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Abstract— This paper is devoted to studying decentral-
ized control problems from a special viewpoint and testing
the effectiveness of parameter-dependent Lyapunov function
method. First it is pointed out that in order to stabilize
some given interconnected systems, some subsystems should
be assigned to be unstable in some special cases. Then a
special kind of decentralized control problem is studied.
This kind of problem can be viewed as harmonic control
among independent subsystems. Research results show that
two unstable systems can generate a stable system through
some effective cooperations. Linear matrix inequality(LMI)-
based decentralized controller design method is also given
for the special problems studied here by using parameter-
dependent Lyapunov function method developed for robust
stability.

I. INTRODUCTION

The domain of robust analysis and robust control synthe-
sis has been thoroughly investigated in the last two decades.
Since [14], Oliveira, Bernussou and Geromel have opened a
new horizon for LMI-based robust stability study of systems
with parametric uncertainty. The result in [14] has been
generalized dramatically in recent years, see [1], [13], [?],
[15], [16], [17], [19], [23], [25] and references therein. By
introducing a new instrumental matrix variable, LMI corre-
sponding to stability of linear continuous-time or discrete-
time systems is relaxed to a new LMI in which Lyapunov
matrix is independent of state matrix of systems. With
this new extra degree of freedom, a parameter-dependent
Lyapunov function can be built for robust stability and per-
formance analysis and control. Generally this new method
is less conservative than the traditional Lyapunov function
method. And it is also pointed out in [15] that this method
has less conservativeness than diagonal blocked Lyapunov
function method on decentralized control. This paper is
devoted to testing the effectiveness of parameter-dependent
Lyapunov function method on decentralized control from a
special viewpoint. Examples show that this method is also
suitable for the unstable subsystem cases in interconnected
systems.

Decentralized control of large scale systems has been
studied extensively in the past four decades[3], [10], [11],
[16], [20], [21], [22], [24]. The main difficulty of solving
the decentralized control problem comes from the fact that
the feedback gain is subject to structural constraints. Such
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constraints are of the same nature as the static output
ones, which can be viewed as a full state feedback with
structural constraints that select only the measured states.
At the beginning study of large scale system theory, some
people thought that a large scale system is decentrally
stabilizable under controllability condition by strengthening
the stability degree of subsystems. [24] showed that this idea
is wrong by an example. And because of the existence of
decentralized fixed modes, some large scale systems can
not be decentrally stabilized at all. Generally, it is very
conservative that closed-loop subsystems are all required
to be stable. Under the stability of subsystems, the actions
of interconnections are always ignored and even viewed as
disadvantages. This kind of study is disadvantageous for
the study of the actions of interconnections. Recently in
[22], LMI method for decentralized control of nonlinear
systems was presented and no stability assumptions were
made for subsystems. Along the development of society,
interconnections play more and more important roles in
social systems, economic systems, power systems, etc.
But the study of the effects of interconnections in large
scale systems is still very little to the authors’ knowledge.
Recently, some applications of small gain theorem was
given in [5] to strengthen robust stability of interconnected
systems. In fact, small gain theorem in decentralized control
was first introduced and used in 1982, see Section 5.1 of
[21]. And in [21], an example(Example 2.18) was given
to show that in order to stabilize the whole system, some
subsystems must be unstable. The effects of nonlinear input
and output coupling was studied in [6], [7], [8]. We study
decentralized control problems from a special viewpoint in
this paper.

LMI methods have played leading roles during the last
twenty years in linear systems theory[2], [9], [12]. We
establish LMI-based decentralized controller design method
for the special problems studied here by using parameter-
dependent Lyapunov function method. This paper mainly
focuses on interconnected systems composed of two subsys-
tems. The results can be generalized to multiple subsystem
cases. The rest of this paper is organized as follows. In
section 2, by studying the structure of interconnections we
point out that it is impossible to stabilize all subsystems
and the whole system simultaneously by using decentralized
controllers in some special cases, that is, in order to stabilize
the whole system, some subsystems should be assigned to
be unstable. This result shows that the stability of intercon-
nected systems is not only dependent on the stability degree
of subsystems in some cases, but is closely dependent
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on the interconnections. In addition, for sake of studying
the effects of interconnections, we study a special kind
of decentralized control problem which can be viewed as
harmonic stability problem among independent subsystems.
The results show that two unstable subsystems can generate
a stable interconnected system. In section 3, we present
LMI-based decentralized controller design method. Some
examples are given to illustrate the results in section 4.
Examples show that parameter-dependent Lyapunov method
is suitable for the cases of unstable subsystems. The last
section concludes the paper.

