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Abstract— In this work we consider the stability of vehicle
formations in the case of a varying communication topology.
We use a decentralized control law approach and explore the
challenges and issues that arise in this framework. The vehicles
considered are homogeneous, with discrete-time dynamics, and
the communication between them is defined based on a pre-
defined proximity rule. The resulting closed loop system is
a switched dynamical system and in this paper we describe
sufficient conditions that will lead to the stability of the vehicle
formations.

I. INTRODUCTION

The theory of decentralized control for coordinating
large numbers of vehicles has recently become a topic
of large interest. Vicsek et al. in [14] consider self-
propelled particles using a neighbor-averaging law that
leads to a common heading. In [4], [5] conditions based
on a Nyquist criterion are developed that allow us to
predict when the dynamical system describing a vehicle
formation will be stable. Glavaski et al. in [7], [8] explore
the convergence to formation in the case where the
transmission connections between vehicles break randomly.
In [10], [11] the convergence to formation is looked at
when the communication graph depends on the relative
physical position of agents.

One of the applications of interest to us is being able
to analyze the stability of formations of uninhabited au-
tonomous vehicles (UAVs) by considering the communi-
cation among them while performing a given mission.
Using graph-theoretic tools, we focus on the general task
of designing a formation control law that is decentralized
and uses inter-vehicle sensed or communicated information,
and it guarantees convergence to a stable vehicle forma-
tion. Necessary and sufficient conditions are developed in
[12] for the convergence to and the stability of a vehicle
formation in the case of a fixed vehicle communication
infrastructure. In [15] the stability of multiple vehicle for-
mations is analyzed, and an inter-formation communication
infrastructure is proposed between subformations that guar-
antees the stability of the entire formation. A recent study at
Honeywell Labs, Minneapolis MN, shows that this control
law can be implemented to models of organic air vehicles.
Given formations of such vehicles, and using a distributed
control law, a stable hierarchical formation of OAVs is
achieved [3]. Other possible additional requirements in
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this decentralized control framework are state-dependent
communication links, for example proximity dependent
communication, collision avoidance between vehicles that
are converging to a formation, and obstacle avoidance.

A first step in this analysis is to consider the issues
that arise in the formation stability analysis in the case of
time or state-dependent communication structure. In this
paper we consider homogeneous vehicles with discrete-
time dynamics that exchange information based on some
proximity rule, in order to achieve a required geometric
formation. The formation required is pre-specified and
although all vehicles have to agree on a global reference
frame, this feedback law has the advantage that each vehicle
computes its control based on local information. When in
formation all vehicles move with the same velocity, and the
vehicles can be positioned at desired relative distances and
angles from each other. The latter property distinguishes
this analysis from the vehicle flocking theory, where the
control law does not determine where the vehicles will be
relative to each other. The objective is to define and analyze
the stability issues that arise in this distributed coordinated
control framework.

II. ALGEBRAIC GRAPH THEORY

The information exchange between vehicles can be mod-
elled by a directed graph, where the arrows show the
direction from which position and velocity information is
received by a vehicle from its “neighbor”. In this paper, we
refer to vehicles as being neighbors in the physical sense.
A proximity radius εi is defined for each vehicle i, where
vehicle j is a neighbor of vehicle i if the distance between
vehicles i and j is less or equal to εi.

Definition 2.1: A directed graph G consists of a vertex
set V (G) and an edge set E(G) ⊆ V (G) × V (G). For an
edge e = (u, v) ∈ E(G), u is called the head vertex of e
and v is called the tail vertex of e.

If (u, v) ∈ E(G) for all (v, u) ∈ E(G), then we call
the graph undirected. We call the graph simple if there are
no edges of the form (u, u) for u ∈ V (G). Let G be a
graph representing the communication links between a set
of vehicles. The properties of such a communication graph
are captured by its adjacency matrix Ad(G) defined by:

Definition 2.2: The adjacency matrix of a graph G, de-
noted Ad(G), is a square matrix of size |V (G)| × |V (G)|
defined as follows:

Ad(G)ij =
{

1 if (ui, uj) ∈ E(G)
0 otherwise.

where ui, uj ∈ V (G).
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Definition 2.3: The indegree of a vertex u is the number
of edges that have u as their head vertex. The indegree
matrix of a graph G, denoted D(G), is a diagonal matrix
of size |V (G)| × |V (G)| defined as follows:

D(G)ii = indegree(ui)

where ui ∈ V (G).
The outdegree of a vertex u for a graph G is defined

analogously, as the number of edges having u as the tail
vertex.

