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Abstract— We announce new methods for explicitly con-
structing strict input-to-state stable (ISS) Lyapunov functions
for time-varying nonlinear systems. Our constructions are
expressed in terms of nonstrict ISS Lyapunov functions which
we assume are given. The nonstrict Lyapunov functions can
in turn be constructed by known methods for many systems
of interest. We also provide a new method for explicitly
constructing input-to-output stable (I0S) Lyapunov functions
for time-varying systems with outputs. We illustrate our results
using a tracking problem for a rotating rigid body.
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I. INTRODUCTION

Strict Lyapunov functions provide the foundation for
much of current nonlinear control analysis and controller
design (see [6], [10], [11], [17]). Starting from strict Lya-
punov functions, one can design feedbacks that render sys-
tems asymptotically stable to actuator errors and observation
noise, develop necessary and sufficient conditions for many
types of stability, construct state estimators, track reference
state trajectories, and much more. In many applications, it
is necessary to have explicit formulas for strict Lyapunov
functions. This is the case in the design of stabilizing
feedbacks, which are usually expressed in terms of Lie
derivatives of Lyapunov functions in the directions of the
vector fields that define the systems (see [10], [11], [18]).

On the other hand, the known strict Lyapunov func-
tions provided by converse Lyapunov theory are usually
expressed as optimal control value functions, in which cost
functions are maximized over infinitely many solution paths
(see [2], [19], [22]). While value functions can sometimes
be characterized as unique solutions of Hamilton-Jacobi
equations and computed using numerical PDE methods,
such methods can be difficult to implement and therefore
are not always suitable for computing Lyapunov functions
in practice. This has led to a great deal of current research
devoted to finding new ways of constructing strict Lyapunov
functions.
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This note continues the search (started in [12]) for
methods of constructing strict Lyapunov functions for time-
varying systems. Unlike the value function approach to
Lyapunov functions, the constructions in [12] apply an
integral smoothing technique to known nonstrict Lyapunov
functions. This smoothing method has its origins in Lya-
punov theory for time delay systems. For many systems
of interest, nonstrict Lyapunov functions can in turn be
constructed by backstepping or other known methods (see
[5], [13]), so [12] leads to a complete method for explicitly
constructing strict Lyapunov functions for time-periodic
systems with no controls.

The systems in [12] are assumed to satisfy a nonstrict
generalization of global asymptotic stability (GAS) for
which the Lyapunov function nonstrictly decays along the
trajectories of the system. Hence, [12] allows the gradient of
the Lyapunov function along trajectories of the system to be
zero at some points outside the origin. A natural and widely
used generalization of GAS for control systems is the so-
called input-to-state stable (ISS) property, as introduced by
Sontag in his seminal paper [16]. For ISS systems, the
magnitude of the state decays to zero, locally uniformly
in the initial state, but with an overshoot depending on the
magnitude of the input; see Section II for the precise ISS
definition. More recently, ISS theory has been extended
to systems with outputs and measurement errors in the
controllers; see for example [7], [10], [11], [18], [20], [21].

The ISS framework has formed the basis for significant
advances in controller design and control analysis (such as
[10], [18], [19]). Many of these developments are based on
the ISS Lyapunov function existence theory from [19]; see
also [4] for analogues of [19] for time-varying systems, and
Section II below for the relevant definitions. However, as in
the case of no controls, the ISS Lyapunov functions from
the existence theory are optimal control value functions
and so do not lend themselves to explicit feedback design.
Moreover, while most theoretical developments for ISS
systems deal with time-invariant systems, it is sometimes
more natural to consider perturbed time-varying systems,
e.g., for tracking problems.

This motivates the search for explicit strict ISS Lyapunov
function constructions for time-varying systems, in terms
of known nonstrict ISS Lyapunov functions, which is the
focus of this note. In Section II, we provide the definitions
of nonstrict and strict ISS Lyapunov functions and corre-
sponding nonstrict and strict versions of ISS. In nonstrict
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ISS, the dissipation rate depends on a nonnegative time-
dependent decay parameter that can be zero along intervals
of positive length. As in [12], this allows the gradient of
the Lyapunov function along trajectories to take the value
zero at some points outside the origin. However, when
the decay parameter is identically one, our nonstrict ISS
property agrees with the usual ISS condition.