Throughout this paper, det(.) denotes the determinant
of the corresponding matrix. Stability of matrix and poly-
nomial means Hurwitz stability. The superscript T means
transpose for real matrices.

II. SPECIAL DECENTRALIZED CONTROL PROBLEMS

In this paper, we mainly consider the following intercon-
nected system composed of two subsystems,{

ẋ1 = A1x1 + A12x2 + B1u1

ẋ2 = A2x2 + A21x1 + B2u2
(1)

u1 = K1x1, u2 = K2x2, A12, A21 are matrices with
compatible dimensions. We say system (1) is decentrally
stabilizable, i.e., there exist K1,K2 such that the state
matrix of the closed-loop system

Acl =
[

A1 + B1K1 A12

A21 A2 + B2K2

]
is Hurwitz stable.

First, we consider a simple example. In system (1) if

A1 =

(
0 1
0 0

)
, A12 =

(
0 α
0 0

)
, B1 =

(
0
1

)
,

A21 =

(
0 β
0 0

)
, A2 =

(
0 1
0 0

)
, B2 =

(
0
1

)
,

K1 = −(k1 k2), K2 = −(k3 k4), then

Acl =

⎛
⎝ 0 1 0 α

−k1 −k2 0 0
0 β 0 1
0 0 −k3 −k4

⎞
⎠ .

Obviously at this time,

det(sI −Acl) = (s2 + k2s+ k1)(s2 + k4s+ k3)−αβk1k3.

For this simple case, one can get the following results easily:
(i) when αβ = 1, 0 is a fixed mode.
(ii) when αβ > 1, for any ki > 0, i = 1, 2, 3, 4, i.e.,

A1 +B1K1, A2 +B2K2 are stable, Acl can not be Hurwitz
stable(the constant term of its characteristic polynomial is
less than 0 at this time).

(iii) when αβ < 1, it is possible that the interconnected
system and two subsystems can be stabilized simultane-
ously.

In [21], an example(Example 2.18) was also given to
show that in order to stabilize the whole system, some
subsystems must be unstable. From the example given

above, we can give a simple structural property for such
systems.

Theorem 1 If the interconnected system in (1) satisfies
that

1) there exists A′
12 such that A12 = A′

12A2, and
A′

12B2 = 0,
2) there exists A′

21 such that A21 = A′
21A1, and

A′
21B1 = 0,

then there are not K1,K2 such that A1+B1K1, A2+B2K2

and Acl are Hurwitz stable simultaneously when det(I −
A′

21A
′
12) < 0.

Proof Computing the determinant of Acl, one can get
det(Acl) = det(A1 + B1K1)det(A2 + B2K2−

A′
21A1(A1 + B1K1)−1A′

12A2).
Noticing conditions 1), 2),

det(Acl) = det(A1 + B1K1)det(A2 + B2K2 − A′
21(A1+

B1K1)(A1 + B1K1)
−1A′

12(A2 + B2K2)),

that is,
det(Acl) = det(A1 + B1K1)det(A2 + B2K2)det(I−

A′
21A

′
12).

When A1 + B1K1, A2 + B2K2 are Hurwitz stable and
det(I−A′

21A
′
12) < 0, one gets that the constant term of the

characteristic polynomial of Acl is less than zero. Therefore,
Acl is unstable.

Remark 1 Obviously, under the conditions in Theorem
1, when det(I − A′

21A
′
12) = 0, 0 is a fixed mode;

when det(I − A′
21A

′
12) > 0, it is possible that there

exist K1,K2 such that A1 + B1K1, A2 + B2K2, Acl are
Hurwitz stable simultaneously. And if Acl is stable, there
must be one of A1 + B1K1, A2 + B2K2 is unstable when
det(I − A′

21A
′
12) < 0. For the study of the effects of

interconnections in large scale systems, it is important
to design decentralized controllers when some subsystems
must be unstable. At this time, the interconnections play
real roles for the stability of large scale systems.