Definition 2.4: Given a graph G, the Laplacian matrix
associated with it is given by

LG = D(G) − Ad(G)

where D(G) is the indegree matrix and Ad(G) is the
adjacency matrix associated with the graph.

The diagonal entry dii of the Laplacian matrix is then the
indegree of vertex i and the negative entries in row i corre-
spond to the neighbors of vertex i. For any communication
graph considered, the row sums of the corresponding Lapla-
cian matrix are always zero and hence zero is always an
eigenvalue. In the case of undirected graphs, the Laplacian
matrix is symmetric and all its eigenvalues are non-negative
[2], [9]; the smallest eigenvalue of the Laplacian, λ1, is
zero; and its multiplicity equals the number of connected
components of the graph. The second eigenvalue, λ2, is
directly related to the connectivity of the graph [6]. This
is also the case for directed graphs. The properties of the
eigenvalues of the Laplacian matrices in the case of directed
graphs are explored in [12].

Definition 2.5: Given a directed graph G, P =
(u1, . . . , uk) is a directed path in G if for every 1 ≤ i < k
there exists edge (ui, ui+1) ∈ E(G).

Definition 2.6: Given a directed graph G, we call T a
rooted directed spanning tree of G, if T is a subgraph of
G, it has no cycles and there exists a (directed) path from
at least one vertex, the root, to every other vertex in T .

Definition 2.7: Given a directed graph G, we call G
strongly connected if there exists a directed path between
any two vertices in V (G).

All graphs in this paper are directed graphs, unless
mentioned otherwise. One property of the eigenvalues for
the Laplacian matrix of such a communication graph can
be derived from Gershgorin’s Theorem. Since all diagonal
entries of the Laplacian are the indegrees of the correspond-
ing vertex, it follows that all its eigenvalues will be located
in the disc centered at d = maxi(indegree(i)) of radius d,
so for any eigenvalue λ of the Laplacian

|λ| ≤ 2d

Further properties of the eigenvalues of such a graph are
explored in [13].

III. PROBLEM FORMULATION

We assume given N homogeneous vehicles with the
following discrete-time dynamics:

xi(k + 1) = Avehxi(k) + Bvehui(k)

where i = 1, 2, ..., N and the entries of xi represent the n
configuration variables for vehicle i, referred to as position-
like variables, and their derivatives, referred to as velocity-
like variables, and ui is the control input for vehicle i.

For each vehicle we use the error signal zi(k) for
coordination:

zi(k) =
∑

j∈Ji(k)

(xi(k) − xj(k)) − (hi − hj)

where Ji(k) is the set of neighbors of vehicle i at time k.

Definition 3.1: [12] A moving formation of N vehicles

is given by a vector h = hp ⊗
(

1
0

)
∈ R2nN . The N

vehicles are said to be in formation at time k if there exist
Rn valued vectors q and w such that (xp)i(k)− (hp)i = q
and (xv)i(k) = w, for i = 1, 2, . . . , N , where the subscript
p refers to the position components of xi and the subscript v
refers to the corresponding velocities. The vehicles converge
to formation h if there exist real valued functions q(·) and
w(·) such that (xp)i(k)− (hp)i − q(k) → 0 and (xv)i(k)−
w(k) → 0, as k → ∞ for i = 1, 2, . . . , N .
The figure below illustrates the interpretation of vectors in
the definition.

x

y

h1

h2

h3

h4

h5

vehicles

q

Fig. 1. Example of a pentagon formation with the corresponding offset
vectors

At any time k, the information exchange between vehi-
cles is modelled by a graph, G(k), where the N vertices
represent the vehicles, and the edges represent the commu-
nication links. In the previous section we explained when
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two vehicles are considered to be neighbors. It is important
to note that if a vehicle is a neighbor of vehicle i at time k, it
is not guaranteed that the same vehicle will be a neighbor
of i at time k + 1. In fact, depending on the formation
requirements, vehicles may change neighbors often, while
converging to formation.