We announce our new strict ISS Lyapunov function
constructions in Section III. In Section IV, we provide Lya-
punov characterizations for nonstrict ISS for time-varying
systems. In Section V, we present a general method for
explicitly constructing strict input-to-output stable (I0S)
Lyapunov functions for time-varying systems with outputs.
We close in Section VI by applying our constructions to a
tracking example for a rotating rigid body. This example
also shows how to construct the required nonstrict Lya-
punov functions. While our discussions of ISS systems
will be mainly conceptual, we refer the reader to [9]
where complete proofs of our main ISS results can be
found. However, to our knowledge, our strict IOS Lyapunov
function construction appears here for the first time.

II. DEFINITIONS AND STANDING ASSUMPTIONS

We let K, denote the set of all continuous functions
p :[0,00) — [0,00) for which (i) p(0) = 0 and (ii) p is
strictly increasing and unbounded. Note that o, is closed
under inverse and composition; i.e., if p1, p2 € Ko, then
pfl, p10p2 € Koo. We let L denote the class of all con-
tinuous functions 3 : [0,00) x [0,00) — [0,00) for which
(1) B(-,t) € Ko foreach t > 0, (2) (s, -) is nonincreasing
for each s > 0, and (3) 5(s,t) — 0 as t — +oo for each
s > 0. When we say that a function p is smooth (a.k.a.
Ch), we mean it is continuously differentiable, in which
case we write p € C'*. (For functions p defined on [0, c0),
we interpret p’(0) as a one-sided derivative, and continuity
of p’ at 0 as one-sided continuity.)

We study the stability properties of the fully nonlinear
nonautonomous system

T = f(t, z,u),

where we always assume f is locally Lipschitz in (¢, z, u)
(but see Section V for the extension to systems with
outputs). Following [12], we also assume f is periodic in
t, i.e., there exists a constant 7" > 0 such that

f@+T,z,u) = f(t,z,u) Vt >0, 2 € R", u e R™.

t>0, zeR", ueR™ (1)

However, our periodicity assumption can be relaxed to
the uniform local boundedness condition from [1] (see
[9]). The control functions (ak.a. inputs) for the system
(1) comprise the set of all measurable locally essentially
bounded functions u : [0,00) — R™; we denote this set
by U. We let |u|; denote the essential supremum of any
control u € U restricted to any interval I C [0, c0). For
each t, > 0, x, € R", and u € U, we let

I>t— ¢(t;xo, to, ) *)

denote the unique trajectory of (1) for the input u satisfying
x(t,) = x, and defined on its maximal interval I C [t,, 00).
We let T}, ., u denote the supremum of I. This trajectory
is denoted by h — ¢(t, + h) for brevity when this would
not lead to confusion. We say that f is forward complete
provided each trajectory (*) is defined on [t,,0); i.e.,
Ty 0y u = +00.

A C! function V : [0,00) x R® — [0,00) is said to
be of class UPPD (written V' € UPPD) provided it is
uniformly proper and positive definite, which means there
exist aq, g, a3 € K such that for all £ > 0 and z € R”,

ar(fz]) SVt z) < ag(lz]) & [VV(E,2)| < as((z]). (2)

We say that V' has period T in t provided there exists a
constant 7 > 0 such that V(¢ + 7,2) = V(¢,x) for all
t > 0 and x € R™; in this periodic case, the bound on VV
in (2) is redundant. We can always assume «; and ag in
(2) are C'! by taking

as(s) = [ " as(r)dr

and minorizing a; by a C* function of class K... For any
C! function V : [0,00) x R™ — [0, 00), we set
. ov ov

V(t,z,u) = E(t,x) + %(t,x) -tz u).