Corollary 1 For any interconnected matrix A =(
A1 A12

A21 A2

)
, if A12 and A21 can be written as A12 =

A′
12A2, A21 = A′

21A1, and det(I − A′
21A

′
12) < 0, then

A1, A2 and A can not be stable simultaneously.
Obviously, the results above can be generalized to cases

of multiple subsystems. For example, for an interconnected
system composed of three subsystems, its closed-loop sys-
tem matrix is given by

Acl =

[
A1 + B1K1 A12 A13

A21 A2 + B2K2 A23

A31 A32 A3 + B3K3

]

LetA1 =

[
A1 A12

A21 A2

]
, B1 = diag(B1, B2), A13 =[

A13

A23

]
, A31 = [A31 A32]. If the following conditions are

satisfied
1) there exists A′

13 such that A13 = A′
13A3, and

A′
13B3 = 0,
2) there exists A′

31 such that A31 = A′
31A1, and

A′
31B1 = 0.

then there are not K1,K2, K3 such that A1 +
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B1diag(K1, K2), A3 + B3K3 and Acl are stable
simultaneously when det(I − A′

31A
′
13) < 0.

The above results show that in some cases the sta-
bility of interconnected systems is closely dependent on
the interconnections. In order to study the actions of the
interconnections between subsystems further, we study a
special kind of decentralized control problem which can be
viewed as harmonic stability problem of subsystems. In this
paper we study the following simple cases.

Consider the following interconnected system

ẋ1 = A1x1 + b12u12,
ẋ2 = A2x2 + b21u21,

(2)

where u12 = k12x2, u21 = k21x1, b12, b21 are given real
vectors. k12, k21 are real row vectors to be determined.
There is information interchange between two subsystems.
It means that two systems are cooperating. For this special
decentralized control problem, one can get some simple
result for its stabilizability with the following lemmas.

Lemma 1 Given a real monic polynomial f(λ) with
degree n, f(λ) has no real root if and only if f(x) >
0, ∀x ∈ R.

One can prove this lemma easily by writing f(λ) as

f(λ) = (λ − λ1)(λ − λ2) · · · (λ − λn)

where λ1, λ2, · · · , λn are roots of f(λ).
Lemma 2 Given a real monic polynomial

f(λ) = λn + an−1λ
n−1 + an−2λ

n−2 + · · · + a1λ + a0

with an−1 > 0, there exists a real stable polynomial

g(λ) = λn + an−1λ
n−1 + bn−2λ

n−2 + · · · + b1λ + b0

such that g(λ) − f(λ) has at least one real root.
Proof When the degree of f(λ) n is odd, it holds

obviously. When n is even, we state that there are a sable
polynomial g(λ) given as above and two points x1, x2 ∈
(−an−1, 0) such that

g(x1) − f(x1) < 0, g(x2) − f(x2) > 0. (3)

In fact, obviously there are a sable polynomial g(λ) given
as above and two points x1, x2 ∈ (−an−1, 0) such that
g(x1) < 0 and g(x2) > 0. At this time, f(x1) and f(x2) are
two fixed numbers. Then |g(xi)|, i = 1, 2 can be enlarged
arbitrarily by enlarging the imaginary parts of the roots of
g(λ), so (3) can be guaranteed easily. By Lemma 1, we
know that g(λ)− f(λ) has at least one real root with such
a g(λ).

� � � H1
�

�H2

�

Fig. 1 feedback system

Theorem 2 If (A1, b12), (A2, b21) are controllable, and
a = tr(A1) + tr(A2) < 0, where tr(.) denotes the trace of
the corresponding matrix, then there are k12 and k21 such

that Acl =
(

A1 b12k12

b21k21 A2

)
is Hurwitz stable.

Proof: Suppose (A1, b12), (A2, b21) are with the
standard controllable model. Let the orders of A1

and A2 be n and m, respectively. Set H1(s) =
k21(sI − A1)−1b12, H2(s) = k12(sI − A2)−1b21, k12 =
(β0, β1, · · · , βm−1), k21 = (α0, α1, · · · , αn−1), d1(s) =
det(sI −A1), d2(s) = det(sI −A2), k1(s) = α0 +α1s+
· · · + αn−1s