For simplicity of the analysis, we consider all vehicles to
be homogeneous and we look for a feedback matrix Fveh

for each vehicle system. The system of N -homogeneous
vehicles is given by:

x(k + 1) = Ax(k) + Bu(k)
z(k) = L(k)(x(k) − h)

where x is the augmented state vector, A = IN ⊗ Aveh,
B = IN ⊗Bveh, and L(k) = LG(k)⊗I2n. The coordinated
control problem is to find a decentralized feedback control
matrix F = diag[Fveh] such that if:

u(k) = Fz(k)

then the vehicles converge to formation. We remark here
that this feedback matrix F should be the same regardless
of the communication graph between vehicles.

The closed loop system becomes:

x(k + 1) = Ax(k) + BFL(k)(x(k) − h)

In the analysis that follows, we must analyze the stability
of a dynamical system that is of the form:

x(k + 1) = (A + BFL(k))x(k)

We note that the Laplacian matrix LG(k) is defined based
on the proximity radius for each vehicle. The matrix is
therefore state-dependent, so L(k) = L(x(k)) and it is a
constant matrix that belongs to the finite set of Laplacian
matrices of graphs on N vertices. Therefore, the system
above is a switched dynamical system. Its stability depends
in part on the stability of the individual systems:

x(k + 1) = (A + BFLs)x(k)

but it is not guaranteed by that, where Ls is a Laplacian
matrix for a graph on N vertices.

Proposition 3.2: Let M = {C1, ..., Cm} and consider
the switched linear system

x(k + 1) = Ci(k)x(k), Ci(k) ∈ M

If all matrices in M have a spectral radius less than 1 and
the Lie algebra associated to M is solvable, then the system
has a common quadratic Lyapunov function.

Proof: [1]

Proposition 3.3: The vehicles are in formation if and
only if there exists a communication graph G with Lapla-
cian matrix L such that for communication graph Laplacian
matrices LG(k) we have the following conditions:

LG(k) → L

(L ⊗ I2n)(x − h) = 0
Proof: If such an L exists, then the distances between

vehicles must be fixed. On the other hand, the vehicles
are in a moving formation if the distances between them
are fixed and therefore the communication graph becomes
independent of time. Let L be the Laplacian matrix for
this graph. Also, as the vehicles are in formation, there
exist q(·) and w(·) such that (xp)i(k) − (hp)i = q(k) and
(xv)i(k) = w(k), i = 1, 2, . . . , N . Then

(L ⊗ I2n)(x(k) − h) =

(L ⊗ I2n)

(
1N ⊗

(
(xp)i ⊗

(
1
0

)
+ (xv)i ⊗

(
0
1

)))
−

(L ⊗ I2n)

(
hp ⊗

(
1
0

))
=

(L ⊗ I2n)

(
1N ⊗

(
q(k) ⊗

(
1
0

)
+ w(k) ⊗

(
1
0

)))
=

(L ⊗ I2n)(1N ⊗ α(k)) =

0

We will now will provide a sufficient for convergence
to formation in the case of time-dependent communication
graphs. First we establish a lemma.

Lemma 3.4: Consider a finite collection of matrices
M = {P (k): k = 1, . . . ,m}, each of the form P (k) =(

P1(k) P2(k)
0 P3(k)

)
. Let A be the Lie algebra generated

by M and let B be the Lie algebra generated by the
matrices P3(k), for k = 1, . . . , m. Then B is isomorphic to
a quotient Lie algebra of A. In particular, if A is solvable,
then so is B.

Proof: First notice that[(
P1 P2

0 P3

)
,

(
Q1 Q2

0 Q3

)]
=(

[P1, Q1] ∗
0 [P3, Q3]

)
. Consider the set H of matrices

of the form

(
H1 H2(k)
0 0

)
(where the dimensions

correspond to those of the blocks in M ). A direct
calculation shows that H ∩A is an ideal of the Lie algebra
A. It is easy to see that A/(H ∩A) is isomorphic to B.