Throughout this note, we simplify notation whenever no
confusion can arise. For instance, we may denote V (¢, z, u)
by V. If V € UPPD and x € K, then

5+ Sup{|V(t,x,u)| (>0, |z] < x(9),|ul <st+s 3)

is of class K. We let P denote the set of all continuous
p: R — [0,00) admitting constants 7,¢,p > 0 for which

t
/ p(s)ds > € and p(t) <p Vt>0. 4)
t—7

We write p € P(7,¢,p) to indicate that (i) p € P and (ii)
T,€,p > 0 are constants such that (4) holds. In particular,
any continuous periodic function p : R — [0,00) that is
not identically zero admits constants 7,&,p > 0 satisfying
(4). On the other hand, (4) also allows nonperiodic p with
arbitrarily large null sets (see [9]). The following basic
properties are easily checked (see [9]):

(Py) forall t >0,

[:(L}umads

(P2)
toth
h+— p(h) = inf {/ p(r)dr:t, > 0} (6)
t

Z;&—t+ﬂMﬂm

72

.”Bl

<

(&)

2 ‘

the continuous function

o

is nondecreasing and unbounded on [0, ).
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Property (P1) is a consequence of Fubini’s Theorem. The
elements of P serve as decay rates for our Lyapunov
functions as follows:

Definition 1: Let p € P. A function V € UPPD is
called a nonstrict ISS Lyapunov function for (1) and p, a.k.a.
an ISS(p) Lyapunov function, provided there exist functions
X € Koo and p € Koo N C' such that

2| > x(Jul) = V(t,a,u) < —p(t)u(|z]) vt > 0. (7)

An ISS(p) Lyapunov function for (1) and p(t) = 1 is also
called a strict ISS Lyapunov function.

Notice that (7) allows V (¢, z,u) = 0 at those times ¢
where p(t) = 0. This corresponds to allowing V' to non-
strictly decrease along the trajectories of f. The assumption
that 1 € C' N K is not essential for Definition 1 since we
can always minorize a function p € Ko, satisfying (7) by
a smooth K., function that again satisfies (7).

Definition 2: Let p € P. We say that (1) is input-to-
state stable (ISS) with decay rate p, a.k.a. ISS(p), provided
there exist § € KL and v € K, such that for all ¢, > 0,
T, € R", u el and h > 0, the corresponding trajectories
for f satisfy

to+h
|¢(to + )| < B (I%L/t p(S)dS> +7 (Il b, 4n1) -
If (1) is ISS(p) with p = 1, then we say that (1) is ISS.

Notice that ISS(p) systems are automatically forward
complete. Moreover, by causality, we can replace the ar-
gument of +y in the ISS(p) decay estimate by [u]};, ). We
also study dissipation-type decay conditions as follows:

Definition 3: Let p € P. A function V' € UPPD is
called a nonstrict dissipative Lyapunov function for (1) and
p, ak.a. a DIS(p) Lyapunov function, provided that there
exist € Koo and p € Koo N CL such that for all ¢ > 0,
rz € R™, and u € R™, we have

V(t,z,u) < —p(t)pu(|]) + Qlul)- (®)

A DIS(p) Lyapunov function for (1) and p(¢t) = 1 is also
called a strict DIS Lyapunov function.

Under our periodicity assumption on f, one can check
(see [9, Section 3]) that a function V' &€ UPPD is a
strict DIS Lyapunov function for (1) if and only if it is
a strict ISS Lyapunov function for the system; this follows
because the functions (3) are in Ky, when x € K. One
can also check (see Section IV below) that ISS(p) and
ISS are equivalent conditions for any p € P. Our main
contributions in this note are simple direct constructions
for strict ISS Lyapunov functions for (1) in terms of given
ISS(p) or DIS(p) Lyapunov functions (but see Section V for
an extension for systems with outputs).

IITI. STRICT ISS LYAPUNOV FUNCTION CONSTRUCTION

In this section, we provide explicit formulas for strict
ISS Lyapunov functions. Our strict Lyapunov functions are
computed in terms of nonstrict Lyapunov functions, which

we assume are given. Combined with the existing methods
for constructing the required nonstrict Lyapunov functions
(e.g., [5], [13]), this provides a complete strict Lyapunov
function construction for a broad class of nonautonomous
systems. Our constructions have the additional desirable
property that if p € P(r,¢,p) and our given DIS(p)
Lyapunov function both have period 7 in ¢, then the strict
ISS Lyapunov function we construct also has period 7 in ¢.

a) First Construction: Our main construction is as
follows:

Theorem 4: Let 7,e,p > 0 be constants, p € P(1,¢,p),
V be a DIS(p) Lyapunov function for the system (1), and
g, it € KooNC? satisfy the UPPD and DIS(p) requirements
(2) and (8) for some o € Koo N Ct and a3, € Koo.
Define V¥ by

Vit,z) =V (t,z)
+ 5 (Jpeydr ) ds| wvi,2)), ©)

w=—pod, ", d(s) = max{%ﬁ, 1} (aa(s)+pu(s)+s).