n−1, k2(s) = β0 + β1s + · · · + βm−1s
m−1,

then Acl is stable if and only if the feedback system
shown in Fig. 1 is stable, i.e., the polynomial dcl(s) =
d1(s)d2(s) − k1(s)k2(s) is stable. Obviously, dcl(s) is a
monic polynomial and the coefficient of sn+m−1 in dcl(s)
is −a = −(tr(A1) + tr(A2)) > 0. Let d1(s)d2(s) =
sn+m − asn+m−1 + d0(s), then the stability of dcl(s) is
completely determined by d(s) = d0(s)−k1(s)k2(s). When
at least one of n,m is odd, one can choose d(s) arbitrarily
such that dcl(s) is stable, and decompose d(s)− d0(s) into
the product of real polynomials k1(s) and k2(s). This means
that we find real vectors k12, k21 such that Acl is stable.
When all n,m are even, the degrees of k1(s) and k2(s) are
odd, but the degree of k1(s)k2(s) is even. At this time, one
needs choose d(s) such that dcl is stable and d(s) − d0(s)
has a real root in order to decompose d(s) − d0(s) into
the product of two real polynomials. Obviously, this can be
completed using Lemma 2. By Lemma 2, there is a stable
polynomial dcl(x) with the sum of all its roots equal to
a, and d1(s)d2(s) − dcl(s) has at least one real root. This
implies that d1(s)d2(s) − dcl(s) can be decomposed into
the product of two real polynomials k1(s) and k2(s). This
completes the proof.

Remark 2 From the proof of the theorem, we know
that the eigenvalues of Acl can be assigned arbitrarily with
the only constraint a = λ1 + · · · + λn+m when one of n
and m is odd. When n and m are even simultaneously, the
eigenvalues of Acl can also be assigned properly with the
constraints a = λ1 + · · · + λn+m and k12, k21 being real
vectors.
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Remark 3 System (2) can be viewed as cooperative
behavior between two subsystems. Two subsystems can
be disabled themselves(they can be unstable), but they
can realize a stable system through intercrossed feedback.
Subsystem does not use the information itself, but it use
the other subsystem’s information. That is, they can help
with each other to attain some target. Of course, there
may be self-feedback in subsystems themselves. We can
imagine that under cooperations subsystems need not to be
controllable or stabilizable themselves. See the following
system.

If there is self-feedback in subsystems, system (2) can be
stated as follows.

ẋ1 = A1x1 + b1u1 + b12u12,
ẋ2 = A2x2 + b2u2 + b21u21,

(4)

where u12, u21, b12, b21 are given as in system (2),
b1, b2 are real vectors with compatible dimensions, u1 =
k1x1, u2 = k2x2. By using Theorem 2, one can get the
following result easily.

Theorem 3 If (A1, [b1 b12]), (A2, [b2, b21]) are control-
lable and b1, b2 are not zero vectors simultaneously, then
there are real vectors k1, k12, k2, k21 such that system (4) is

stable, i.e., Acl =
(

A1 + b1k1 b12k12

b21k21 A2 + b2k2

)
is Hurwitz

stable.

Remark 4 One can see clearly in Theorem 3, (A1, b1)
and (A2, b2) need not to be controllable or stabilizable.
Theorem 3 shows that two subsystems with effective control
can cooperate easily for sake of stability. The actions
of interconnections are shown here to some degree. And
obviously, the framework in Theorems 1, 2, 3 can be
generalized to multi-subsystem cases. In addition, refer to
[4] for the case of b1, b2, b12, b21 being matrices in which
it is a little tedious for constructing intercrossed feedback.

III. PARAMETER-DEPENDENT LYAPUNOV METHOD

Although we analyzed some special decentralized con-
trol problems in the section above, it is still hard to
design decentralized controllers. Fortunately, [14] presented
parameter-dependent Lyapunov method. In what follows,
by using this method we present LMI-based design method
for the problems discussed above. First we introduce the
following lemma to begin this section.

Lemma 3 Given a real matrix A ∈ Rn×n, A is Hurwitz
stable if, and only if, there exist a matrix P = PT > 0 and
any matrix V such that⎛

⎝ −V − V T V T AT + P V T

AV + P −P 0
V 0 −P

⎞
⎠ < 0. (5)

One can turn (5) into Lyapunov inequality PAT +AP < 0
easily by using the well known projection lemma in LMI
method. By introducing a new variable V , the products of
PA and AT P are relaxed to new products AV and V T AT .
V needs not be symmetric and positive definite. In this

way Lyapunov matrix P can be parameter-dependent for
the study of robust stability and robust performances[14],
[15], [23], [25]. The case of diagonal blocked matrix V for
decentralized control of discrete-time systems was consid-
ered in [15]. Here we discuss upper trigonal constraint of V
for system (1) as follows, lower trigonal constraint can be
considered similarly. Sometimes, upper trigonal constraint
is less conservative than diagonal constraint. Corresponding
to system (1), we suppose

V =
(

V1 V1

0 V2

)
, X =

(
X1 X1

0 X2

)
. (6)

Remark 5 For simplicity, we assumed that V and X
acquire the upper trigonal structure as in (6). In fact,
it is only fit for the case of order(A1) = order(A2).
If order(A1) �= order(A2), for example order(A1) <
order(A2), we can add zero blocks in V and X as folows
to meet such cases,

V =
(

V1 V12

0 V2

)
, X =

(
X1 X12

0 X2

)
,

where V12 = (V1 0), X12 = (X1 0). When
order(A1) > order(A2), we assume V and X acquire the
following lower trigonal structure

V =
(

V1 0
V21 V2

)
, X =

(
X1 0
X21 X2

)
,

where V21 = (V2 0), X21 = (X2 0), then we can get
the similar result as in Theorem 4.

