear, non-Gaussian state estimation problems. In order 
to achieve this, future work will involve merging dynamical 
state estimation with kernel methods. 

VIII. CONCLUSIONS
In this paper, we developed an error-entropy-based observer 
to deal with nonlinear state estimation problems. We 
constructed an adaptive Luenberger observer based on 
information theoretic learning rather than trying to pre 
specify a globally stable observer gain vector. A stochastic 
gradient-based algorithm was developed for feasible 
real-time implementation. 
 The performance of the proposed observer is evaluated 
in linear time-invariant and Van der Pol oscillator systems 
by comparing with a similar adaptive Luenberger observer 
trained using the mean-square-error criterion. The 
simulation results suggested that the entropy observer 
converges faster to the true state and has lower state 
estimation error than its square-error counterpart. 
 We also pointed out that the proposed entropy observer 
forms a link between the popular kernel methods in machine 
learning and state estimation. Future work will involve 
developing a “Kernel Kalman Filter” to address nonlinear 
non-Gaussian state estimation.  
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