Then V* is a strict ISS Lyapunov function for (1). If V and
p have period 7 in ¢, then so does \%3

Proof: With the choice fi := poay 1 we have

V(t,z,u) < —p(pV (¢t 2) + Qful)  (10)

for all £t > 0, x € R™, and u € R™. This follows because

ao(s) > as(s) s>0.

Also, w € Ko NC1. In particular, w’(s) > 0 for all s > 0,
and

w'(s) =

IN

(67 (s)) 1
21

for all s > 0. It follows from (5) that for all ¢ > 0 and
z € R", we have

14 [/: (/Stp(r)dT> ds} W (V(t,7)) € [12} (11

Since w = 7-fi, it follows that if

5
ol 2 xul) = et 0w (Zu) . a2)
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then Q(|u|) < ZEw o ay(

), sO

o = [ (frow)alo]s

IN
[
=
=
=
=
+

< =Swnm)+ 200 - ([ perar)wv)
< —ew(an (o)) + S0(ul) (b (2) and (1)
< —Swla()) (by (12)).

Since

woa; € C*'NKs, X € Koo,

and V¥ € UPPD, it follows that V! is the desired strict
ISS Lyapunov function. The periodicity assertion is easily
verified using Property (P;) above (see [9]). ]
Remark 5: Since any ISS(p) Lyapunov function for (1)
is also a DIS(p) Lyapunov function, the preceding theorem
gives a method for converting a nonstrict ISS Lyapunov
function into a strict one.
b) Second Construction: The preceding construction
can be simplified if f takes the control affine form

&= f(t,@,u) = h(t,z) + g(t, z)u, (13)
as follows. We fix constants 7,¢,p > 0 and p € P(7,¢,D),
and we assume there exist a time-independent W € UPPD
and a constant g > 0 such that

ow ’

S @h(to)| < W) |

72p

=g

@)

forall t > 0 and x € R™.
Theorem 6: Let p, g, h, f, and W be as above. Assume
that V € UPPD and x € K, are such that

|z = x(|ul) =

ot - or

for all ¢ > 0. Then

Ulte) o= V(L) + [/ti (/t p(r) dr) ds] W(x)

is a strict ISS Lyapunov function for (13). If p and V' have
period 7 in ¢, then so does U.

We leave the proof of this theorem to the reader; see [9]
for similar arguments.

(t,2) [t x) + g(t, z)u] < —p(t)W (2)

IV. NONSTRICT ISS CHARACTERIZATIONS

We next relate the Lyapunov function and stability no-
tions we introduced in Section II. For general p € P, we
show that ISS(p) is equivalent to the existence of an ISS(p)
Lyapunov function and to the existence of a strict ISS Lya-
punov function. In particular, ISS and ISS(p) turn out to be
equivalent. This extends the ISS Lyapunov characterizations
[4], [19] which only cover the case where p = 1. The proof
of our equivalences is based on our strict ISS Lyapunov
function constructions from the previous sections. For a
partial generalization for systems with outputs, see below.

Theorem 7: Let p € P and f be as above. Then the
following are equivalent conditions for the system (1):

(C1) (1) admits an ISS(p) Lyapunov function.
Cs

(1) admits a strict ISS Lyapunov function.

(C2)

(C3) (1) admits a DIS(p) Lyapunov function.
(C4) (1) admits a strict DIS Lyapunov function.
(Cs) 1SS(p).

(Cs) ISS.

The proof of Theorem 7 proceeds by showing: (C7) =
(C2) = (C1) = (C1), (C5) & (Cu), (C2) & (Ce),
and (C5) & (Cg). The equivalence (C5) < (Cg) is a
consequence of Property (P2) from Section II, and can be
shown as follows.

Pick p € P(r,e,p). If (Cg) holds, then we can find § €
JICL such that for all t, > 0, x, € R®", u e U, and h > 0,

6(to + h)| < <uAﬁm+vwm%%Mn
h
< Bllzol, [ p(s)ds) + y(|ulfe, b, 1)

where ¢ is the corresponding trajectory of f we defined
in Section II. Therefore, f is ISS(p) so (Cs) = (Cs).
Conversely, if f is ISS(p), then we can find 3 € KL with
the property that for all t, > 0, x, € R”, u € U, and

h >0,
9to+m] < B (lrol. S p(s)ds )+ (i)
< Bllol p(h)) + ([l 1 e):

By (P2), B(s,t) := B(s,p(t)) € KL, so (C5) =
desired.