Let

A =

(
A1 A12

A21 A2

)
, B =

(
B1 0
0 B2

)
, K =

(
K1 0
0 K2

)
(7)

in system (1). By Lemma 3, one can get the following
result for stability of system (1).

Theorem 4 If there are P = PT and V, X with form
(6) such that⎛
⎝ −V − V T V T AT + XT BT + P V T

AV + BX + P −P 0
V 0 −P

⎞
⎠ < 0,

then there exist diagonal blocked matrix K as in (7) such
that Acl = A + BK is stable. At this time, decentralized
controllers can be obtained as K1 = X1V

−1
1 ,K2 =

X2V
−1
2 .

Remark 6 From Theorem 4, one can see that P is not
blocked, and V1, V2 are generally not symmetric, of course
not positive definite. Intuitively, one can imagine that at
this time, A1 +B1K1 or A2 +B2K2 can be unstable under
stability of Acl. One can also see this from the forthcoming
examples. In addition, one can establish some similar results
for systems (2) and (4).

IV. EXAMPLES

Example 1 In the simple example studied in section 2,
let α = β = 2. By Theorem 4, one can get a K =
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(
−2.62 −5.69 0 0

0 0 1.13 −11.48

)
. Obviously A2+B2K2

is not stable, but Acl is stable.
Example 2 Consider system (2) defined by matrices

A1 =

⎛
⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
−3 −3 −8 −5

⎞
⎟⎠ , b12 =

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠ ,

A2 =

⎛
⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
−3 −2 −5 0

⎞
⎟⎠ , b21 =

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠ .

Obviously, the conditions in Theorem 2 are satisfied. A2
is not stable here. Using the method in Theorem 4, one can
get decentralized controllers

k21 = ( −1.7976 −3.0015 −5.4645 −4.6861 ),

k12 = ( 0.1507 1.0410 0.8293 1.3124 )

such that Acl is stable in (2).
Example 3 Consider system (4) defined by matrices

A1 =

⎛
⎜⎝

0 1 0 0
0 0 1 0
0 0 2 0
0 2 0 −1

⎞
⎟⎠ , b12 =

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠ ,

A2 =

⎛
⎜⎝

0 1 0 0
0 0 1 0
0 0 1 0
1 0 0 1

⎞
⎟⎠ , b21 =

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠ ,

and b1 = b2 = ( 0 0 1 0 )T . Obviously, the con-
ditions in Theorem 3 are satisfied. Using the method in
Theorem 4, one can get decentralized controllers

k1 = ( −2.7658 −6.3430 −6.2113 −1.0951 ),

k2 = ( −3.4075 −4.8896 −4.6361 −1.5468 )

k21 = ( −0.5882 0.7342 −0.2848 −1.1162 ),

k12 = ( 1.4464 0.6239 0.0819 1.9946 )

such that Acl is stable in (4).
From the examples and discussions above one can see

that subsystems need not to be all stable, even in some
special cases some subsystems must be unstable. This shows
the special effects of interconnections.

V. CONCLUSIONS

This paper is devoted to studying decentralized control
of some special interconnected systems. Some simple inter-
connected structures are established in which subsystems
need not be stable. The results here can be generalized
to cases of multiple subsystems. An LMI-based decen-
tralized controller design method is also given by using
parameter-dependent Lyapunov function method. Although
this method is suitable for the problems here in some cases.
It is still very conservative. It is an interesting topic to de-
velop more effective decentralized controller design method
for the problems here. We hope that these results can be
helpful for understanding the actions of interconnections in

large scale systems. Modern economic development with
high-speed is always along with the bankruptcy of small
enterprises. This means that the benefits of small enterprises
are sacrificed for the privilege of high-speed development.
For large scale systems, this paper indicates that sometimes
the stability of subsystems should also be sacrificed for the
stability of the whole system.
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