Theorem 3.5: The vehicles converge to formation if at
each time k, the communication graph G(k) has a rooted
directed spanning tree and the Lie algebra of matrices A +
BFL(k) is solvable.

Proof: We note that this is a sufficient condition, but
not necessary. It was shown in [12] that a graph has a rooted
directed spanning tree if and only if zero is an eigenvalue of
multiplicity one of the corresponding Laplacian matrix. In
analogy with [12] we consider the extended discrete-time
system:

x(k + 1) = Ax(k) + BFL(k)x(k)

−BFL(k)
(

InN ⊗
(

1
0

))
hp

hp(k + 1) = hp(k)
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where hp(k) = hp,∀k. Equivalently, the system becomes:

y(k + 1) = M(k)y(k)

where M(k) =

⎛
⎝ A + BFL(k) −BFL(k)

(
InN ⊗

(
1
0

))

0 InN

⎞
⎠.

The eigenvalues of M(k) consist of those of A + BFL(k)
and those of InN . Consider now the subspace S of R3nN :

S =
{(

x
hp

)
: L(k)(x − h) = 0

}
.

While the matrices L(k) depend on k (and, in fact on x), the
space S is independent of k since, for every k, the nullspace
of L(k) is spanned by the all-ones vector 1N (here we used
our connectivity assumption on the graphs G(k)). Indeed,
a basis of S is given by:

B =
{(

1N ⊗ ei

0

)
: ei ∈ R2n, i = 1, . . . , 2n

}

⋃
⎧⎨
⎩

⎛
⎝ ej ⊗

(
1
0

)

ej

⎞
⎠ : ej ∈ RnN , j = 1, . . . , nN

⎫⎬
⎭

In [12] it was shown that for a fixed L, the space S
is M -invariant. Here we show that S is M(k)-invariant,
regardless of k. Let y(k) ∈ S, for some k. Then,

y(k) =
(

1N ⊗ α
0

)
+

⎛
⎝ β ⊗

(
1
0

)

β

⎞
⎠

M(k)y(k) =
(

1N ⊗ Avehα
0

)
+

⎛
⎝ β ⊗

(
1
0

)

β

⎞
⎠

and hence, M(k)y(k) ∈ S. The last equation comes from
basic rules of multiplication of Kronecker products and the
specific form of Aveh. Therefore, for all k, S is M(k)-
invariant. So, the linear transformation matrix induced by

every M(k) on S is constant of the form:

(
A 0
0 InN

)
.

Extending the above basis to a basis of R3nN we can write
all the matrices M(k) in block upper triangular form

M(k) =

⎛
⎝

(
A 0
0 InN

)
∗

0 Q(k)

⎞
⎠ .

The matrices Q(k) become the induced matrices on the
quotient space R2nN/S. The eigenvalues of Q(k) are those
of A + λ(k)BF , for λ(k) any nonzero eigenvalue of L(k).

We choose a feedback matrix F that stabilizes each
matrix A + λ(k)BF . The construction of such a matrix
is shown in the section that follows. From our assumptions
and Lemma (3.4), the Lie algebra generated by the matrices
Q(k) is solvable. Therefore the quotient system above is
asymptotically stable [1]. Moreover, stability in the quotient
is equivalent to having L(k)(x(k)− h) → 0, which in turn
is equivalent to convergence to formation.

IV. STABILITY

It remains to show that under the connectivity assumption
about the communication graph, a stabilizing feedback
matrix F exists. In the proof of the following proposition,
we will show how such a matrix can be constructed.

Proposition 4.1: For the double integrator discrete-time
vehicle model, a stabilizing feedback matrix Fveh exists.