Remark 8: One of the novel features of Theorem 7 is that
it applies to time-varying systems. The (strict) ISS property
for time-varying systems was covered in [4]. In fact, the
implication (Cs) = (C3) was announced in [4, Theorem
1] and can also be deduced using the existence theory for
time-varying Lyapunov functions for set valued dynamics
from [2]; see [9] for details.

Remark 9: Our proof of Theorem 7 shows that if V' is
a strict ISS Lyapunov function for f, then V is also a
strict DIS Lyapunov function for f. This implication is no
longer true if our periodicity condition on f is dropped, as
illustrated in [4].

For the complete proof of Theorem 7, see [9].

IN

N

(Cs), as
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V. STRICT IOS LYAPUNOV FUNCTION CONSTRUCTION

The ISS property estimates the decay of the state in
terms of an overshoot that depends on the magnitude of the
control. However, in many applications, the current state
may be difficult if not impossible to measure. Instead, only
output measurements are available, giving rise to the model

&z = f(t,z,u), y=H(x) (14)

where f is as before and H is locally Lipschitz. We assume
for simplicity in this section that f is forward complete.

Many generalizations of ISS for time-invariant systems
with outputs have been proposed; see [7], [18], [20], [21]
for discussions. It is natural to generalize the ISS condition
by positing a decay of the output (instead of the state)
with an overshoot depending as before on the magnitude
of the input. This is made precise in the following defi-
nitions, which generalize the corresponding definitions for
time-invariant systems from [21]. In what follows, we set
Y(to+ h;xo, to,u) = H(d(to + h; x0, to,u)) for all ¢, > 0,
Tz, € R", ueld, and h > 0.

Definition 10: We say that (14) is input-to-output stable
(I0S) provided there exist 8 € KL and v € K such that

y(to + hizo, to, )| < B(lzol, ) + 7 ([uley t4m)

forall t, >0, z, € R", uelf and h > 0.

The corresponding Lyapunov function notion is as follows:
Definition 11: A smooth V : [0,00) x R" — [0, 00) is

called a (strict) 10S Lyapunov function for (14) provided

there exist functions aq,as,x € Ko and k € KL such

that the following two conditions hold for all ¢ > 0:

a(|H(z)|) < V(t,x) < az(|z]|) Ve e R" (15)
V(t,z) > x(u) = V(t,z,u) < —c(V(t,z),|z]) (16)

For the equivalence of the IOS property to the existence
of an IOS Lyapunov function for a class of time-invariant
systems, see [21, Theorem 1.2]. Our methods from Section
IIT can be used to construct strict [OS Lyapunov functions.
A first result in this direction is as follows, in which sat{q}
denotes the usual projection of ¢ € R onto [—1, +1].

Theorem 12: Let f and H be as above and assume p €
P(r,e,p). Let U : [0,00) x R — [0,00) be a C! function
that admits é, do, X € Koo and & € C' N K, that satisfy

([ H(@)|) < Ut 2) < do(lz]) Yz eR®  (17)
U(t,z) > X(|lul) = U(t,z,u) < —p(a(U(t,x)) (18)

for all £ > 0. Define w : [0,00) — [0, 00) by

w(r) = ! /OT sat{#’(s)}ds.

T2p+ 27
Then

V(t,z) = U(t,z) + { /t i ( / t p(l)dl) ds} w(U (¢, 2))

is a strict IOS Lyapunov function for (14).

Proof: Suppressing arguments as before gives

[1 + (/; </:p(l)dl> ds) w’(U(m,t))] U

+ {Tpm - /t _Tp<l)dl] w(U(,2))-

V:

Since

—

w(r) < 5,‘%(r) Vr >0, (19)

and w’ > 0, it follows that if U(¢, ) > x(|u|), then

V(t,z,u) < fp(t)/%(U(t,xt))
vt [ s wweo)
< DO [R(U(00) + (U e.2))
—uo(U ) [ )

IN

2

AUt ) — cw(U(E, 2))
< —ew(U(t,z).

(20)

Recalling Property (P;) for p € P from Section II and the
structure of V, and noting that w(r) < T%ﬁ for all » > 0,
it follows that

Ut,z) <V(t,z) <

| W

U(t, x) 2D
for all t > 0 and z € R™. Therefore, if V(¢,z) > 2x(|ul),
then U(t,z) > x(Ju|), so the calculation (20) gives

Vit,z,u) < —ew(U(t,z)) < —ew(2V(t,x)/3)

for all ¢ > 0. Moreover, a1 (|H(z)|) < V(t,z) < 3as(|z|)
forallt > 0 and z € R", by (17) and (21). We conclude that
V satisfies the strict IOS Lyapunov function requirements
with

w(2r/3)
(1+5s)

which proves the theorem. [ ]

oy =4y, ag = 55627 X = 5)2, k(r,s) =e¢

VI. TRACKING EXAMPLE

We next use our results to construct a strict ISS Lyapunov
function for a tracking problem for a rotating rigid body; see
[3], [14], [15] for the background and motivation for this
problem. Following Lefeber [8, p.31], we only consider the
dynamics of the velocities, namely,

(.Zjl = 12;1[3 Waws + d1 “+ uy (22)

L1 N
L twswy +day g, wz = FPwiws

wy =

where the w;’s are the angular velocities, and I; > Is > 0
and I3 > 0 are the principal moments of inertia. The change
of feedback and change of coordinate

. Ix—1I: . I3—1T1
51 = %WQ(.Ug +d1, 52 = SI 1&)3(.01 +d2,

2
— _Is
Z3 P w3
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transform (22) as follows:

wi =01 +u1, w2 =02+u Zz=uwiws. (23)
We consider the reference state trajectory
wir(t) = cos?(t), war(t) = Z3,.(t) =0 (24)

but our method applies to more general reference trajecto-
ries as well; see [9]. The substitutions

01(t) == w1 (t) — wir(t), @o(t) = wa(t) — war(t)
Zs(t) == Zs(t) — Za,(t)
k1(t) := 01(t) + 2cos(t) sin(t), ka(t) := d2(¢)
transform (23) into the error equations
01 = k1 +ui, wo = ko + ug, 23 = (@1 + cos*(t))ie
Consider the control laws

ki = —@1 — 2 [@3 + 2Z3@),

ko = — cos?(t) (@ + Z3) @5)

and set Q (s, Z3) i= 03+ Z3+09 Zs and R(@1, &9, Z3) =
Q(&2, Z3) + @3i. Along the trajectories of the error equa-
tions, our control laws (25) give

Q = — C?Sz(t)Q((:}g, Zg) + [(I)% + 223(:)2](:)1
] +[Z3 + 2@2}112 } -
R < —cos?(t)R(&1, @2, Z3) + [Z3 + 29]us + 201uq

Setting

R . ~ s
V(wlaw% Z3) = \/R(W17WQ,Z3) +1- 13 :U’(S) = 57
choosing Q(s) := 2s and p(t) := cos?(t), and noting that

1 3 - 1 .

Q@2,Zs) = 3 (Zs +200)* + 125 > S(@5+23)

everywhere gives

V < —cos? (t) R(®1,@2,23)
- 24/ R(®1,®2,23)+1
Z3+209 20,
= Ug + = U
o/ R(@1.52,25) 11 © | o/ R(@1.@2.25)+1
S —% COS2(t)V(L:)1,(I)2, Zg) + |’U,1‘ + |U2|

< —p(OV (@1, @2, Z3)) + QJul)

for all u € R%, ¢t > 0, and (©1,@2,%3) € R3. This
is the DIS(p) condition (8) for the error equations in
closed-loop with the control laws (25). Therefore, V is
a DIS(p) Lyapunov function for the closed loop system,
where p € P(m, 7,1). Applying our strict ISS Lyapunov
function construction method gives the following strict ISS
Lyapunov function for the closed-loop system (see [9]):

. 1
Vi — (S(wl,a27 Zs) — 1) (1 + 312 + 3 sin(2t)> :

where

S(@1, @9, Z3) 1= \/&f + Q024 23+ 09 Z3 + 1.
This illustrates how a time-invariant nonstrict Lyapunov
function can give a time-varying strict Lyapunov function.
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