Proof: We are looking at stabilizing a matrix of the
form (

1 + λf1
dt2

2 dt + λf2
dt2

2
λf1dt 1 + λf2dt

)

The characteristic polynomial of this matrix is of the form
p(x) = x2 − sx + p, where s and p can be complex
numbers. We are interested in deriving conditions that will
ensure that the roots of this polynomial are in the interior
of a circle of radius 1 centered at the origin. By using
the transformation x = 1+w

1−w and tools developed in [12],
we can derive the necessary and sufficient conditions. As
these are rather lengthy inequalities, we illustrate here the
sufficient conditions in the case when the communication
graph is undirected:

f1 < 0
f2 < 0

f2 − f1 < − 4
λdt2

for λ a nonzero eigenvalue of the communication graph. If
we allow f1 = f2, then the last condition above becomes:

f2 > − 2
λdt

In our case, the communication graph is state-dependent,
so the nonzero eigenvalues of the communication graph
will vary with k. Since the number of possible graphs on
N vertices is finite, and in particular the set of nonzero
eigenvalues is finite, we can choose negative f1 and f2

that satisfy the required inequalities. The resulting feedback
matrix Fveh =

(
f1 f2

)
will stabilize all matrices of the

form A + BFL(k), as required in the previous section.
Using similar methods, conditions can be deduced for the
case of directed graphs.

V. CONNECTIVITY CRITERIA

In the previous sections we showed that stability of
the vehicle formation is guaranteed in the case when the
communication graph contains a rooted directed spanning
tree at all times k. The issue of graph connectivity has
been considered in previous research, however determining
criteria for the communication graph to remain connected
in the case when the control law depends on the proximity
of neighbors remains an open problem.

Consider again the system defined previously:

y(k + 1) = M(k)y(k)

By selecting a matrix F that stabilizes each M(k) in the
quotient space R2nN/S, we therefore have that the induced
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matrix on this space has eigenvalues in the interior of the
circle of radius 1, centered at the origin, and therefore each
M(k) must be a contraction mapping on this space. The
challenge that remains in this case is to find the connection
of the relative distance between vehicles, and the function
defined above. In particular, one would like to say that if
at time k the communication graph has a rooted directed
spanning tree, then one must exist at time k+1. For the case
when h = 0, then the problem should be: if two vertices
are adjacent at time k, then they must be adjacent at time
k+1. This not only depends on the vehicle dynamics given,
but also on the eigenvalues of the Laplacian matrices from
the set considered. In the section that follows we illustrate
this via some of the examples.

VI. SIMULATION RESULTS

We consider N vehicles with dynamics given by the
discrete-time double integrator vehicle model. The initial
states are fixed or random. We choose a proximity radius
that would guarantee that in the final formation required
every vehicle has at least one neighbor. We illustrate the
connection between the proximity radius, the required for-
mation shape, the feedback control matrix, and the initial
conditions: In Figure 2, we have six vehicles converging
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Fig. 2. Stationary Hexagonal Formation

to a stationary hexagonal formation, starting from given
initial conditions. The communication between vehicles is
neighbor dependent, in the sense that each vehicle receives
position and velocity information only from the vehicles
that are in its proximity. Both in Figure 2 and Figure 3 the
communication graph is undirected. The values of the gains
in this case are f1 = −3 and f2 = −3.

In Figure 4, we illustrate the six vehicles, with the same
initial conditions as in the vehicles in Figure 2, but with a
different feedback matrix values: f1 = −1 and f2 = −1.

Keeping the gain values and detection radius, we show
in Figure 5 that other initial conditions can still lead to
a convergent formation. In this case the initial conditions
were chosen randomly from a given set.

In all of the above simulations we notice that for small
enough initial conditions and h, if the graph is connected
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Fig. 3. A Moving Hexagonal Formation
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Fig. 4. Same proximity radius and initial conditions, but different
feedback

at time k, it will remain connected at time k + 1.

VII. CONCLUSION

The goal in this paper was to illustrate some of the
issues that arise in the analysis of the stability of vehicle
formations in the case where the communication structure
is switched based on a state, or time-dependent rule. We
recognize some of the sufficient conditions for stability and
propose necessary conditions.

The next goal of this study is to determine conditions
under which stable formations can be achieved while en-
suring vehicle collision avoidance and obstacle avoidance.
Such control laws would also be based on a proximity rule,
as it would be reasonable to assume that if a vehicle is in
danger of collision, then it can identify the other vehicle
as a neighbor, and adjust its relative distance to it, prior to
collision.
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Fig. 5. Stationary Hexagonal Formation with random initial conditions
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